

Cosmic strings and their non-Gaussianities after Planck 2013

Christophe Ringeval

Centre for Cosmology, Particle Physics and Phenomenology Institute of Mathematics and Physics Louvain University, Belgium

Trieste, 1/08/2013

Intervening non-Gaussianities

Full sky cosmic strings map

Conclusion

Outline

Planck in very small

Around the L2 point Typical Planck image Testing for primordial non-Gaussianities

Intervening non-Gaussianities

Cosmic strings basics Nambu–Goto strings dynamics Small angles and flat sky limit Real space non-Gaussian signals Are these features detectable with PLANCK? Analytical small scale CMB bispectrum and trispectrum

Full sky cosmic strings map

Filling the transparent universe with strings Massively parallel ray tracing method Non-Gaussian searches for cosmic strings

Conclusion

Planck 2013 results XXV: arXiv:1303.5085 CR, F. R. Bouchet: arXiv:1204.5041 CR: arXiv:1005.4842

Planck in very small

- Around the L2 point
- ✤ Typical Planck image
- Testing for primordial non-Gaussianities

Intervening non-Gaussianities

Full sky cosmic strings map

Planck in very small

- Around the L2 point
- Typical Planck image
- Testing for primordial non-Gaussianities

Intervening non-Gaussianities

Full sky cosmic strings map

Planck in very small

- Around the L2 point
- Typical Planck image
- Testing for primordial non-Gaussianities

Intervening non-Gaussianities

Full sky cosmic strings map

Planck in very small

- Around the L2 point
- Typical Planck image
- Testing for primordial non-Gaussianities

Intervening non-Gaussianities

Full sky cosmic strings map

Planck in very small

- Around the L2 point
- Typical Planck image
- Testing for primordial non-Gaussianities

Intervening non-Gaussianities

Full sky cosmic strings map

Planck in very small

- Around the L2 point
- ✤ Typical Planck image
- Testing for primordial non-Gaussianities

Intervening non-Gaussianities

Full sky cosmic strings map

Planck in very small

- Around the L2 point
- ✤ Typical Planck image
- Testing for primordial non-Gaussianities

Intervening non-Gaussianities

Full sky cosmic strings map

- Around the L2 point
- Typical Planck image
- Testing for primordial non-Gaussianities

Intervening non-Gaussianities

Full sky cosmic strings map

- Around the L2 point
- Typical Planck image
- Testing for primordial non-Gaussianities

Intervening non-Gaussianities

Full sky cosmic strings map

Planck in very small

Around the L2 point

- Typical Planck image
- Testing for primordial non-Gaussianities

Intervening non-Gaussianities

Full sky cosmic strings map

Typical Planck image

Planck in very small

Around the L2 point

Typical Planck image

 Testing for primordial non-Gaussianities

Intervening non-Gaussianities

Full sky cosmic strings map

Conclusion

CMB map with 50 000 000 pixels

COM_CompMap_CMB-smica_2048_R1.20.fits: I

Around the L2 point

- ✤ Typical Planck image
- Testing for primordial non-Gaussianities

Intervening non-Gaussianities

Full sky cosmic strings map

Conclusion

Testing for primordial non-Gaussianities

Planck 2013 XXIV arXiv:1003.5084: CMB Bispectrum

Primordial non-Gaussianities (local, equilateral, orthogonal)

• With $\langle \phi \phi \phi \rangle \simeq f_{\rm NL} \delta(\mathbf{k}_1 + \mathbf{k}_2 + \mathbf{k}_3) F(k_1, k_2, k_3)$ $f_{\rm NL}^{\rm loc} = 2.7 \pm 5.8, \quad f_{\rm NL}^{\rm eq} = -42 \pm 75 \quad f_{\rm NL}^{\rm orth} = -25 \pm 39$

Cosmic strings basics

Planck in very small

Intervening non-Gaussianities

- Cosmic strings basics
- Nambu–Goto strings dynamics
- Small angles and flat sky limit
- Real space
 non-Gaussian signals
- Are these features detectable with PLANCK?
 Analytical small scale CMB bispectrum and trispectrum

Full sky cosmic strings map

- Line-like remnants of the early universe that should still be present
 - Solitons created during cosmological phase transitions $\mathcal{G} \to \mathcal{H}$ (unavoidable if $\pi_1(\mathcal{G}/\mathcal{H}) \neq 1$) [Kibble 76]
 - Cosmologically streched objects from String Theory [Witten 85]
 - Generically formed at the end of inflation [Sarangi 02; Jeannerot 03]
- Prototypical model: Nambu–Goto string networks: 1 parameter U
 - Numerical simulations shows that they relax towards a self-similar configuration = scaling (see movie)
 - + Energy density of long strings and loops evolves as radiation/matter instead of $\rho \propto a^{-2}$

$$\rho_{\rm inf} \frac{d_{\rm h}^2}{U} \Big|_{\rm mat} = 28.4 \pm 0.9, \qquad \rho_{\rm inf} \frac{d_{\rm h}^2}{U} \Big|_{\rm rad} = 37.8 \pm 1.7.$$

Nambu–Goto strings dynamics

Planck in very small

Intervening non-Gaussianities

Cosmic strings basics

Nambu–Goto strings dynamics

Small angles and flat sky limit

Real space non-Gaussian signals

 Are these features detectable with PLANCK?
 Analytical small scale CMB bispectrum and trispectrum

Full sky cosmic strings map

Conclusion

Two-dimensional worldsheet surface located at $x^{\mu} = X^{\mu}(\xi^{a})$.

• Lorentz invariance along the string ($\tau \equiv \xi^0 \ \sigma \equiv \xi^1$)

$$S = -\boldsymbol{U} \int d\tau d\sigma \sqrt{-\gamma}, \quad \gamma_{ab} = g_{\mu\nu} X^{\mu}_{,a} X^{\nu}_{,b} \text{ (induced metric)}$$

String motion in FLRW (TT gauge: $X^0 = \tau$, $\dot{X} \cdot \dot{X} = 0$)

$$\ddot{\boldsymbol{X}} + 2\mathcal{H}\left(1 - \dot{\boldsymbol{X}}^2\right) - \frac{1}{\varepsilon}\left(\frac{\dot{\boldsymbol{X}}}{\varepsilon}\right)' = 0, \quad \dot{\varepsilon} + 2\mathcal{H}\varepsilon\dot{\boldsymbol{X}}^2 = 0, \quad \varepsilon = \sqrt{\frac{\dot{\boldsymbol{X}}^2}{1 - \dot{\boldsymbol{X}}^2}}$$

• Hubble damped propagation of left- right-moving waves

$$\mathcal{H} = 0 \quad \Rightarrow \quad \acute{X}(\tau, \sigma) = \frac{1}{2} \left[\vec{p}(\sigma + \tau) + \vec{q}(\sigma - \tau) \right]$$

Induce non-Gaussian CMB distorsions

Planck in very small

Intervening non-Gaussianities

Cosmic strings basics

Nambu–Goto strings dynamics

Small angles and flat sky limit

Real space non-Gaussian signals

 Are these features detectable with PLANCK?
 Analytical small scale CMB bispectrum and trispectrum

Full sky cosmic strings map

- vacuum tubes \Rightarrow no static gravitational effects (T = U)
- Do have General Relativity effects on light and thus on CMB! (Gott-Kaiser-Stebbins)
 - ISW from Nambu–Goto stress tensor + Einstein equations: [Hindmarsh 94, Stebbins 95]

$$\begin{split} \Theta(\hat{\boldsymbol{n}}) &\equiv \frac{\delta T}{T_{\text{CMB}}} = -4G\boldsymbol{U} \int_{\boldsymbol{X} \cap \boldsymbol{x}_{\gamma}} \left[\boldsymbol{u}(\hat{\boldsymbol{n}}) \cdot \frac{\boldsymbol{X}_{\perp}}{\boldsymbol{X}_{\perp}^{2}} \right] \left(1 + \hat{\boldsymbol{n}} \cdot \dot{\boldsymbol{X}} \right) \, \mathrm{d}\boldsymbol{\sigma} \\ \boldsymbol{u} &= \dot{\boldsymbol{X}} - \frac{(\hat{\boldsymbol{n}} \cdot \boldsymbol{X}') \cdot \boldsymbol{X}'}{1 + \hat{\boldsymbol{n}} \cdot \dot{\boldsymbol{X}}} \qquad \boldsymbol{X}_{\perp} \equiv X\hat{\boldsymbol{n}} - \boldsymbol{X} \end{split}$$

Small angles and flat sky limit

Planck in very small

Intervening non-Gaussianities

Cosmic strings basics
Nambu–Goto strings dynamics

Small angles and flat sky limit

Real space
 non-Gaussian signals

 Are these features detectable with PLANCK?
 Analytical small scale CMB bispectrum and trispectrum

Full sky cosmic strings map

Conclusion

At small angular scales, in 2D transverse Fourier space (${m k}\cdot {m \hat n}\simeq 0$):

$$\Theta \simeq \frac{8\pi i \, G \boldsymbol{U}}{\boldsymbol{k}^2} \int_{\boldsymbol{X} \cap \boldsymbol{x}_{\gamma}} \left(\boldsymbol{u} \cdot \boldsymbol{k} \right) e^{-i \, \boldsymbol{k} \cdot \boldsymbol{X}} \, \mathrm{d}\boldsymbol{\sigma}$$

Flat sky simulation over 7.2° [Fraisse, CR, Spergel, Bouchet 07]

C

non-Gaussianities

Cosmic strings basicsNambu–Goto strings

♦ Small angles and flat

non-Gaussian signals

Are these features

detectable with PLANCK?

Analytical small scale
 CMB bispectrum and

Full sky cosmic strings

Intervening

dynamics

trispectrum

Conclusion

map

Real space non-Gaussian signals

One-point functions

Gradient magnitude

$g_1 \equiv \left\langle \frac{\overline{(\Theta - \overline{\Theta})^3}}{\sigma^3} \right\rangle \simeq -0.22 \pm 0.12$

$$g_2 \equiv \left\langle \frac{\overline{(\Theta - \overline{\Theta})^4}}{\sigma^4} \right\rangle - 3 \simeq 0.69 \pm 0.29.$$

$$|\nabla\Theta| \equiv \sqrt{\left(\frac{\mathrm{d}\Theta}{\mathrm{d}\alpha}\right)^2 + \left(\frac{\mathrm{d}\Theta}{\mathrm{d}\beta}\right)^2}$$

Are these features detectable with PLANCK?

Planck in very small

Intervening non-Gaussianities

- Cosmic strings basics
- Nambu–Goto strings dynamics
- Small angles and flat sky limit
- ✤ Real space non-Gaussian signals

Are these features detectable with PLANCK?

♦ Analytical small scale
 CMB bispectrum and
 trispectrum

Full sky cosmic strings map

- Experimental beam damps the signal: 5' Gaussian beam
 - Hidden in secondary anisotropies \Rightarrow depends on GU
 - Gradient magnitude is sensitive to all: inf + SZ + stgs (7×10^{-7})

Intervening non-Gaussianities

- Cosmic strings basicsNambu–Goto strings
- dynamics
- Small angles and flat sky limit
- Real space non-Gaussian signals
- Are these features detectable with PLANCK?
 Analytical small scale CMB bispectrum and trispectrum

Full sky cosmic strings map

Conclusion

Analytical CMB bispectrum at small scales

Bispectrum in the small angle limit: $\kappa_{ab} \equiv k_a \cdot k_b \gg 1$ (I.c. gauge)

$$B(\boldsymbol{k}_1, \boldsymbol{k}_2, \boldsymbol{k}_3) = i\epsilon^3 \frac{1}{\mathcal{A}} \frac{k_{1_A} k_{2_B} k_{3_C}}{k_1^2 k_2^2 k_3^2} \int \mathrm{d}\sigma_1 \mathrm{d}\sigma_2 \mathrm{d}\sigma_3 \left\langle \dot{X}_1^A \dot{X}_2^B \dot{X}_3^C e^{i\delta^{ab} \boldsymbol{k}_a \cdot \boldsymbol{X}_b} \right\rangle$$

with $\dot{X}_{a}^{A} = \dot{X}^{A}(\sigma_{a}), a, b \in \{1, 2, 3\}, \epsilon = 8\pi G U$

Assuming \dot{X} and \acute{X} are Gaussian random variables [Hindmarsh, CR, Suyama 09]

$$B(\boldsymbol{k}_{1},\boldsymbol{k}_{2},\boldsymbol{k}_{3}) = -\epsilon^{3}\pi\boldsymbol{c_{0}}\frac{\bar{\boldsymbol{v}}^{2}}{\bar{\boldsymbol{t}}^{4}}\frac{L\hat{\xi}}{\mathcal{A}}\frac{1}{\hat{\xi}^{2}}\frac{1}{k_{1}^{2}k_{2}^{2}k_{3}^{2}}\left[\frac{k_{1}^{4}\kappa_{23}+k_{2}^{4}\kappa_{31}+k_{3}^{4}\kappa_{12}}{\left(\kappa_{23}\kappa_{31}+\kappa_{12}\kappa_{31}+\kappa_{12}\kappa_{23}\right)^{3/2}}\right]$$

• Leading order measures the projected string statistics

$$\Gamma(\sigma_{ab}) \equiv \left\langle \left[\boldsymbol{X}(\sigma_{a}) - \boldsymbol{X}(\sigma_{b}) \right]^{2} \right\rangle \sim \boldsymbol{\bar{t}}^{2} \sigma_{ab}^{2}$$
$$\Pi(\sigma_{ab}) \equiv \left\langle \left[\boldsymbol{X}(\sigma_{a}) - \boldsymbol{X}(\sigma_{b}) \right] \cdot \boldsymbol{\dot{X}}(\sigma_{b}) \right\rangle \sim \frac{1}{2} \frac{\boldsymbol{c_{0}}}{\hat{\xi}} \sigma_{ab}^{2}$$

Example: isoscele triangle configurations

Planck in very small

Intervening non-Gaussianities

- Cosmic strings basics
- Nambu–Goto strings dynamics
- Small angles and flat sky limit
- Real space non-Gaussian signals
- Are these features detectable with PLANCK?
 Analytical small scale CMB bispectrum and trispectrum
- Full sky cosmic strings map
- Conclusion

Wavenumbers such that $k_1 = k_2 = k$ and $k_3 = 2k \sin(\theta/2)$

$$B_{\ell\ell\theta}(k,\theta) = -\epsilon^3 \pi c_0 \frac{\bar{v}^2}{\bar{t}^4} \frac{L\hat{\xi}}{\mathcal{A}} \frac{1}{\hat{\xi}^2 k^6} \frac{1 + 4\cos\theta \sin^2(\theta/2)}{\sin^3\theta}$$

• Amplified on elongated triangles;
$$\pm$$
 at $\theta_0 = 2 \arccos \frac{\sqrt{3} - \sqrt{3}}{2}$

Intervening non-Gaussianities

- Cosmic strings basics
- Nambu–Goto strings dynamics
- Small angles and flat sky limit
- Real space non-Gaussian signals
- Are these features detectable with PLANCK?
 Analytical small scale
- CMB bispectrum and trispectrum
- Full sky cosmic strings map

Conclusion

Analytical CMB trispectrum at small scales

- Geometrical factor scales as $k^{-\rho}$: $\rho = 6 + 1/(1 + \chi)$
- Sensitive to higher order terms in the correlators ($0 < \chi < 1$, $c_1 > 0$)

Polchinski–Rocha model $\Rightarrow \delta_{AB} \left\langle \dot{X}_a^A \dot{X}_b^B \right\rangle \simeq \vec{t}^2 - c_1 \left(\frac{\sigma_{ab}}{\hat{\xi}} \right)^{2\chi}$

- Window onto the string microstructure!
 - NG: power-law exponent of the loop distribution
 - Other strings: related to the mean square velocity

In details [Hindmarsh, CR, Suyama 09; Regan, Shellard 09]

 $\begin{aligned} T_{\infty}(\mathbf{k}_{1},\mathbf{k}_{2},\mathbf{k}_{3},\mathbf{k}_{4}) &\simeq \epsilon^{4} \frac{\bar{v}^{4}}{\bar{t}^{2}} \frac{L\hat{\xi}}{\mathcal{A}} \left(c_{1}\hat{\xi}^{2}\right)^{-1/(2\chi+2)} f(\chi)g(\mathbf{k}_{1},\mathbf{k}_{2},\mathbf{k}_{3},\mathbf{k}_{4}) \\ f(\chi) &= \frac{\pi}{\chi+1} \Gamma\left(\frac{1}{2\chi+2}\right) \left[4(2\chi+1)(\chi+1)\right]^{1/(2\chi+2)} \\ g(\mathbf{k}_{1},\mathbf{k}_{2},\mathbf{k}_{3},\mathbf{k}_{4}) &= \frac{\kappa_{12}\kappa_{34}+\kappa_{13}\kappa_{24}+\kappa_{14}\kappa_{23}}{k_{1}^{2}k_{2}^{2}k_{3}^{2}k_{4}^{2}} \left[Y^{2}\right]^{-1/(2\chi+2)} \\ Y^{2}(\mathbf{k}_{1},\mathbf{k}_{2},\mathbf{k}_{3},\mathbf{k}_{4}) &\equiv -\kappa_{12} \left(k_{3}^{2}k_{4}^{2}-\kappa_{34}^{2}\right)^{\chi+1} + \mathcal{O}, \end{aligned}$

Intervening non-Gaussianities

Full sky cosmic strings map

 Filling the transparent universe with strings

Massively parallel ray tracing method

Non-Gaussian searches for cosmic strings

Conclusion

But PLANCK is a full sky experiment...

Intervening non-Gaussianities

Full sky cosmic strings map

✤ Filling the transparent universe with strings

Massively parallel ray tracing method

Non-Gaussian searches for cosmic strings

Conclusion

Filling the transparent universe with strings

Searching for string NG with Planck requires full sky \Rightarrow simulations

- Each simulation is a box of initial resolution 2000^3 (movie box)
- Have to be stacked to fill 13 billion light years (HEALpix)

- This can be done with 3072 CS runs
- In which we propagate the CMB...

Intervening non-Gaussianities

Full sky cosmic strings map

Filling the transparent universe with strings

Massively parallel ray tracing method

Non-Gaussian searches for cosmic strings

Conclusion

Sky pixelized with 200 000 000 lines of sight (4 times Planck maps)

Massively parallel ray tracing method

- Each direction receives cumulative contributions from all CS
- Account for roughly 10¹⁷ iterations
- Parallelization implementation
 - MPI over the 3072 boxes + reduction
 - OpenMP over the 200 000 000 pixels
 - Vectorization of the most inner loop (string segments)
- Code development performed on the CP3-cosmo cluster (100 cores)
- Reasonable computing time demands a 100 TeraFlops computer :-/
 - ♦ The Planck collaboration has a few... (thanks to J. Borrill) :)

Intervening non-Gaussianities

Full sky cosmic strings map

 Filling the transparent universe with strings

Massively parallel ray tracing method

Non-Gaussian searches for cosmic strings

Conclusion

512 nodes / 12K cores runs at NERSC

- National Energy Research Scientific Computing Center (Berkeley U.S.)
- The "Hopper" Cray XE6 machine (world rank 8 in Nov 2011)
 - More than 6000 nodes with Dual processor 24 cores
 - 3D Cray Gemini: Maximum injection bandwidth per node 20 GB/s

After a million of cpu-hours

Planck in very small

Intervening non-Gaussianities

Full sky cosmic strings map

 Filling the transparent universe with strings

Massively parallel ray tracing method

Non-Gaussian searches for cosmic strings

Conclusion

Full sky synthetic string map of 2×10^8 pixels

Non-Gaussian searches for cosmic strings

Full sky bispectrum

Planck in very small

Intervening non-Gaussianities

 Filling the transparent universe with strings

Massively parallel ray tracing method

Non-Gaussian searches for cosmic strings

Conclusion

- Different methods
 - Modal bispectrum
 - Wavelets
 - Minkowski functionals

• Planck constraints on cosmic strings non-Gaussianities

 $f_{\rm NL}^{\rm strg} = 0.30 \pm 0.21 \Rightarrow GU < 8.8 \times 10^{-7}$ Real space $\Rightarrow GU < 7.8 \times 10^{-7}$

• Very robust (ISW only) but slightly weaker than power spectrum bounds $GU < 1.3 \times 10^{-7} \rightarrow 3.2 \times 10^{-7}$

Conclusion

Planck in very small

Intervening non-Gaussianities

Full sky cosmic strings map

Conclusion

no strings non-Gaussianities $\Rightarrow GU < 7.8 \times 10^{-7}$ (not easy to get)

- Possible improvements
 - ◆ Finding string induced non-Gaussianities? ⇒ window on their nature (trispectrum)
 - Going further than the ISW contribution
 - Next Planck data release + polarization + small scales experiments (BB [Seljak 06])
- Other observables than CMB: signal $\propto (GU)^{2,3,4}$
 - Galaxy surveys
 - ♦ 21 cm

• Wicks theorem
$$\Rightarrow$$
 bispectrum depends on

$$\Gamma(\sigma - \sigma') = \int_{\sigma'}^{\sigma} \mathrm{d}\sigma_1 \int_{\sigma'}^{\sigma} \mathrm{d}\sigma_2 T(\sigma_1 - \sigma_2), \quad \Pi(\sigma - \sigma') = \int_{\sigma'}^{\sigma} \mathrm{d}\sigma_1 M(\sigma_1 - \sigma')$$
$$\left\langle \dot{X}_a^A \dot{X}_b^B \right\rangle = \frac{\delta^{AB}}{2} V(\sigma_{ab}), \left\langle \dot{X}_a^A \dot{X}_b^B \right\rangle = \frac{\delta^{AB}}{2} M(\sigma_{ab}), \left\langle \dot{X}_a^A \dot{X}_b^B \right\rangle = \frac{\delta^{AB}}{2} T(\sigma_{ab})$$

• Sensitive to the (averaged projected) small scales $\sigma \rightarrow 0$:

$$V(\sigma) \sim \bar{v}^2, \qquad \Gamma(\sigma) \sim \bar{t}^2 \sigma^2, \qquad \Pi(\sigma) \sim \frac{1}{2} \frac{c_0}{\hat{\xi}} \sigma^2 \quad [\hat{\xi} \equiv \Gamma'(\infty)]$$

note 1 of slide 21

B String bispectrum and cosmic expansion

- Proportional to $c_0 \equiv \hat{\xi} \left\langle \mathbf{X} \cdot \mathbf{X} \right\rangle \neq 0$?
 - Light cone gauge + FLRW + \dot{X} , \acute{X} Gaussian random variables

$$\left\langle \boldsymbol{\ddot{X}} \cdot \boldsymbol{\dot{X}} \right\rangle = \bar{\mathcal{H}} \left(\left\langle \boldsymbol{\dot{X}}^2 \right\rangle \left\langle \boldsymbol{\dot{X}}^2 \right\rangle - \left\langle \boldsymbol{\dot{X}} \cdot \boldsymbol{\dot{X}} \right\rangle^2 \right) = \bar{\mathcal{H}} \bar{v}^2 \bar{t}^2$$

• For $\overline{H} > 0 \Rightarrow c_0 > 0$: breaking of time reversal invariance

- String bispectrum exists only in an expanding universe
 - Gives a negative skewness by integration
 - This is the CMB temperature bispectrum (what you see!)
 - As opposed to primordial $(f_{\rm NL})$

C Tested against simulated maps

• Estimator [Spergel 99; Aghanim 03; Komatsu 03]:
$$\Theta_u(x) \equiv \int \frac{\mathrm{d}k}{(2\pi)^2} \hat{\Theta}_k W_u(k) e^{-ik \cdot x}$$

$$B_{k_1k_2k_3} = \frac{\left\langle \int \Theta_{k_1}(\boldsymbol{x})\Theta_{k_2}(\boldsymbol{x})\Theta_{k_3}(\boldsymbol{x})\mathrm{d}\boldsymbol{x} \right\rangle}{\int \frac{\mathrm{d}\boldsymbol{p}\mathrm{d}\boldsymbol{q}}{(2\pi)^4} W_{k_1}(\boldsymbol{p}) W_{k_2}(\boldsymbol{q}) W_{k_3}(|\boldsymbol{p}+\boldsymbol{q}|)}$$

• Power-law and dependency in θ recovered

