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~No detection 

:( :(

Optimal analysis  of Planck data are ~ compatible with Gaussianity

-1 < fNL
local < 20   at 95% C.L.                                         

With Smith and Zaldarriaga, 
JCAP2009
JCAP2010
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Limits in terms of parameters of a Lagrangian
•.

• These are contour plots of parameters of a fundamental Lagrangian
• Same as in particle accelerator Precision Electroweak Tests.
• Thanks to the EFT: A qualitatively new (and superior) way to use the cosmological data
• Universal limit cs & 0.02 (1)
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Figure 8: Top panel: 68%, 95% and 99.7% confidence regions in the single-field inflation param-
eters (cs, c̃3) from five-year WMAP data, obtained from an analysis which uses f equil.

NL and forthog.
NL

(eq. (81)). Bottom panel: Confidence regions obtained from an analysis using f equil.
NL alone (eq. (82)),

showing weaker constraints.
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For comparison, in the bottom panel of Fig. 8, we show 68%, 95% and 99.7% confidence
regions using an analysis which discards f orthog.

NL and obtains constraints from f equil.
NL alone.

More precisely, we define an “equilateral” �2 by:

�2(cs, c̃3)equil =
(⇤f̂ equil.

NL (cs, c̃3)⌅ � (f̂ equil.
NL )WMAP)2

Var(f̂ equil.
NL )

(60)

and define confidence regions by converting to a p-value using �2 statistics with one degree
of freedom. Using f equil.

NL alone, it is seen that there is a degeneracy which allows models with
arbitrarily small cs and negative c̃3. As we move along the degeneracy line in the cs ⇥ 0
direction, we get large contributions to f equil.

NL (proportional to (1 � 1/c2
s) and c̃3/c2

s) which
nearly cancel. If f orthog.

NL is included in the analysis (top panel), the degeneracy is broken for
su⌅ciently small cs, because a detectably large f orthog.

NL is generated.
We can also ask: what is the WMAP constraint on the sound speed cs during inflation?

The answer is di�erent depending on what assumptions we make about the parameter c̃3. In
the context of ghost inflation (c̃3 = 0) or DBI inflation (c̃3 = 3(1 � c2

s)/2), we can discard
f orthog.

NL and constrain cs using f equil.
NL alone. This is because the bispectrum is always highly

correlated to the equilateral shape, so that including f orthog.
NL would not increase the statistical

power. We find the following lower bounds:

cs � 0.048 (ghost inflation, 95% CL) (61)

cs � 0.054 (DBI inflation, 95% CL) (62)

To get the most conservative constraint on cs, we would marginalize c̃3 instead of assuming
a specific value. More precisely, we define a one-variable �2 statistic by evaluating the two-
variable �2(cs, c̃3) at the value of c̃3 which minimizes the �2 for a given cs:

�2(cs)marg = min
c̃3

�
�2(cs, c̃3)WMAP

⇥
(c̃3 marginalized) (63)

Converting this �2 to a lower limit using �2 statistics with one degree of freedom, we find:

cs � 0.011 (c̃3 marginalized, 95% CL) (64)

This very general lower limit applies to all single-field inflation models regardless of the value
of the coupling c̃3. To obtain it, it is necessary to include the new shape f orthog.

NL in the analysis.
Using f equil.

NL alone, there is no lower limit on cs when c̃3 is marginalized, due to the degeneracy
seen in the bottom panel of Fig. 8.

5 Summary

The non-Gaussianities produced by the most general single-field inflation, in the case where an
approximate shift symmetry protects the Goldstone boson, are described by two independent
parameters. The resulting shape of the signal in Fourier space can vary from being peaked

25

With Smith and Zaldarriaga, 
JCAP2010

Very similar in spirit to
Precision Electroweak Tests
(Complete Connection to 
Particle Physics)
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Figure 8: Top panel: 68%, 95% and 99.7% confidence regions in the single-field inflation param-
eters (cs, c̃3) from five-year WMAP data, obtained from an analysis which uses f equil.

NL and forthog.
NL

(eq. (81)). Bottom panel: Confidence regions obtained from an analysis using f equil.
NL alone (eq. (82)),

showing weaker constraints.
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2

For comparison, in the bottom panel of Fig. 8, we show 68%, 95% and 99.7% confidence
regions using an analysis which discards f orthog.

NL and obtains constraints from f equil.
NL alone.

More precisely, we define an “equilateral” �2 by:

�2(cs, c̃3)equil =
(⇤f̂ equil.

NL (cs, c̃3)⌅ � (f̂ equil.
NL )WMAP)2

Var(f̂ equil.
NL )

(60)

and define confidence regions by converting to a p-value using �2 statistics with one degree
of freedom. Using f equil.

NL alone, it is seen that there is a degeneracy which allows models with
arbitrarily small cs and negative c̃3. As we move along the degeneracy line in the cs ⇥ 0
direction, we get large contributions to f equil.

NL (proportional to (1 � 1/c2
s) and c̃3/c2

s) which
nearly cancel. If f orthog.

NL is included in the analysis (top panel), the degeneracy is broken for
su⌅ciently small cs, because a detectably large f orthog.

NL is generated.
We can also ask: what is the WMAP constraint on the sound speed cs during inflation?

The answer is di�erent depending on what assumptions we make about the parameter c̃3. In
the context of ghost inflation (c̃3 = 0) or DBI inflation (c̃3 = 3(1 � c2

s)/2), we can discard
f orthog.

NL and constrain cs using f equil.
NL alone. This is because the bispectrum is always highly

correlated to the equilateral shape, so that including f orthog.
NL would not increase the statistical

power. We find the following lower bounds:

cs � 0.048 (ghost inflation, 95% CL) (61)

cs � 0.054 (DBI inflation, 95% CL) (62)

To get the most conservative constraint on cs, we would marginalize c̃3 instead of assuming
a specific value. More precisely, we define a one-variable �2 statistic by evaluating the two-
variable �2(cs, c̃3) at the value of c̃3 which minimizes the �2 for a given cs:

�2(cs)marg = min
c̃3

�
�2(cs, c̃3)WMAP

⇥
(c̃3 marginalized) (63)

Converting this �2 to a lower limit using �2 statistics with one degree of freedom, we find:

cs � 0.011 (c̃3 marginalized, 95% CL) (64)

This very general lower limit applies to all single-field inflation models regardless of the value
of the coupling c̃3. To obtain it, it is necessary to include the new shape f orthog.

NL in the analysis.
Using f equil.

NL alone, there is no lower limit on cs when c̃3 is marginalized, due to the degeneracy
seen in the bottom panel of Fig. 8.

5 Summary

The non-Gaussianities produced by the most general single-field inflation, in the case where an
approximate shift symmetry protects the Goldstone boson, are described by two independent
parameters. The resulting shape of the signal in Fourier space can vary from being peaked

25

With Smith and Zaldarriaga, 
JCAP2010

Very similar in spirit to
Precision Electroweak Tests
(Complete Connection to 
Particle Physics)

see Barbieri, Giudice, Rattazzi ... 
for partcle physics

Thursday, August 1, 13



(Optimal) Limits on the parameters of the Lagrangian

• Close to de Sitter.
• Dispertion relation:

Figure 9: WMAP constraints in the (d1, c̃3(d2 + d3)�4)-plane, for the near de Sitter model with
d1 � 4(d2 + d3)1/2.

4.4 WMAP constraints: near de Sitter models with d1 � 4(d2+d3)1/2

We can also use the two-template WMAP analysis to put constraints on the near de Sitter
parameter spaces described in sec. 2.1. In this subsection, we will consider the case d1 �
4(d2 + d3)1/2.

We take the parameters of the model to be (d1, c̃3(d2 + d3)�4). As in the preceding
subsection, we define a ⇥2 statistic which quantifies agreement between the model parameters
and the WMAP data, using eq. (63) above for the expectation values of the fNL estimators.
In detail, ⇥2 is defined as a function of (d1, c̃3(d2 + d3)�4) by:

⇤
⌅f̂ equil.

NL ⇧
⌅f̂ orthog.

NL ⇧

⌅
=

�
�6.791⇥ 103 �4.979⇥ 10�2

�9.441⇥ 102 2.705⇥ 10�3

⇥ ⇤
d�8/5

1

c̃3(d2 + d3)�4

⌅
(87)

v =

⇤
⌅f̂ equil.

NL ⇧ � (f̂ equil.
NL )WMAP

⌅f̂ orthog.
NL ⇧ � (f̂ orthog.

NL )WMAP

⌅
(88)

⇥2 = vT C�1v (where C = Cov(f̂ equil.
NL , f̂ orthog.

NL )) (89)

In Fig. 9, we show 1�, 2�, and 3� contours in the (d1, c̃3(d2 +d3)�4) plane obtained using this
⇥2 statistic. The non-interacting model (d1 ⇤ 1, c̃3(d2 + d3)�4 = 0) is consistent with the
data at 2�. (This is the case for all parameter spaces considered in this paper, since the ⇥2 of
the non-interacting model is independent of the parameter space into which it is embedded.)
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Ḣ

H2
(17)

cs ⌅ 1 (18)

⌥2 ⇤ c2
sk

2 (19)

 ⇤�k1
⇤�k2

⇤�k3
⌦

 ⇤�k⇤��k⌦3/2
⇤ 10�2 ⇤ 1

N1/2
pix

(20)

�̂⌃ ⇧ x̂ (21)

�̈⌃k +
k2

a2
�⌃k +

1

⇥
˙�⌃

2
= 0 (22)

P ({⇤�k}) = N Exp

⇤

⇧�
⌥

�k

�
⇤2
k

Pk
+

⇤3
k

Ck
+ ...

⇥⌅

⌃ (23)

Pk ⇤  ⇤2
k⌦vac ⇤ H4

⌃̇2
 �⌃2⌦vac (24)

(25)

1

d1 �g00�Ki
i (1)

d2�K
i
i
2 (2)

⌃⇤2⌥ ⇤ H2

M2
Pl⇥

· 1

c2
s

(3)

⌅̇4 (4)

⌅̇3(�i⌅)2 ⇧ ⇧ ⌅̇(�i⌅)2 (5)

⌅ ⇤ e|cs|�tinst. (6)

d1 < 0 (7)

⌅̇(�i⌅)2 ⇧ ⌃⇤↵k1
⇤↵k2

⇤↵k3
⌥ (8)

⇤ = H⌅ + Ḣ⌅2 (9)
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(Optimal) Limits on the parameters of the Lagrangian

• Close to de Sitter.
• Dispertion relation: ⌥2 = (d2 + d3)
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Figure 10: WMAP constraints in the (d1, d2 + d3) plane, for the near de Sitter model in the ghost
inflation limit |d1| ⇥ 4(d2 + d3)1/2. Note that the range on the y-axis has been chosen so that only
models which satisfy this inequality are shown. As described in the text, a 1� region does not appear
in the plot because this parameter space does not include any model whose ⇥2 gives better than 1�

agreement with the WMAP data.

It is worth to notice that if we imposed d2 + d3 to saturate the bound d1 � 4(d2 + d3)1/2 and
we also imposed c̃3 not to be too large, then many of the most extreme values of the y-axis
in Fig. 9 would be excluded. Using eq. (41), the sound speed is given by cs ⌅ (0.00993)d4/5

1 ,
and lower limits on cs are given by:

cs � 0.073 (95% CL, c̃3(d2 + d3)�4 = 0) (90)

cs � 0.0189 (95% CL, c̃3(d2 + d3)�4 marginalized) (91)

Note that the requirement that cs ⇤ 1 implies d1 ⇥ 319 in this model.
So far we have neglected metric fluctuations. Following [20, 11] it is straightforward to see

that this is a good approximation for d1 ⇥ (MPl/(30M))5. For the parameter space we are
interested in, this translates in M ⇥ MPl/10 to a good approximation. When this inequality
is violated, as shown in [20, 11] the squared speed of sound c2

s of the fluctuations becomes
negative and the modes begin to grow exponentially before crossing the horizon. In this case
these models become similar to the ones shown in the next sec. 4.6, and, as we will see, are
generically very disfavored by the data.

4.5 Near-de-Sitter models with |d1| ⇥ 4(d2 + d3)1/2

The next space of models we consider is the near de Sitter limit with |d1| ⇥ 4(d2 + d3)1/2

relevant for Ghost inflation. In this case, we take the model parameters to be (d1, d2 + d3).
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(Optimal) Limits on the parameters of the Lagrangian

• Close to de Sitter.
• Negative        due to 
• Ruled out at 95% CL. 
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Figure 11: Analysis of the near de Sitter model with c2
s < 0 and d1 ⇥ 4ḢM2

Pl/(M3H). We show
the region of parameter space consistent with the WMAP upper limit f equil.

NL ⇥ 435 (95% CL), and
the parameter constraints that must be satisfied in this model (eq. (95)). Notice that f equil.

NL must be
positive in this model. Using loose constraints (taking K = 1 as defined below eq. (95)), a very small
region of parameter space is consistent with WMAP. Using slightly more conservative constraints
(K = 2), the entire parameter space is ruled out at 95% CL.

the WMAP constraint f equil.
NL ⇥ 435 (95% CL) from sec. 4.2 is shown in Fig. 11. Notice that

in this case f equil.
NL has to be positive.

From eq. (44), the absolute value of the speed of sound is bounded to be
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The consistency of the calculation (see [19]) forces the model parameters to satisfy the fol-
lowing constraints:
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The first constraint follows from the expression for the power spectrum in eq. (49) and the
requirement that d1 ⇥ �4(d2 + d3)1/2 in this model, which just comes from imposing that
the dispersion relation at horizon crossing is dominated by the term is csk. The second
requirement comes from imposing that the cuto⇤ of the model is much larger than Hubble.

To make the constraints precise, let us introduce a “threshhold” parameter K > 1, and
define the symbol ⇧ in eq. (95) to mean that the ratio between the left-hand and right-hand
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�ḢM2
Pl(1 + |cs|2)
H4|cs|

(8)
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Figure 12: Analysis of the near de Sitter model with c2
s < 0 and |d1| � 4ḢM2

Pl/(M3H). Notice that
this model has Ḣ > 0. We show the regions consistent with WMAP, defined using a �2 statistic
which includes f equil.

NL and forthog.
NL , and the regions that are disallowed by the constraints in eq. (97).

Using loose constraints (taking K = 1 as defined below eq. (97)), there is a large region of parameter
space which is consistent with WMAP, including the “branch” in the upper right part of the plot
where forthog.

NL is generated. Using somewhat more conservative constraints (K = 4), the entire
parameter space is ruled out.

If we use loose constraints (K = 1), then there is a large region of parameter space which
is consistent with WMAP, including an extended “branch” which points toward the upper
right corner in Fig. 12. This branch corresponds to models in which the contributions to the
bispectrum from the operators �̇(��)2 and (�2�)(��)2 have opposite signs and nearly cancel,
so that the orthogonal shape is generated instead of the equilateral shape. Because our
analysis includes f orthog.

NL , the branch is cut o⇤ and arbitrarily large values of the parameters
are not allowed.

If we use somewhat more conservative constraints (K = 4), then the entire parameter
space is ruled out, including the branch.

As in the former cases, we have neglected metric fluctuations. Following [20, 11] it is
straightforward to see that this is a good approximation for d2 + d3 � (MPl/(30M))10. When
this inequality is violated, as shown in [20, 11] the squared speed of sound c2

s of the fluctuations
is still negative. In this case the model is still very similar to the one just shown, and, as we
are seeing, it is generically very disfavored by the data.

5 Summary

The non-Gaussianities produced by the most general single-field inflation with an approximate
shift symmetry protecting the Goldstone boson are described by two independent parameters.
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Pl

⇠ �̇2

slow�roll

(17)
Z

d4x


(@⇡)2 +

1

⇤U

⇡2(@⇡)2

�
(18)

E ⇠ H (19)

�̇
slow�roll

⇠
⇣
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What has Planck done to NG?
(that is to one of two main ways to test inflation)
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• Two thresholds for detection. Awesome!

• By unitarity of WW scattering

– Something was guaranteed

• If Higgs found, then tuning problem:

• So, with LHC (or SSC), huge learning guaranteed

–                   is a threshold for discovery

Let us look at LHC
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sḢM2
Pl (1)

g2
2

m2
h

⇠ 1

⇤2
U

) mh ⇠ g2 ⇥ ⇤U ⌧ ⇤U (2)

) mnew degree of freedom ⇠ g ⇥ ⇤U ⌧ ⇤U (3)

⇤U ⇠ 4⇡
mW

g2

(4)

S =

Z
d4x

1

g2
3

Tr
⇥
Fµ⌫F

µ⌫ + m2
W W µWµ + m2

Z ZµZµ

⇤ ! (5)

S =

Z
d4x
p�g

h
�ḢM2
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• Threshold for detections

• We do not have a compelling threshold (we just make them possible!)

• We have lower bound:                                          

– This is the only correct prediction of Inflation on NG: weakly coupled field theory

• Minimal size of NG: from gravity

• Another threshold is 

– With this we would be allowed to glue the EFT to slow-roll inflation

• the bottom-up `verification’ of slow-roll inflation (with assumption)

– this is more than a factor of 10 far away.

Let us go to NG
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M2
Pl

✓
V 0

V

◆2

, M2
Pl

V 00

V
(8)

⌦K . 3⇥ 10�3 (9)

⇣(~x) = ✏e�ciency

 
�(~x)

M
+ c2

✓
�(~x)

M

◆2

+ . . .

!
) f loc.

NL ⇠
1

✏e�ciency

& 1 (10)

ns � 1 =
Ḣ

H2
+

Ḧ
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• .
Energy Scales to probe

scale to say we are in slow-roll inflationEnergy

scale implied by absence of NG

scale probed by obs.

Λunitarity > 30H

Hubble

φ̇slow−roll
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• Planck improve limits wrt WMAP by a factor of ~3.

• Since

• Given the absence of known or nearby threshold, this is not much.

• Planck is great

• but Planck is not good enough

– not Plank’s fault, but Nature’s faults

• Please complain with Nature

• Planck was an opportunity for a detection, not much an opportunity to change the 
theory in absence of detection

• On theory side, little changes

– contrary for example to LHC, where any result is changing the theory

What has Planck done to theory?
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• Plank will increase by a factor of less than 2.

• Next are Large Scale Structures

• Like moving from LEP to LHC

What is next?
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• Forecasts

• They use

• But the theory is probably wrong 

– (to me)

What is next?

Sefusatti and Komatsu 2007
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• How does our universe looks like?

• Non-linear on short scales

• Linear on large-scales

• Similar to Chiral Lagrangian

• Universe as an Effective Fluid with higher derivative stress-tensor in expansion in 

Our Universe as a Chiral Lagrangian
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• So far predictions studied with the wrong theory

• At 2.5 loops (using loops, counterterms, matching, etc. on astro scales!!)

• We reach

A much higher kmax

k ( h Mpc�1)
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Figure 5: Comparison of P
EFT-2-loop

normalized to non-linear data. The blue curve is the best fit value
of c2

s(1)

(with c2

s(2)

fit to P
EFT-1-loop

, as described in the main text) and the blue band shows the 2-� error
on c2

s(1)

and c2

s(2)

. The black solid line shows the non-linear data. The red shaded regions are di↵erent
error estimates described in Section 4.2. The dotted and dashed black lines are the 2-� limits associated
with 1 and 2 percent agreement (1-�) with the non-linear data. We find that it is possible to obtain 1
percent agreement with the non-linear power spectrum after having fit only one new parameter, c2

s(1)

, and
furthermore that the agreement stretches well past the range, 0.15 h Mpc�1 < k < 0.25 h Mpc�1 , where
the parameter was fit.

there is still uncertainty in the precise order one factors. As a result, which of the three-loop
bands (if any) represents the real breakdown cannot be determined at this level. Alternatively,
we could estimate the maximum k up to which we can trust our calculation using the scale at
which P

EFT-2-loop

deviates from the non-linear data 12. We see from figure 5 that the prediction
of the EFTofLSS at 2-loop agrees with the non-linear data at redshift z = 0 at percent level
up to k ' 0.6 h Mpc�1 . This is a very remarkably high wavenumber given the results of former
perturbative calculations, as we discuss next.

Now, let us remove to our assumption of locality in time. As we discussed in the previous

12 One possible concern in using this criterion of convergence is that we might be over fitting. But this is clearly
not the case for two reasons. First, we are fitting only one parameter in the range 0.15 h Mpc�1 < k < 0.25 h Mpc�1 ,
which is quite below the values of k where our calculation begins to fail. Second, we expect the maximum k to be
quite close to the value of k where the 3-loop term becomes important, which is indeed the case.
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• So far predictions studied with the wrong theory

• Next are Large Scale Structures

• If we use

• and I rescale by 

• We get

• And this is good. This is a lot

Big Improvement!

Sefusatti and Komatsu 2007
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• So far predictions studied with the wrong theory

• Next are Large Scale Structures

• They use

• If I rescale by 

• We get

• And this is good. This is a lot

Big Improvement!

Sefusatti and Komatsu 2007
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• With

• We get

– With no detection:

• . 

– Good for testing multifield: practically ruled out

• .

–  Making the speed of sound order 1

–  Making                                            

» We would be allowed to believe in slow-roll

• And most importantly,

– A very decent shot at a detection!

– which of course is revolutionary

• With this, we improve even with DES, HEDTEX, that are happening now.

Big Improvement!
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ḢM2

Pl

⌘1/2

⇠ 105H2 � H2 (43)

NG ⇠ h⇣3i
h⇣2i3/2

. 10�3 (44)

ns � 1 ' �0.04 ⇠ O
✓

1

Ne

◆
(45)

⌦K . 10�2 (46)

⇤U ⇠ ḢM2
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• This is the  potential

– If not more.

• The problem of Dark Matter clustering is being successfully addressed

– Thanks to the EFT of LSS

• Can we manage the other ASTRO problems:

– Halo Bias, Galaxy Bias, non-local Bias, Finger of God, Baryons, etc, etc, etc, 
etc, etc, etc, etc, etc, etc, etc, etc, etc, etc, etc, etc, etc, etc, etc, etc, etc, etc, etc, 
etc, etc, etc.

• A lot to understand, but this is what is at stakes. 

• It an opportunity

– and a challenge

A challenge for the astro theorists!
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The Effective Field Theory 
of 

Cosmological Large Scale Structures
up to 2-loops
with Carrasco and Hertzberg JHEP 2012 

with Carrasco, Foreman and Green

with Baumann, Nicolis and Zaldarriaga JCAP 2012 

Leonardo Senatore (Stanford and CERN)

Cosmological Non-linearities
as an Effective Fluid
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• Observe the correlation of Galaxies

• Information about Dark Energy,                                                                            
Non-Gauss, .....

 A well defined perturbation theory 
for LSS Surveys

Analogous of CMB peaks
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• Non-linearities at short scale

A well defined perturbation theory
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• Baryon Acoustic Oscillations scale is close to non-linear scale (factor of ~10)

• It is very unclear if current perturbation theory is well defined (at 1% level ?!)

• Standard techniques

– perfect fluid 

– expand in                   and solve

• Perturbative equations break in the UV

–  .

– no perfect fluid if you truncate

A well defined perturbation theory
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• Pions are described by

• For 

• Perturbative expansion in

QCD Chiral Lagrangian Reminder
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• How does our universe looks like?

• Non-linear on short scales

• Linear on large-scales

• Similar to Chiral Lagrangian

• Universe as an Effective Fluid with higher derivative stress-tensor in expansion in 

Our Universe as a Chiral Lagrangian
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• We will define a manifestly convergent perturbation theory

– where the ingredient is                                                                                                  
an fluid-like system with 

A well defined perturbation theory
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• 2-loop in the EFT

• Data go as

Bottom line result

k3

max

(1)

) h�2

l istoch. ⇠
✓

k

kNL

◆
4

(2)

k ⌧ kNL : (3)

�l,stoch. ⇠ @2

H2

�⌧

⇢b

) h�2

l istoch. ⇠
✓

k

H

◆
4

h�⌧ 2i (4)

h�2

l ics ⇠
✓

k

kNL

◆
2

h�2

l itree (5)

h�2

l itree ⇠
✓

k

kNL

◆n

, hv2

l itree ⇠
H2

k2

h�2

l itree , h�2i
tree

⇠ H4

kk
h�2

l itree (6)

h�2

l iL�loops

⇠ h�2

l iL+1

tree

⇠ h�2

l itree ⇥
✓

k

kNL

◆n⇥L

(7)

k

kNL

,
1

kMFP

⇠ vDMH�1 ⇠ 1

kNL

(8)

Sint ⇠
Z

⇡̇ O (9)

S ⇠
Z

(@�)2 + �̇3 + ⇡̇(@�)2 + . . . (10)

h�⌧ 2i ⇠ h⌧
2i

k3

NL

⇠ (⇢bc
2

s)
2

k3

NL

(11)

E

F⇡

⌧ 1 (12)

m⇡ . E . F⇡ (13)

� ⇠ k

kNL

� 1 for k � kNL (14)

� ⇠ �⇢

⇢
(15)

�(n) ⇠
Z

GreenFunction ⇥ Source(n)

⇥
�(1), �(2), . . . , �(n�1)

⇤
(16)

⇡̇(r⇡)2 ) (r⇡)4 (17)

) ḢM2
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Figure 5: Comparison of P
EFT-2-loop

normalized to non-linear data. The blue curve is the best fit value
of c2

s(1)

(with c2

s(2)

fit to P
EFT-1-loop

, as described in the main text) and the blue band shows the 2-� error
on c2

s(1)

and c2

s(2)

. The black solid line shows the non-linear data. The red shaded regions are di↵erent
error estimates described in Section 4.2. The dotted and dashed black lines are the 2-� limits associated
with 1 and 2 percent agreement (1-�) with the non-linear data. We find that it is possible to obtain 1
percent agreement with the non-linear power spectrum after having fit only one new parameter, c2

s(1)

, and
furthermore that the agreement stretches well past the range, 0.15 h Mpc�1 < k < 0.25 h Mpc�1 , where
the parameter was fit.

there is still uncertainty in the precise order one factors. As a result, which of the three-loop
bands (if any) represents the real breakdown cannot be determined at this level. Alternatively,
we could estimate the maximum k up to which we can trust our calculation using the scale at
which P

EFT-2-loop

deviates from the non-linear data 12. We see from figure 5 that the prediction
of the EFTofLSS at 2-loop agrees with the non-linear data at redshift z = 0 at percent level
up to k ' 0.6 h Mpc�1 . This is a very remarkably high wavenumber given the results of former
perturbative calculations, as we discuss next.

Now, let us remove to our assumption of locality in time. As we discussed in the previous

12 One possible concern in using this criterion of convergence is that we might be over fitting. But this is clearly
not the case for two reasons. First, we are fitting only one parameter in the range 0.15 h Mpc�1 < k < 0.25 h Mpc�1 ,
which is quite below the values of k where our calculation begins to fail. Second, we expect the maximum k to be
quite close to the value of k where the 3-loop term becomes important, which is indeed the case.

23
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Construction of the
Effective Field Theory:

from UV to IR
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• UV

• Dark Matter described by distribution

• Boltzmann equation

• and Newtonian gravity

• Smoothing the fields

• Smooth Boltzmann equation

• and take moments

• Boltzmann hierarchy perturbative by powers of

– This naively would not be a fluid (plus subtlety about time-hierarchy)

From Dark Matter Particles to Cosmic Fluid
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• We get a fluid!

• First two moments:

• Short distance fluctuations appear as enhanced stress tensor for long modes

»                ~ kinetic + potential :

» So far, this theory still contains short distance fluctuations: 

» this is not yet a long wavelength, well defined, EFT.

From Dark Matter Particles to Cosmic Fluid
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Integrate out
UV modes
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• Integrate out short modes: i.e. solve equations of motion

• This is true realization by realization

• Good approximation:

– For effect on large scales                , take first two moments:

• .                   space-dependence from background long-mode

• .                                                  : random statistical fluctuations (check later)

• Taylor expand:

• Obtain function of long-wavelength 2-derivatives gravitational long modes

– no time hierarchy between short and long mode           the EFT is non-local in time

• Now effective theory has only long-wavelength modes. We made it!

• Similar to Chiral Lagrangian          : UV physics in higher derivative terms

Integrating out UV modes
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Ḧ

ḢH
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4.1 Deriving the Counter-terms

To derive the counterterms we require for one- and two-loop calculations of the power spectrum
from the short-distance physics, we should specify the form of the e↵ective stress-energy ⌧ ij intro-
duced in Sec. 2 to higher order in k/k

NL

. By the equivalence principle, the short modes we have
smoothed over can only influence the long modes via tidal e↵ects, so we should write ⌧ ij as an
expansion in powers and derivatives of @

i

@
j

�, where � is the gravitational potential sourced by �.
However, we should also be careful at what coordinate values we evaluate � when it appears in
⌧ ij, for the following important reason.

The EFTofLSS is local in space, but is non-local in time. Specifically, we are integrating out
modes with k & k

NL

, but all these modes have slow time-dependence, on the order of a Hubble
time. As a result, we have integrated out physics that has long range correlations in time. In this
sense, the behavior of � along a fluid element’s entire path should influence its current state. This
can be encoded writing each term in ⌧ ij as a convolution with some (unknown) time-dependent
kernel:
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where the ellipses denote higher powers and derivatives of @
i

@
j

�. The partial derivatives are
evaluated with respect to ~x but the gravitational potential � is evaluated along the path ~x
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of a fluid element, defined recursively by
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The specific form of ~x
fl

ensures that the equations of motion are Galilean-invariant and therefore
that IR divergences cancel between diagrams, while we use the conformal time ⌧ because the
expressions with ⌧ rather than t have cleaner behavior under Galilean transformations.

The equations of motion then become
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the one-loop prediction for the power spectrum equals the non-linear spectrum at some renormalization scale k
ren

.
Then, we could compute c2

s(2) completely from perturbation theory, by imposing that the one- and two-loop
predictions are equal at k

ren

. This yields the following expression for c2

s(2):
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. (33)

In practice, we do not apply exactly this procedure for the reasons highlighted in the text.
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• In the EFT we can solve iteratively (loop expansion) 

• Approximate as piecewise scaling universe

– estimates

Perturbation Theory within the EFT
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spectrum as a piecewise scaling universe to estimate the relevance of loop-order and counterterm
corrections. In Sec. 4 we carry out the two-loop calculation, present a refinement of the physical
meaning of the EFT parameters established in [1, 2] given the theory’s expected non-locality in
time, and compare the results of these calculations with simulated non-linear power-spectra. In
Sec. 5 we present 1-loop results for a di↵erent observable: the momentum, which is related to
the matter power spectrum. We close in Sec. 6 with a discussion of the results and the challenge
they pose to the LSS community. Namely, can the LSS community overcome the technical and
conceptual barriers to realizing the promise of such a potential reach into the UV?

2 Review of Perturbation Theory in LSS

In this section, we briefly review the perturbative approach to the clustering of matter on large
scales. We start from the assumption that dark matter is described by collisionless dark matter
particles described by a Boltzman equation. By taking moments of the smoothed equation and
expectation values over the short modes, one obtains equations of motion for the long-wavelength
density and velocity fields, �

l

and v
l

respectively, sourced by an e↵ective stress-energy tensor ⌧ ij,
which is just a function of the long-wavelength fields and that encodes the small-scale physics that
has been “integrated out” by the smoothing and averaging procedure. This gives a set of e↵ective
equations of motion for the long-wavelength field that goes under the name of EFTofLSS [1, 2].
The e↵ective stress-energy plays several important roles, and so it is vital that it be retained in the
equations of motion. Standard perturbation theory (SPT, [3]) is recovered in the limit in which
this e↵ective stress tensor is neglected. This is however inconsistent as a matter of principle, as
can be shown for particular initial conditions for the universe where the initial power spectrum
is a simple power law [6, 7]. It is a quantitative question how much they are important for the
specific initial conditions that describe our universe. We will argue that they are quantitatively
important in the current universe.

These equations are given by [2] as

r2�
l

=
3

2
H2

0

⌦
m

a3

0

a
�
l

, (1)

�̇
l

= �1

a
@

i

�

[1 + �
l

]vi

l

�

,

v̇i

l

+ Hvi

l

+
1

a
vj

l

@
j

vi

l

+
1

a
@i�

l

= � 1

a⇢
l

@
j

⌧ ij

�

�

�l
,

where �
l

is the gravitational potential sourced by the smoothed density, ˙ = d /dt, H = ȧ/a, ⌦
m

is the present-day matter fraction, and a
0

is the present-day scale factor. From now on, we will
drop the l subscript on � and v, since we will only refer to the smoothed fields.

At the perturbative level we are concerned with in this work, there is no generation of vorticity,
so the velocity field can be described solely in terms of its divergence, ✓ ⌘ @

i

vi. In Fourier space,

5

with counter-terms and can be “integrated out”. As a result, to understand the structure of the
perturbative expansion, we need only understand the behavior of P

11

(k) in the vicinity of the k
of interest.

It is easiest to illustrate the power of the EFTofLSS in the context of a scaling universe [6, 8]
where

P
11

(k) = (2⇡)3

1

k3

NL

✓

k

k
NL

◆

n

. (5)

The advantage of such scaling universes is that their behavior at a given loop order can be
determined by dimensional analysis and symmetries. As we will show in the next subsection, for
a given loop order L, the result scales as (k/k

NL

)(3+n)LP
11

. Therefore, given k
NL

and n, each order
in perturbation theory can be estimated reliably.

In order to gain intuition for calculation in the real universe, it is useful to approximate the
linear power spectrum by a sequence of power laws. This approximation will miss important oscil-
lationary features that are present in the matter power spectrum, the Baryon Acoustic Oscillation,
but it should be a good approximation to estimate the size of the various contributions. As our
primary interest is pushing k towards the non-linear scale, we are interested in the behavior in
the range k ⇠ 0.1 � 1 h Mpc�1. By fitting power laws to the linear power spectrum of the real
universe, we find that a useful approximation is

P
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where k̃
NL

= (k0.9

NL

k0.4

tr

)1/1.3. The results of the fit are shown in Fig. 1 with the fit parameters

k
NL

= 4.6 h Mpc�1 k
tr

= 0.25 h Mpc�1 k̃
NL

= 1.8 h Mpc�1 . (7)

The appearance5 of such high scales suggests that the perturbative expansion may be reliable well
beyond k ⇠ 0.1 h Mpc�1.

The rest of this section will be devoted to understanding the size of corrections in the real
universe given the parameters from the above fit. For the purpose of understanding the scaling
of perturbations (Section 3.2), we will consider the scaling n = �3/2 to gain intuition. However,
when it comes to making estimates for the real universe (Section 3.4), we will focus on n = �2.1
for two reasons6. First, from the fit in Fig. 1, we see that n = �2.1 provides an extremely good
fit to P

11

from k = 0.3 h Mpc�1 to k = 0.7 h Mpc�1 . Second, we will find that higher order
corrections are expected to become important around k = 0.5 h Mpc�1 , which is well inside the
n = �2.1 scaling regime.

5Our k
NL

values are large due to the normalization of the power spectrum by (2⇡)3, rather than the more
conventional 2⇡2. This normalization is motivated by the loop counting in the next subsection and by explicit
calculations, like those in Appendix A.

6For some purposes, we could use n = �2 to estimate the k/k
NL

scaling. However, the best fit value of k
NL

depends sensitively on n. For example, the fit holding n = �2 fixed gives k
NL

⇠ 3.5 h Mpc�1 . The di↵erence
between n = �2.1 and n = �2 is magnified when we raise k

NL

to large powers.
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Figure 1: Comparison between the linear power spectrum (black), P
11

and the fits with n = �1.7 (dashed,
red) and n = �2.1 (solid, blue). The left plot is shown as a ratio to P

11

while the right shows the absolute
values on a log scale.

3.2 EFTofLSS in the Scaling Universe

Let us consider the contributions to the power spectrum from loop momenta satisfying q
i

� k.
Depending on the slope of the power spectrum n around a certain wave number, any given loop
integral will be either UV convergent or UV divergent. If we take a diagram where L represents
the number of loops, I the number of internal lines, and V the number of vertices touching loops,
then the naive degree of divergence D is given [13] to be

D = 3 L + nI � V . (8)

This formula is easy to understand. The factor of 3L counts the contribution from the phase space
integrals. The factor of nI accounts for the contribution of the factors of linear power spectra.
Finally, the factor of V comes from a decoupling property of the vertices that goes to zero at least
as one inverse power of an internal momenta at high internal momenta. Depending on possible
additional cancellations, the actual degree of divergence of a diagram can be actually less than D.
Only for n  �3 are loops guaranteed to never diverge in the UV [13]. This is so because there
is clearly one internal line for each loop, and so D  �V < 0 7.

Before proceeding to the general case, let us study the special case of n = �3/2. In this case,
Eq. (8) tells us that the 2-loop diagram P

51

is UV divergent, while the other 2-loop diagrams are

7In the current universe, at high enough wave numbers, k & 3 h Mpc�1, the power spectrum approaches n = �3.
However, this happens at such high wave numbers that the description of dark matter particles as a generalized
fluid no longer applies, not to mention the validity of perturbation theory. This is why, even though loops in
SPT for the true universe P

11

are formally convergent, SPT does not converge to the true-universe answer. SPT
converges to the non-linear solution of the perfect fluid equations, which however do not describe the true universe.
To describe the true universe, it is essential to include counter-terms in the fluid equations, and renormalize the
theory. This is what the EFTofLSS is all about.
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Perturbation Theory within the EFT
UV convergent. If we regularize it with a cuto↵ ⇤, dimensional analysis allows us to conclude
that, after integration, P I

2-loop

will take the form
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where all the coe�cients c...

...

are expected to be numbers of order one. In the above formula, we
have used the fact that the diagrams P I

42

and P I

33

are not divergent for n = �3/2, so the divergent
terms come only from P I

51

and are therefore proportional to P
11

. The finite parts from P I

42

and
P I

33

are not proportional to P
11

, but have the same scaling in terms of k and k
NL

as the term
proportional to cfinite

1

, so we have expressed it in that way for simplicity. Here the superscript, I,
of P I

...

, refers to “irreducible” diagrams, which means that they do not reduce to combinations of
lower order diagrams. Roughly speaking, this means that all but one of the loop integrations are
nested and are not independent. Only one azimuthal angular integral is independent, explaining
the overall factor of (2⇡) in (9). We will consider the “reducible” diagrams8 in the next subsection.

Each of the ⇤ dependent terms above needs to have a counter-term that cancels the ⇤ depen-
dence. For example, the second term proportional to c⇤
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can be cancelled by the counter-term
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Notice that we multiplied by a factor of (2⇡) in order to make the scaling match P I
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with c⇤
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and �c
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being ⇤-independent, c⇤
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can cancel the UV divergence while �c
counter

gives
a finite contribution. The first and third terms in (9), proportional to c⇤
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and c⇤
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respectively,
cannot be cancelled by any counter-term available in the EFTofLSS, as such terms would violate
the combination of rotation invariance and locality, which requires analyticity in Fourier space. It
can be verified numerically that c⇤
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= 0, as required [8].
By taking ⇤ su�ciently large, we can neglect the terms that depend on ⇤ in a vanishing way

as ⇤!1. Therefore, we have
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8Here irreducible is not the same as one-particle irreducible (1PI). Specifically, all non-1PI diagrams are re-
ducible, by our definition, but some 1PI diagrams are also reducible.
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• Has everything being lost?

– to make result finite, we need to add a counterterm with finite part

• need to fit to data (like a coupling constant)

Calculable terms in the EFT
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• Had everything being lost?

– to make result finite, we need to add a counterterm with finite part

• need to fit to data (like a coupling constant)

– the subleading finite term is not degenerate with a counterterm.

• it cannot be changed

• it is calculable by the EFT 

– so it predicts an observation 
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8Here irreducible is not the same as one-particle irreducible (1PI). Specifically, all non-1PI diagrams are re-
ducible, by our definition, but some 1PI diagrams are also reducible.
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Appendix

A One and Two-Loop Results in the Scaling Universe

In this appendix we collect some results from calculations in the scaling universe. For the n = �2
scaling universe, the 1-loop diagrams are given by13 [6]
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For comparison, the two loop result is given by
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For the n = �3/2 scaling universe, the results are slightly more surprising. At 1-loop, one has
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We see that there will be a significant cancelation between P
22

and P
13

in computing P
1-loop

. These
results become more dramatic when we consider two-loops,

P
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= 0.044 (67)

The small size of the ⇤-independent term might be surprising, given our loop counting we expected
O(2⇡), but the small number can be understood as cancellations due to the relative sizes of 2P

22

and P
13

, which is the combination that appears in reducible diagrams not yet heavily suppressed
at 2-loops.

B SPT Formulas up to Two Loops

The loop corrections to the power spectrum in SPT are conventionally written in terms of separate
diagrams, which themselves are integrals of factors of P

11

times symmetrized kernels F
(s)
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and G
(s)

n

13Our conventions for k
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di↵er from [6] by kours
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• Each loop-order      contributed a finite, calculable term of order 

– each higher-loop is smaller and smaller

• This happen after canceling the divergencies with counterterms

– at each higher loop one needs to adjust the lower order counterterms

• by this is not a new fit, this is calculable

Lesson
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The small size of the ⇤-independent term might be surprising, given our loop counting we expected
O(2⇡), but the small number can be understood as cancellations due to the relative sizes of 2P
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, which is the combination that appears in reducible diagrams not yet heavily suppressed
at 2-loops.
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We see that even though P
51

is arbitrarily large, the sum of P
51

and of its counter-term is finite. The
divergent term in P

51

is reabsorbed by the counter-term, and so we identify it with the contribution
of the counter-term. Notice that this part is degenerate with the counter-term, and there is no
way to physically distinguish these two contributions. However, the part of P I
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proportional to
cfinite
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is not degenerate with a counter-term, and is therefore important to calculate. Computing
this term is indeed the only reason why we need to compute the full loop. Following the standard
jargon of EFT in particle physics, we can call it the “calculable,” or “finite,” part of P
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:
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What we have just done is what in the context of particle physics is usually called regularization
(for us putting a cuto↵ to the diagrams), and renormalization (for us adding a counter-term and
taking ⇤ ! 1). The most important here is that the finite, or calculable, contribution of the
2-loop diagram scales as (k/k

NL

)3/2 and is smaller than the tree and one-loop contributions when
k ⌧ k

NL

.

One can repeat the exact same logic for general n to determine both the divergent contributions
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All the terms that depend on ⇤, including P
L-loops diverg.

, can be removed by adding counter-terms
in the equations of motion of �. As in the above example, the leading divergence can always
be removed by including the appropriate counter-term (e.g. c2

s

@2� 9). In this sense, the only
meaningful term is P

L-loops finite

.
A new counter-term is required for any coe�cient that depends on ⇤. By reversing this logic,

we can then determine the possible ⇤ dependence of a given order in SPT by comparing to the
available counter-terms. The scaling of the counter-terms are determined both by the number of
loops at which they are evaluated, L, and the derivatives of the counter-term, 2M , where M is a

9This counterterm can be written as the usual speed of sound only in the limit in which the response time of
the short distance physics to the long wavelength fluctuations is very short. As explained later, this di↵erence is
irrelevant if the counterterm is evaluated at tree level.
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• At 1-loop, we add a counterterm

•        is chosen by fitting to data so that 

• At 2-loop, there is a divergency that requires the same counterterm. 

– Adjust                                    in a known way (without looking again at the data) 
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Figure 3: The functions P̃
1,2,3

are solid, dashed and dotted lines respectively.

4.2 Results

We will now compare our calculations with the results of simulations. Specifically, we use the
Coyote interpolator [14–17] to generate a nonlinear matter power spectrum with cosmological
parameters h = 0.7136, ⌦

m

= 0.258, ⌦
b

= 0.0441, n
s

= 0.963, and �
8

= 0.796. We use CAMB [9]
to generate our linear power spectrum, and the recursive implementation of the kernels given in the
Copter library [5], but combined to be IR-safe as described in [8], with all numerical integrations
performed using Monte Carlo integration routines from the CUBA library [18], to compute P

1-loop

and P
2-loop

.
First, let us outline the procedure schematically: in order to determine c2
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, we consider the
1-loop EFT prediction,
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to the non-linear power spectrum at low k, where P
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, the two-loop power spectrum is given by
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determined simply subtracting the excess in P
2-loop

at scales where the finite terms are expected to
be negligible. Therefore, although we have two parameters that are not included in SPT, c2

s(1)

and

c2

s(2)

, only c2

s(1)

is determined by fitting the 1-loop power spectrum to data and c2

s(2)

is determined

from perturbation theory 10. Thus, there is no need to fit P
2-loop

to the non-linear data to make
predictions up to k ⇠ 0.5 h Mpc�1 . Of course, there can be obstacles to performing this procedure
in practice, for a variety of reasons we will discuss.

4.1 Deriving the Counter-terms

To derive the counterterms we require for one- and two-loop calculations of the power spectrum
from the short-distance physics, we should specify the form of the e↵ective stress-energy ⌧ ij intro-
duced in Sec. 2 to higher order in k/k

NL

. By the equivalence principle, the short modes we have
smoothed over can only influence the long modes via tidal e↵ects, so we should write ⌧ ij as an
expansion in powers and derivatives of @

i

@
j

�, where � is the gravitational potential sourced by �.
However, we should also be careful at what coordinate values we evaluate � when it appears in
⌧ ij, for the following important reason.

The EFTofLSS is local in space, but is non-local in time. Specifically, we are integrating out
modes with k & k

NL

, but all these modes have slow time-dependence, on the order of a Hubble
time. As a result, we have integrated out physics that has long range correlations in time. In this
sense, the behavior of � along a fluid element’s entire path should influence its current state. This
can be encoded writing each term in ⌧ ij as a convolution with some (unknown) time-dependent
kernel:
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where the ellipses denote higher powers and derivatives of @
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j

�. The partial derivatives are
evaluated with respect to ~x but the gravitational potential � is evaluated along the path ~x
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of a fluid element, defined recursively by
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10We could determine c2

s(1) explicitly by imposing, similarly to what is usually done in particle physics, that
the one-loop prediction for the power spectrum equals the non-linear spectrum at some renormalization scale k

ren

.
Then, we could compute c2

s(2) completely from perturbation theory, by imposing that the one- and two-loop
predictions are equal at k
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. This yields the following expression for c2
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In practice, we do not apply exactly this procedure for the reasons highlighted in the text.
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UV convergent. If we regularize it with a cuto↵ ⇤, dimensional analysis allows us to conclude
that, after integration, P I
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where all the coe�cients c...

...

are expected to be numbers of order one. In the above formula, we
have used the fact that the diagrams P I

42

and P I

33

are not divergent for n = �3/2, so the divergent
terms come only from P I

51

and are therefore proportional to P
11

. The finite parts from P I

42

and
P I

33

are not proportional to P
11

, but have the same scaling in terms of k and k
NL

as the term
proportional to cfinite

1

, so we have expressed it in that way for simplicity. Here the superscript, I, of
P I

...

, refers to “irreducible” diagrams, which means that they do not reduce to combinations of lower
order diagrams. Roughly speaking, this means that all but one of the loop integrations are nested
and are not independent. Only one azimuthal angular integral is independent, explaining the
overall factor of (2⇡) in (10). We will consider the “reducible” diagrams8 in the next subsection.

Each of the ⇤ dependent terms above needs to have a counter-term that cancels the ⇤ depen-
dence. For example, the second term proportional to c⇤
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can be cancelled by the counter-term
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Notice that we multiplied by a factor of (2⇡) in order to make the scaling match P I

2-loop

with
c⇤

counter

= O(1). By taking

c⇤

counter

= �c⇤

1

+ �c
counter

✓

k
NL

⇤

◆

, (12)

with c⇤

1

and �c
counter

being ⇤-independent, c⇤

1

can cancel the UV divergence while �c
counter

gives
a finite contribution. The first and third terms in (10), proportional to c⇤

0

and c⇤

2

respectively,
cannot be cancelled by any counter-term available in the EFTofLSS, as such terms would violate

8Here irreducible is not the same as one-particle irreducible (1PI). Specifically, all non-1PI diagrams are re-
ducible, by our definition, but some 1PI diagrams are also reducible.
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• The 3-loop contribution should be negligible up to k ⇠ 0.5 h Mpc�1 .

• No additional counter-terms beyond the three mentioned above, should contribute up to
k ⇠ 0.5 h Mpc�1 . All the terms we include are all computable in terms of the single coe�-
cient c2

s(1)

.

Based on these observations, we should find agreement between the non-linear data and the 2-
loop EFT up to k ⇠ 0.5 h Mpc�1 by considering only the parameter c2

s

(that receives a 1-loop and
2-loop contribution).

It is worth emphasizing that because c2

s(2)

is introduced to remove the UV-dependence from

the two-loop integrals, we can actually determine c2

s(2)

without fitting to non-linear data. It can be
determined simply subtracting the excess in P

2-loop

at scales where the finite terms are expected to
be negligible. Therefore, although we have two parameters that are not included in SPT, c2

s(1)

and

c2
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, only c2

s(1)

is determined by fitting the 1-loop power spectrum to data and c2

s(2)

is determined

from perturbation theory 10. Thus, there is no need to fit P
2-loop

to the non-linear data to make
predictions up to k ⇠ 0.5 h Mpc�1 . Of course, there can be obstacles to performing this procedure
in practice, for a variety of reasons we will discuss.
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In practice, we do not apply exactly this procedure for the reasons highlighted in the text.
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In practice, we do not apply exactly this procedure for the reasons highlighted in the text.
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• We need to add all terms whose finite contribution is larger than the 3-loop term

• Candidates

Calculation up to 2-loops

P
3-loop

is a negligible correction. Instead, we should compare to P
non-linear

⇠ P
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+ P
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�1 ⇠ ↵ 0.03 . (27)

In order to obtain these estimates, we have used the value of c2

s(1)

⇠ 5.5 that we obtain after
fitting the non-linear power spectrum at 1-loop (see next section). This is consistent, as we are
estimating higher order contributions and therefore we should use all what we know from lower
orders. We conclude from these estimates that we should include any terms which are > 3 percent
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Additional counter-terms that we could potentially include have the following scaling:

P
counter

⇠ (2⇡)c2

s(1)

k2

k2

NL

(2P
11

(k) + 2P finite

1-loop

(k)) + (2⇡c2

s(1)

)2

k4

k4

NL

P
11

(k) + 2(2⇡)c2

s(2)

k2

k2

NL

P
11

(k) +

(2⇡)c2

s(1)

k2

k2

NL

P finite

2-loop

(k) + 2
k2

k2

NL

P finite

1-loop

(k) + 2(2⇡)�
k4

k4

NL

P
11

(k) + . . . . (28)

P
counter

⇠ (2⇡)c2

s(1)

k2

k2

NL

(2P
11

(k) + 2P finite

1-loop

(k)) + (2⇡c2

s(1)

)2

k4

k4

NL

P
11

(k) + 2(2⇡)c2

s(2)

k2

k2

NL

P
11

(k) +

(2⇡)c2

s(1)

k2

k2

NL

P finite

2-loop

(k) + 2
k2

k2

NL

P finite

1-loop

(k) + 2(2⇡)�
k4

k4

NL

P
11

(k) + . . . .

Here k2P finite

1-loop

and k2P finite

2-loop

schematically represent the scaling of the counter-terms evaluated at
higher loops, but the detailed form will be di↵erent. We will perform the detailed calculations in
the next section. We have also introduced  ⇠ � ⇠ O(1) which are new counter-terms that would
need to be fit to the non-linear data. The factors of 2⇡ associated to c2

s(2)

,  and � are determined
by the irreducible diagram to which they are associated. Since both are new counter-terms at
two-loops, they must have the same scaling as P I

2-loop

, rather that PR

2-loop

.

15

Thursday, August 1, 13



• We need to add all terms whose finite contribution is larger than the 3-loop term

• Candidates

Calculation up to 2-loops

P
3-loop

is a negligible correction. Instead, we should compare to P
non-linear

⇠ P
11

+ P
1-loop finite

+
2(2⇡)c2

s(1)

(k/k
NL

)2P
11

+ PR

2-loop finite

to find

PR

3-loop finite

P
non-linear

|
k=0.4 h Mpc

�1 ⇠ ↵ 0.02 ,
PR

3-loop finite

P
non-linear

|
k=0.5 h Mpc

�1 ⇠ ↵ 0.03 . (27)
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⇠ 5.5 that we obtain after
fitting the non-linear power spectrum at 1-loop (see next section). This is consistent, as we are
estimating higher order contributions and therefore we should use all what we know from lower
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• We need to add all terms whose finite contribution is larger than the 3-loop term
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In order to obtain these estimates, we have used the value of c2
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⇠ 5.5 that we obtain after
fitting the non-linear power spectrum at 1-loop (see next section). This is consistent, as we are
estimating higher order contributions and therefore we should use all what we know from lower
orders. We conclude from these estimates that we should include any terms which are > 3 percent
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fitting the non-linear power spectrum at 1-loop (see next section). This is consistent, as we are
estimating higher order contributions and therefore we should use all what we know from lower
orders. We conclude from these estimates that we should include any terms which are > 3 percent
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fitting the non-linear power spectrum at 1-loop (see next section). This is consistent, as we are
estimating higher order contributions and therefore we should use all what we know from lower
orders. We conclude from these estimates that we should include any terms which are > 3 percent
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• We need to add all terms whose finite contribution is larger than the 3-loop term
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In order to obtain these estimates, we have used the value of c2
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⇠ 5.5 that we obtain after
fitting the non-linear power spectrum at 1-loop (see next section). This is consistent, as we are
estimating higher order contributions and therefore we should use all what we know from lower
orders. We conclude from these estimates that we should include any terms which are > 3 percent
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,  and � are determined
by the irreducible diagram to which they are associated. Since both are new counter-terms at
two-loops, they must have the same scaling as P I
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, rather that PR
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In order to obtain these estimates, we have used the value of c2

s(1)

⇠ 5.5 that we obtain after
fitting the non-linear power spectrum at 1-loop (see next section). This is consistent, as we are
estimating higher order contributions and therefore we should use all what we know from lower
orders. We conclude from these estimates that we should include any terms which are > 3 percent
corrections for k . 0.4� 0.5 h Mpc�1 .

Additional counter-terms that we could potentially include have the following scaling:
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schematically represent the scaling of the counter-terms evaluated at
higher loops, but the detailed form will be di↵erent. We will perform the detailed calculations in
the next section. We have also introduced  ⇠ � ⇠ O(1) which are new counter-terms that would
need to be fit to the non-linear data. The factors of 2⇡ associated to c2
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,  and � are determined
by the irreducible diagram to which they are associated. Since both are new counter-terms at
two-loops, they must have the same scaling as P I
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Comparing these terms to PR
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, using c2

s(1)
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We see that we should include the first two terms on the list, in addition to 2(2⇡)(c2

s(1)

+

c2

s(2)

) k

2

k

2

NL

P
11

. Comparing these to PR

2-loop

we have

↵(1� 1

2

↵)
4⇡c2

s(1)

k

2

k

2

NL

P
1-loop finite

(k)

PR

2-loop finite

⇠
✓

k

0.53 h Mpc�1

◆

1.1

⇠ 0.92

✓

k

0.5 h Mpc�1

◆

1.1

(41)

↵(1� 1

2

↵)
(2⇡c2

s(1)

)2

k

4

k

4

NL

P
11

(k)

PR

2-loop finite

⇠
✓

k

1 h Mpc�1

◆

2.2

⇠ 0.21

✓

k

0.5 h Mpc�1

◆

2.2

. (42)

Including only these counter-terms, we should expect agreement to with a few percent up to
k ⇠ 0.5 h Mpc�1 (depending somewhat on how small we can take ↵).
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• We need to add all terms whose finite contribution is larger than the 3-loop term

• Candidates

• Estimate:

– when 3-loop is important

– check:

Calculation up to 2-loops
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In order to obtain these estimates, we have used the value of c2

s(1)

⇠ 5.5 that we obtain after
fitting the non-linear power spectrum at 1-loop (see next section). This is consistent, as we are
estimating higher order contributions and therefore we should use all what we know from lower
orders. We conclude from these estimates that we should include any terms which are > 3 percent
corrections for k . 0.4� 0.5 h Mpc�1 .

Additional counter-terms that we could potentially include have the following scaling:
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Here k2P finite
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and k2P finite

2-loop

schematically represent the scaling of the counter-terms evaluated at
higher loops, but the detailed form will be di↵erent. We will perform the detailed calculations in
the next section. We have also introduced  ⇠ � ⇠ O(1) which are new counter-terms that would
need to be fit to the non-linear data. The factors of 2⇡ associated to c2

s(2)

,  and � are determined
by the irreducible diagram to which they are associated. Since both are new counter-terms at
two-loops, they must have the same scaling as P I
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, rather that PR
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.
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In order to obtain these estimates, we have used the value of c2

s(1)

⇠ 5.5 that we obtain after
fitting the non-linear power spectrum at 1-loop (see next section). This is consistent, as we are
estimating higher order contributions and therefore we should use all what we know from lower
orders. We conclude from these estimates that we should include any terms which are > 3 percent
corrections for k . 0.4� 0.5 h Mpc�1 .

Additional counter-terms that we could potentially include have the following scaling:
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schematically represent the scaling of the counter-terms evaluated at
higher loops, but the detailed form will be di↵erent. We will perform the detailed calculations in
the next section. We have also introduced  ⇠ � ⇠ O(1) which are new counter-terms that would
need to be fit to the non-linear data. The factors of 2⇡ associated to c2
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,  and � are determined
by the irreducible diagram to which they are associated. Since both are new counter-terms at
two-loops, they must have the same scaling as P I
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In order to obtain these estimates, we have used the value of c2

s(1)

⇠ 5.5 that we obtain after
fitting the non-linear power spectrum at 1-loop (see next section). This is consistent, as we are
estimating higher order contributions and therefore we should use all what we know from lower
orders. We conclude from these estimates that we should include any terms which are > 3 percent
corrections for k . 0.4� 0.5 h Mpc�1 .

Additional counter-terms that we could potentially include have the following scaling:
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higher loops, but the detailed form will be di↵erent. We will perform the detailed calculations in
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Comparing these terms to PR
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We see that we should include the first two terms on the list, in addition to 2(2⇡)(c2
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Including only these counter-terms, we should expect agreement to with a few percent up to
k ⇠ 0.5 h Mpc�1 (depending somewhat on how small we can take ↵).
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• We need to add all terms whose finite contribution is larger than the 3-loop term

• Candidates

• Only 1-parameter to fit up to

Calculation up to 2-loops

P
3-loop

is a negligible correction. Instead, we should compare to P
non-linear

⇠ P
11

+ P
1-loop finite

+
2(2⇡)c2

s(1)

(k/k
NL

)2P
11

+ PR

2-loop finite

to find

PR

3-loop finite

P
non-linear

|
k=0.4 h Mpc

�1 ⇠ ↵ 0.02 ,
PR

3-loop finite

P
non-linear

|
k=0.5 h Mpc

�1 ⇠ ↵ 0.03 . (27)

In order to obtain these estimates, we have used the value of c2
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⇠ 5.5 that we obtain after
fitting the non-linear power spectrum at 1-loop (see next section). This is consistent, as we are
estimating higher order contributions and therefore we should use all what we know from lower
orders. We conclude from these estimates that we should include any terms which are > 3 percent
corrections for k . 0.4� 0.5 h Mpc�1 .
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P
counter

⇠ (2⇡)c2

s(1)

k2

k2

NL

(2P
11

(k) + 2P finite

1-loop

(k)) + (2⇡c2

s(1)

)2

k4

k4

NL

P
11

(k) + 2(2⇡)c2

s(2)

k2

k2

NL

P
11

(k) +

(2⇡)c2

s(1)

k2

k2

NL

P finite

2-loop

(k) + 2
k2

k2

NL

P finite

1-loop

(k) + 2(2⇡)�
k4

k4

NL

P
11

(k) + . . . . (28)

P
counter

⇠ (2⇡)c2

s(1)

k2

k2

NL

(2P
11

(k) + 2P finite

1-loop

(k)) + (2⇡c2

s(1)

)2

k4

k4

NL

P
11

(k) + 2(2⇡)c2

s(2)

k2

k2

NL

P
11

(k) +

(2⇡)c2

s(1)

k2

k2

NL

P finite

2-loop

(k) + 2
k2

k2

NL

P finite

1-loop

(k) + 2(2⇡)�
k4

k4

NL

P
11

(k) + . . . .

Here k2P finite

1-loop

and k2P finite

2-loop

schematically represent the scaling of the counter-terms evaluated at
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• Do 1-loop calculation

• Fit 

– we fit in the range

• Do 2-loop calculation with no additional fitting

– just adjust counterterm as calculable 

Summary
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without ever fitting the 2-loop power spectrum to the nonlinear data
directly!

However, implementing the above procedure is challenging. It is easy to measure c2
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and
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when they contribute significantly to the power spectrum, namely above k ⇠ 0.1 h Mpc�1 .
However, in this regime, it is di�cult to determine, a priori, at which range of k the contribution
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In practice, it appears that the real universe is much better behaved than one would have

naively expected. As we discussed in Section 3.1, in the regime 0.1 h Mpc�1 < k < 0.3 h Mpc�1 ,
the universe behaves much like a scaling universe with n = �1.7 ⇠ �3/2. As we show in
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is smaller than our loop counting would suggest by
a factor of 10�2. As a result, we can trust P
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, which is a much higher scale
than our naive counting would suggest. Therefore, in the range 0.1 h Mpc�1 < k < 0.25 h Mpc�1 ,
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by implementing the above procedure. This is very fortunate
because the error on available non-linear data is too large to apply to above procedure at k ⌧
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from a least-�2 fit of the P
EFT-1-loop

to the Coyote power spectrum over the
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Figure 4: Comparison of P
EFT-1-loop

normalized to non-linear data. The blue curve is the best fit value
of c2

s(1)

and the blue band shows the 2-� error on c2

s(1)

. We also show the data points that are fit, along
with their 2-� errors (assuming 1 percent error on all points).

range k ⇠ 0.15� 0.25 h Mpc�1 with �k ⇠ 0.005 h Mpc�1 . From the fit, we find 11
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= (1.62± 0.033)⇥ 1
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The result of the fit is shown in Fig. 4.
Having measured c2

s(1)

, we can now fit c2

s(2)

to P
EFT-1-loop

. In performing this fit, we must make

some assumption about P
(c

s

,p)

1-loop

. For now, we will take the p!1 limit, which corresponds to the
assumption that the e↵ective stress tensor ⌧ ij is completely local in time. We now fit P

EFT-2-loop

to P
EFT-1-loop

over the range k ⇠ 0.15 � 0.25 h Mpc�1 . Here we are using the expectation that
P finite

2-loop

is negligible over this range, such that the dominant source of error is our uncertainty in
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where D
1

(a)here = D(a)there/D(a
0

)there.
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c2

s(1)

. Using this fitting procedure, we find that

c2
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= (�3.36± 0.020)⇥ 1
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2

(1-�). (65)

The error bar for c2

s(2)

is smaller than c2

s(1)

because we can determine it without using the non-linear

data. In fact, for a scaling universe we can determine c2

s(2)

exactly.
In additional to statistical errors, we also have theoretical uncertainties due to the higher

orders terms we are neglecting. This includes 3-loop SPT, c2

s(1)

and c2

s(2)

evaluated at 2-loops, and
higher-order counter-terms. These contributions were estimated in Section 3.4. The two largest
uncertainties are due to
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k

k
NL
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NL
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11
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In Fig. 5, we show the best fit P finite

2-loop

normalized to non-linear data. We have included these
two sources of uncertainty as a series of red bands. The outermost and innermost bands (at
k = 0.6 h Mpc�1 ) are from PR

3-loop

with ↵ = 1 and 1/2 respectively. The middle band is given by

4⇡c2

s(1)

k

2

k

2

NL

P
2-loop

(k). Our target is one or two percent agreement (1-�) between the power spectrum

of the EFTofLSS and the non-linear data. We have included this targets in the figures as dotted
and dashed black lines, for 1 and 2 percent (1-�) respectively. Here we have taken into account the
two percent (2-�) error in the non-linear data from Coyote by adding in quadrature the allowed
error (2 or 4 percent at 2-�) and the 2 percent error of the simulation.

Although we have been careful throughout to estimate where P
EFT-3-loop

becomes important,
there is still uncertainty in the precise order one factors. As a result, which of the three-loop
bands (if any) represents the real breakdown cannot be determined at this level. Alternatively,
we could estimate the maximum k up to which we can trust our calculation using the scale at
which P

EFT-2-loop

deviates from the non-linear data 12. We see from figure 5 that the prediction
of the EFTofLSS at 2-loop agrees with the non-linear data at redshift z = 0 at percent level
up to k ' 0.6 h Mpc�1 . This is a very remarkably high wavenumber given the results of former
perturbative calculations, as we discuss next.

Now, let us remove to our assumption of locality in time. As we discussed in the previous
section, the EFTofLSS is not local in time, but our knowledge of its non-locality is limited. We
can check how our results depend on the assumption by repeating the above procedure for di↵erent
values of p. This is shown in Fig. 6. We see that for p � 3, the best fit curves are within the 2-�

12 One possible concern in using this criterion of convergence is that we might be over fitting. But this is clearly
not the case for two reasons. First, we are fitting only one parameter in the range 0.15 h Mpc�1 < k < 0.25 h Mpc�1 ,
which is quite below the values of k where our calculation begins to fail. Second, we expect the maximum k to be
quite close to the value of k where the 3-loop term becomes important, which is indeed the case.
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• Well defined and manif. converg.

• we fit until                                           , as where we should stop fitting

– there are 200 more quasi linear modes than previously believed!

EFT of Large Scale Structures
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Figure 5: Comparison of P
EFT-2-loop

normalized to non-linear data. The blue curve is the best fit value
of c2

s(1)

(with c2

s(2)

fit to P
EFT-1-loop

, as described in the main text) and the blue band shows the 2-� error
on c2

s(1)

and c2

s(2)

. The black solid line shows the non-linear data. The red shaded regions are di↵erent
error estimates described in Section 4.2. The dotted and dashed black lines are the 2-� limits associated
with 1 and 2 percent agreement (1-�) with the non-linear data. We find that it is possible to obtain 1
percent agreement with the non-linear power spectrum after having fit only one new parameter, c2

s(1)

, and
furthermore that the agreement stretches well past the range, 0.15 h Mpc�1 < k < 0.25 h Mpc�1 , where
the parameter was fit.

there is still uncertainty in the precise order one factors. As a result, which of the three-loop
bands (if any) represents the real breakdown cannot be determined at this level. Alternatively,
we could estimate the maximum k up to which we can trust our calculation using the scale at
which P

EFT-2-loop

deviates from the non-linear data 12. We see from figure 5 that the prediction
of the EFTofLSS at 2-loop agrees with the non-linear data at redshift z = 0 at percent level
up to k ' 0.6 h Mpc�1 . This is a very remarkably high wavenumber given the results of former
perturbative calculations, as we discuss next.

Now, let us remove to our assumption of locality in time. As we discussed in the previous

12 One possible concern in using this criterion of convergence is that we might be over fitting. But this is clearly
not the case for two reasons. First, we are fitting only one parameter in the range 0.15 h Mpc�1 < k < 0.25 h Mpc�1 ,
which is quite below the values of k where our calculation begins to fail. Second, we expect the maximum k to be
quite close to the value of k where the 3-loop term becomes important, which is indeed the case.
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• Comparison with SPT

• Change from 1-loop to 2-loop predicted

– the other new terms are clearly important

EFT of Large Scale Structures
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Figure 7: Comparisons between 1-loop EFT (solid red), 2-loop EFT (solid blue) and SPT at tree
level (dotted green), one loop (dashed red), and two loops (dashed blue). The left plot shows the results
normalized to non-linear data (solid black) while dotted and dashed black lines are the 2-� limits associated
with 1 and 2 percent agreement (1-�) with the non-linear data. The red and blue bands show the 2-�
errors on the 1 and 2 loop EFT parameters respectively. The right plot is the same information without
the normalization to the non-linear data, and with the low-k region omitted for readability.

By Fourier-transforming this equation, we find that

⇡j(a,~k) =
i kj

k2

aH⇢
b

�0(a,~k) , (69)

where �0 ⌘ @�/@a. Therefore,
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and we can use the perturbative solutions for �(~k, a) (see App. C) to expand the right-hand side
up to the desired order. At one loop, we get
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We further apply the ansatz (57) about the time-dependent kernel K(a, a0), so that c̄
1

= (2⇡)c2

s(1)

/k2

NL

.
Before we proceed, we should emphasize that the momentum power spectrum depends sen-

sitively on the assumptions made about the time-dependence of the c
n

(a) functions defined in
Sec. 4.1, since we must take time derivatives of �(~k, a). In particular, if the time-dependence of
c
1

(a) is not given by Eq. (55), but has some di↵erent form, which we could write as

c
1

(a) = f
NT

(a)⇥ c
1

D
1

(a)2H2f 2 , (72)
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performed using Monte Carlo integration routines from the CUBA library [18], to compute P
1-loop

and P
2-loop

.
First, let us outline the procedure schematically: in order to determine c2

s(1)

, we consider the
1-loop EFT prediction,

P
EFT-1-loop
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We determine c2

s(1)

by fitting P
EFT-1-loop

to the non-linear power spectrum at low k, where P
1-loop

is expected to be reliable. After determining c2
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, the two-loop power spectrum is given by
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The purpose of c2

s(2)

is to cancel the ( k

k

NL

)2P
11

dependence of P
2-loop

that arises from loop momenta

with q � k. Because this contribution is larger than P finite

2-loop

, we can determine it by comparing
to P

EFT-1-loop

in the region where P finite

2-loop

is negligible. By doing so, we can determine all the
parameters in P

EFT-2-loop

without ever fitting the 2-loop power spectrum to the nonlinear data
directly!

However, implementing the above procedure is challenging. It is easy to measure c2

s(1)

and

c2

s(2)

when they contribute significantly to the power spectrum, namely above k ⇠ 0.1 h Mpc�1 .
However, in this regime, it is di�cult to determine, a priori, at which range of k the contribution
from P finite

2-loop

can be ignored (which is required for both measurements to be valid). If one works
at k ⌧ 0.1 h Mpc�1 , one can safely use 2(2⇡)(c2
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, one requires very high precision nonlinear data to make the

measurement of c2

s(1)

.
In practice, it appears that the real universe is much better behaved than one would have

naively expected. As we discussed in Section 3.1, in the regime 0.1 h Mpc�1 < k < 0.3 h Mpc�1 ,
the universe behaves much like a scaling universe with n = �1.7 ⇠ �3/2. As we show in
Appendix A, in the n = �3/2 universe P finite

2-loop

is smaller than our loop counting would suggest by
a factor of 10�2. As a result, we can trust P

EFT-1-loop

up to k ⇠ k
tr

, which is a much higher scale
than our naive counting would suggest. Therefore, in the range 0.1 h Mpc�1 < k < 0.25 h Mpc�1 ,
we can safely measure c2

s(1)

and c2

s(2)

by implementing the above procedure. This is very fortunate
because the error on available non-linear data is too large to apply to above procedure at k ⌧
0.1 h Mpc�1 .

We determine c2

s(1)

from a least-�2 fit of the P
EFT-1-loop

to the Coyote power spectrum over the
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• We are fitting parameters

– only 1-parameter

– nature chooses the coupling constants

• Loops are big:

– in Particle Physics loops are infinite

• sum of loop+counterterm needs to be small

– Nobel Prize in 1965

• You are fitting to high k (so overfitting):

– We fit in                                        , just because numerical data are not good enough

– The prediction up to 0.6 is clearly independent of the fit, so no overfittingg  

• How do you know it is right:

– it is manifestly right: we are integrating out well known UV physics at long distance

– Nobel Prize in 1982
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Figure 7: Comparisons between 1-loop EFT (solid red), 2-loop EFT (solid blue) and SPT at tree
level (dotted green), one loop (dashed red), and two loops (dashed blue). The left plot shows the results
normalized to non-linear data (solid black) while dotted and dashed black lines are the 2-� limits associated
with 1 and 2 percent agreement (1-�) with the non-linear data. The red and blue bands show the 2-�
errors on the 1 and 2 loop EFT parameters respectively. The right plot is the same information without
the normalization to the non-linear data, and with the low-k region omitted for readability.

By Fourier-transforming this equation, we find that
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and we can use the perturbative solutions for �(~k, a) (see App. C) to expand the right-hand side
up to the desired order. At one loop, we get
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We further apply the ansatz (57) about the time-dependent kernel K(a, a0), so that c̄
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Figure 4: Comparison of P
EFT-1-loop

normalized to non-linear data. The blue curve is the best fit value
of c2

s(1)

and the blue band shows the 2-� error on c2

s(1)

. We also show the data points that are fit, along
with their 2-� errors (assuming 1 percent error on all points).

range k ⇠ 0.15� 0.25 h Mpc�1 with �k ⇠ 0.005 h Mpc�1 . From the fit, we find 11
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= (1.62± 0.033)⇥ 1
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The result of the fit is shown in Fig. 4.
Having measured c2

s(1)

, we can now fit c2

s(2)

to P
EFT-1-loop

. In performing this fit, we must make

some assumption about P
(c

s

,p)

1-loop

. For now, we will take the p!1 limit, which corresponds to the
assumption that the e↵ective stress tensor ⌧ ij is completely local in time. We now fit P

EFT-2-loop

to P
EFT-1-loop

over the range k ⇠ 0.15 � 0.25 h Mpc�1 . Here we are using the expectation that
P finite

2-loop

is negligible over this range, such that the dominant source of error is our uncertainty in

11In the convention of [2], we have
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• A manifestly convergent perturbation theory

• we fit until                                           , as where we should stop fitting

– there are 200 more quasi linear modes than previously believed!

– huge impact on possibilities for

• Can all of us handle it?! This is an opportunity and a challenge for us 

– Primordial Cosmology can still have a bright future
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Figure 5: Comparison of P
EFT-2-loop

normalized to non-linear data. The blue curve is the best fit value
of c2

s(1)

(with c2

s(2)

fit to P
EFT-1-loop

, as described in the main text) and the blue band shows the 2-� error
on c2

s(1)

and c2

s(2)

. The black solid line shows the non-linear data. The red shaded regions are di↵erent
error estimates described in Section 4.2. The dotted and dashed black lines are the 2-� limits associated
with 1 and 2 percent agreement (1-�) with the non-linear data. We find that it is possible to obtain 1
percent agreement with the non-linear power spectrum after having fit only one new parameter, c2

s(1)

, and
furthermore that the agreement stretches well past the range, 0.15 h Mpc�1 < k < 0.25 h Mpc�1 , where
the parameter was fit.

there is still uncertainty in the precise order one factors. As a result, which of the three-loop
bands (if any) represents the real breakdown cannot be determined at this level. Alternatively,
we could estimate the maximum k up to which we can trust our calculation using the scale at
which P

EFT-2-loop

deviates from the non-linear data 12. We see from figure 5 that the prediction
of the EFTofLSS at 2-loop agrees with the non-linear data at redshift z = 0 at percent level
up to k ' 0.6 h Mpc�1 . This is a very remarkably high wavenumber given the results of former
perturbative calculations, as we discuss next.

Now, let us remove to our assumption of locality in time. As we discussed in the previous

12 One possible concern in using this criterion of convergence is that we might be over fitting. But this is clearly
not the case for two reasons. First, we are fitting only one parameter in the range 0.15 h Mpc�1 < k < 0.25 h Mpc�1 ,
which is quite below the values of k where our calculation begins to fail. Second, we expect the maximum k to be
quite close to the value of k where the 3-loop term becomes important, which is indeed the case.
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Figure 7: Comparisons between 1-loop EFT (solid red), 2-loop EFT (solid blue) and SPT at tree
level (dotted green), one loop (dashed red), and two loops (dashed blue). The left plot shows the results
normalized to non-linear data (solid black) while dotted and dashed black lines are the 2-� limits associated
with 1 and 2 percent agreement (1-�) with the non-linear data. The red and blue bands show the 2-�
errors on the 1 and 2 loop EFT parameters respectively. The right plot is the same information without
the normalization to the non-linear data, and with the low-k region omitted for readability.
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By Fourier-transforming this equation, we find that
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and we can use the perturbative solutions for �(~k, a) (see App. C) to expand the right-hand side
up to the desired order. At one loop, we get

P
⇡⇡

(a, k) =

✓

aH⇢
b

k

◆

2

⇣

[D0
1

(a)]2P
11

(k) + [D
1

(a)D0
1

(a)]2 {3P
13

(k) + 4P
22

(k)}

�6[D
1

(a)D0
1

(a)]2c̄
1

k2P
11

(k)
�

. (72)

We further apply the ansatz (58) about the time-dependent kernel K(a, a0), so that c̄
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Before we proceed, we should emphasize that the momentum power spectrum depends sen-

sitively on the assumptions made about the time-dependence of the c
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Figure 5: Comparison of P
EFT-2-loop

normalized to non-linear data. The blue curve is the best fit value
of c2

s(1)

(with c2

s(2)

fit to P
EFT-1-loop

, as described in the main text) and the blue band shows the 2-� error
on c2

s(1)

and c2

s(2)

. The black solid line shows the non-linear data. The red shaded regions are di↵erent
error estimates described in Section 4.2. The dotted and dashed black lines are the 2-� limits associated
with 1 and 2 percent agreement (1-�) with the non-linear data. We find that it is possible to obtain 1
percent agreement with the non-linear power spectrum after having fit only one new parameter, c2

s(1)

, and
furthermore that the agreement stretches well past the range, 0.15 h Mpc�1 < k < 0.25 h Mpc�1 , where
the parameter was fit.

there is still uncertainty in the precise order one factors. As a result, which of the three-loop
bands (if any) represents the real breakdown cannot be determined at this level. Alternatively,
we could estimate the maximum k up to which we can trust our calculation using the scale at
which P

EFT-2-loop

deviates from the non-linear data 12. We see from figure 5 that the prediction
of the EFTofLSS at 2-loop agrees with the non-linear data at redshift z = 0 at percent level
up to k ' 0.6 h Mpc�1 . This is a very remarkably high wavenumber given the results of former
perturbative calculations, as we discuss next.

Now, let us remove to our assumption of locality in time. As we discussed in the previous

12 One possible concern in using this criterion of convergence is that we might be over fitting. But this is clearly
not the case for two reasons. First, we are fitting only one parameter in the range 0.15 h Mpc�1 < k < 0.25 h Mpc�1 ,
which is quite below the values of k where our calculation begins to fail. Second, we expect the maximum k to be
quite close to the value of k where the 3-loop term becomes important, which is indeed the case.
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