

November 17, 2010

Lorentz-violating dark energy: physicap. Diego Blas Terrino Vations and EPFL SB ITP LPPC BSP 730 (Bat. sciences physique UNIL) ObserverH-1015 Lausanne, Switzerland

Sergey Sibiryakov (INR RAS, Moscow)

with Diego Blas, Benjamin Audren, Julien Lesgourgues, Mikhail Ivanov

New light on cosmology from CMB, ICTP, I August 2013

 Λ CDM is doing very well apart from possible hints at large-scale anomalies

 Λ CDM is doing very well apart from possible hints at large-scale anomalies

But we are unhappy with the CC: small dimensionful parameter that must be fine-tuned to the precision 10^{-120}

Fine-tuning problem

Cosmological constant

 $\rho_{\Lambda, obs} \sim (10^{-3} \mathrm{eV})^4$

loop corrections

• phase transitions in the early Universe

 $\rho_{\Lambda, theor} \sim (M_{EW})^4 \sim (10^{11} \text{eV})^4 \text{ or } (M_{QCD})^4 \sim (10^8 \text{eV})^4$

Fine-tuning problem

Cosmological constant

 $\rho_{\Lambda, obs} \sim (10^{-3} \mathrm{eV})^4$

loop corrections

• phase transitions in the early Universe

 $\rho_{\Lambda, theor} \sim (M_{EW})^4 \sim (10^{11} \text{eV})^4 \text{ or } (M_{QCD})^4 \sim (10^8 \text{eV})^4$

Landscape + anthropic principle ???

Motivation to go beyond CC:

Alternative scenarios for late-time cosmology to test against the data

Motivation to go beyond CC:

Alternative scenarios for late-time cosmology to test against the data

Motivation to go beyond CC:

Alternative scenarios for late-time cosmology to test against the data

Requirements:

• theoretical consistency

Motivation to go beyond CC:

Alternative scenarios for late-time cosmology to test against the data

- theoretical consistency
- compatibility with other observations (e.g. local tests of gravity)

Motivation to go beyond CC:

Alternative scenarios for late-time cosmology to test against the data

- theoretical consistency
- compatibility with other observations (e.g. local tests of gravity)
- no additional naturalness problems

Motivation to go beyond CC:

Alternative scenarios for late-time cosmology to test against the data

- theoretical consistency
- compatibility with other observations (e.g. local tests of gravity)
- no additional naturalness problems
- validity as EFT down to microscopic distances

Motivation to go beyond CC:

Alternative scenarios for late-time cosmology to test against the data

- theoretical consistency
- compatibility with other observations (e.g. local tests of gravity)
- no additional naturalness problems
- validity as EFT down to microscopic distances
- predictive power

Simplest dynamical DE: standard quintessence (pseudo-Goldstone boson)

• small mass protected by (approximate) shift symmetry

 $\phi \mapsto \phi + const$

• weak predictive power

if $m \ll H_0$ indistinguishable from CC

Simplest dynamical DE: standard quintessence (pseudo-Goldstone boson)

• small mass protected by (approximate) shift symmetry

 $\phi \mapsto \phi + const$

• weak predictive power

if $m \ll H_0$ indistinguishable from CC

Next option: change the underlying symmetries Allow for violation of Lorentz invariance broken in cosmology anyway

Effective description of LV

preferred time = foliation of the manifold by space-like surfaces

introduce a field $\sigma(\mathbf{x}, t)$ to parametrize the foliation surfaces

Effective description of LV

preferred time = foliation of the manifold by space-like surfaces

Constructing KHRONO-METRIC action

• Invariant object -- unit normal to the foliation surfaces:

low-energy EFT = Lagrangian with lowest number of derivatives

$$S_{kh-m} = -\frac{M_P^2}{2} \int d^4x \sqrt{-g} \Big[{}^{(4)}R + \beta \nabla_{\mu} u_{\nu} \nabla^{\nu} u^{\mu} \Big]$$

 $+ \lambda' (\nabla_{\mu} u^{\mu})^{2} + \alpha u^{\mu} u^{\nu} \nabla_{\mu} u_{\rho} \nabla_{\nu} u^{\rho}$

cf. with Einstein-aether theory (Jacobson & Mattingly, 2001): a LV theory of a unit vector

matter sector is Lorentz invariant at low energies
direct coupling of the khronon to SM fields is forbidden

Natural DE

Consider a scalar Θ with shift symmetry $\Theta \mapsto \Theta + const$ (e.g. Goldstone boson of a broken global symmetry)

In general it will have dim 2 coupling to the khronon:

Has high UV cutoff $M_{\alpha} \equiv M_{Pl} \sqrt{\alpha}$

Homogeneous cosmology $ds^2 = dt^2 - a^2(t)dx^2$, $\Theta = \Theta(t)$ $H^{2} = \frac{8\pi G_{cosm}}{3} \left(\frac{\dot{\Theta}^{2}}{2} + \rho_{mat}\right) \Longrightarrow \qquad \rho_{\Theta} \to \mu^{4}/2$ w = -1

A new twist to CCP ? If and only if $\rho_{mat} = 0$ there is unstable Minkowski solution with $\dot{\Theta} = 0$

Perturbations in expanding Universe $\sigma(t, \mathbf{x}) = t + \chi(t, \mathbf{x}), \quad \Theta(t, \mathbf{x}) = \overline{\Theta} + \xi(t, \mathbf{x})$ $k_c \equiv \mu^2 / M_{\alpha}$

 $\sim H_0/\sqrt{\alpha}$

Perturbations in expanding Universe $\sigma(t,\mathbf{x}) = t + \chi(t,\mathbf{x}), \quad \Theta(t,\mathbf{x}) = \bar{\Theta} + \xi(t,\mathbf{x})$

 $k_c \equiv \mu^2 / M_\alpha$ $\sim H_0 / \sqrt{\alpha}$

DE clusters at large scales

NB. Can be thought of as UV completion of ghost condensation

Solar system constraints

Blas, Pujolas, S.S. (2011)

all PPN parameters the same as in GR except α_1^{PPN} , α_2^{PPN} measure preferred frame effects

Definition of $\alpha_{1,2}^{PPN}$

Experimental bounds:

$$|\alpha_1^{PPN}| \lesssim 10^{-4}$$
, $|\alpha_2^{PPN}| \lesssim 10^{-7}$

$$\alpha_1^{PPN} = -4(\alpha - 2\beta)$$
$$\alpha_2^{PPN} = \frac{(\alpha - 2\beta)(\alpha - \lambda' - 3\beta)}{2(\lambda' + \beta)}$$

barring cancellations

$$\alpha \ , \ \beta \ , \ \lambda' \lesssim 10^{-7} \div 10^{-6}$$

• vanish if $\alpha = 2\beta$ from gravity wave emission

Blas, Sanctuary (2011) Yagi et al. (2013)

$$\alpha \;,\; \beta \;,\; \lambda' \lesssim 10^{-2}$$

interesting for cosmology

Cosmological signatures of Θ CDM $ds^2 = a^2(t)[(1+2\psi)dt^2 - (1-2\phi)d\mathbf{x}^2]$

Poisson equation:

$$k^2\phi = -4\pi G_N a^2 \left[\sum \rho_n \delta_n + \delta\rho_\chi + \delta\rho_\xi\right]$$

shear equation:

 $k^{2}(\psi - \phi) = -12\pi G_{0}a^{2}\sum(\rho_{n} + p_{n})\sigma_{n} + \beta k^{2}(\dot{\chi} + 2\mathcal{H}\chi)$

 $ds^{2} = a^{2}(t)[(1+2\psi)dt^{2} - (1-2\phi)\mathbf{dx}^{2}]$

Poisson equation:

shear equation:

 $k^{2}(\psi - \phi) = -12\pi G_{0}a^{2}\sum(\rho_{n} + p_{n})\sigma_{n} + \beta k^{2}(\dot{\chi} + 2\mathcal{H}\chi)$

$$ds^{2} = a^{2}(t)[(1+2\psi)dt^{2} - (1-2\phi)\mathbf{dx}^{2}]$$

Poisson equation: $k^{2}\phi = -4\pi G_{N}a^{2} \left[\sum \rho_{n}\delta_{n} + \delta\rho_{\chi} + \delta\rho_{\xi}\right]$ $\frac{G_{0}}{1 - \alpha/2} \text{ different from } \frac{G_{0}}{1 + \beta/2 + 2\lambda'/2} \qquad H^{2} = \frac{8\pi G_{cosm}}{3} \left(\frac{\dot{\Theta}^{2}}{2} + \rho_{mat}\right)$

> enhancement of self-gravity by G_N/G_{cosm}

shear equation:

 $k^2(\psi - \phi) = -12\pi G_0 a^2 \sum (\rho_n + p_n)\sigma_n + \beta k^2 (\dot{\chi} + 2\mathcal{H}\chi)$

$$ds^{2} = a^{2}(t)[(1+2\psi)dt^{2} - (1-2\phi)\mathbf{dx}^{2}]$$

Poisson equation: $k^{2}\phi = -4\pi G_{N}a^{2} \left[\sum \rho_{n}\delta_{n} + \delta\rho_{\chi} + \delta\rho_{\xi}\right]$ $\frac{G_{0}}{1 - \alpha/2} \text{ different from } \frac{G_{0}}{1 + \beta/2 + 2\lambda'/2} \qquad H^{2} = \frac{8\pi G_{cosm}}{3} \left(\frac{\dot{\Theta}^{2}}{2} + \rho_{mat}\right)$

> enhancement of self-gravity by G_N/G_{cosm}

shear equation:

$$k^{2}(\psi - \phi) = -12\pi G_{0}a^{2}\sum(\rho_{n} + p_{n})\sigma_{n} + \beta k^{2}(\dot{\chi} + 2\mathcal{H}\chi)$$

 $ds^{2} = a^{2}(t)[(1+2\psi)dt^{2} - (1-2\phi)d\mathbf{x}^{2}]$

> enhancement of self-gravity by G_N/G_{cosm}

shear equation:

$$k^{2}(\psi - \phi) = -12\pi G_{0}a^{2}\sum(\rho_{n} + p_{n})\sigma_{n} + \beta k^{2}(\dot{\chi} + 2\mathcal{H}\chi)$$

Two models for numerical studies

Model	α	β	λ	Σ
enhanced gravity	0.2	0	0.1	0.5
shear	0.05	0.25	-0.1	0

use CLASS Blas, Lesgourgues, Tram (2011) and MONTE PYTHON Audren et. al. (2012)

CMB anisotropies

Temperature anisotropy spectrum (solid) and its decomposition in terms of Sachs-Wolfe (dotted), Doppler (dashed) and integrated Sachs-Wolfe (dot-dashed) contributions.

Matter power spectrum

Ratios of the matter power spectra in the two reference $\Theta {\rm CDM}$ models and $\Lambda {\rm CDM}$ at redshift z=0 .

OUTLOOK

- Lorentz violation is a consistent framework to test deviations from ΛCDM
- * A simple, technically natural model for DE
- Signatures of Θ CDM: w = -1, enhanced structure formation, $G_N \neq G_{cosm}$, additional shear
- Bounds from WMAP+SPT+WiggleZ at the level several $\times 10^{-2}$. Can be improved with Planck+BOSS.
- * Lorentz violation in dark matter

pprox fifth force in DM sector

