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�CDM is doing very well
apart from possible hints at large-scale anomalies

But we are unhappy with the CC:
small dimensionful parameter that must 
be fine-tuned to the precision 10�120



Fine-tuning problem
Cosmological constant 

��, obs � (10�3eV)4

��, theor � (MPl)4 � (1028eV)4

(MSUSY )4 � (1012eV)4or

• loop corrections

• phase transitions in the early Universe
��, theor � (MEW )4 � (1011eV)4 (MQCD)4 � (108eV)4or
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��, theor � (MPl)4 � (1028eV)4

(MSUSY )4 � (1012eV)4or

• loop corrections

• phase transitions in the early Universe

Landscape + anthropic principle ???

��, theor � (MEW )4 � (1011eV)4 (MQCD)4 � (108eV)4or
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Phenomenological perspective

Motivation to go beyond CC:

Alternative scenarios for late-time cosmology 
to test against the data

Requirements:
• theoretical consistency

• compatibility with other observations (e.g. local 
tests of gravity)

• no additional naturalness problems

• validity as EFT down to microscopic distances

• predictive power



Simplest dynamical DE:
standard quintessence (pseudo-Goldstone boson)

• small mass protected by (approximate) shift symmetry

• weak predictive power
if                indistinguishable from CC m� H0

� ⇥� � + const +

-



Simplest dynamical DE:
standard quintessence (pseudo-Goldstone boson)

• small mass protected by (approximate) shift symmetry

• weak predictive power
if                indistinguishable from CC m� H0

� ⇥� � + const +

-
Next option: change the underlying symmetries

Allow for violation of Lorentz invariance
broken in cosmology anyway



Effective description of LV

� introduce 
a field
to parametrize
the foliation 
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�(x, t)

t = �choosing the gauge                           sets global time�

preferred time = foliation of the manifold by space-like 
surfaces
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Effective description of LV

� introduce 
a field
to parametrize
the foliation 
surfaces

�(x, t)

t = �choosing the gauge                           sets global time�

preferred time = foliation of the manifold by space-like 
surfaces

NB. Foliation preserving transformations
             symmetry � ⇥� �̃ = f(�)

KHRONON



Constructing KHRONO-METRIC action

• Invariant object -- unit normal to the foliation surfaces:

• low-energy EFT = Lagrangian with lowest number of 
derivatives

cf. with Einstein-aether theory (Jacobson & Mattingly, 
2001): a LV theory of a unit vector

• matter sector is Lorentz invariant at low energies 
direct coupling of the khronon to SM fields is 
forbidden

uµ = ⇤µ⇥�
(⇤⇥)2

Skh = �M2
P

2

�
d4x
⇥
�g

⇥
(4)R + ⇥⇤µu⇥⇤⇥uµ

+ ⇤�(⇤µuµ)2 + �uµu⇥⇤µu⇤⇤⇥u⇤
⇤

kh-m



Consider a scalar     with shift symmetry
(e.g. Goldstone boson of a broken global symmetry )

In general it will have dim 2 coupling to the khronon:

� � ⇥� � + const

L� =
(⇥��)2

2
+ µ2u�⇥��

stable under radiative corrections: 
breaks                  � ⇤⇥ ��

Has high UV cutoff                           M� �MPl
⇥

�

Natural DE



Homogeneous cosmology

d

dt
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a3�̇ + µ2a3
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H2 =
8�Gcosm

3

�
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+ ⇥mat
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C
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dt
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a3�̇ + µ2a3

⇥
= 0

H2 =
8�Gcosm

3

�
�̇2

2
+ ⇥mat

⇥

ds2 = dt2 � a2(t)dx2 � = �(t),

�̇ = �µ2 +
C

a3

⇥� � µ4/2

A new twist to CCP ? If and only if                there is unstable 
Minkowski solution with             

�mat = 0
�̇ = 0

Minkowski

de Sitter

w = �1



Perturbations in expanding Universe

�(t,x) = t + ⇥(t,x) , �(t,x) = �̄ + �(t,x)

kc � µ2/M�

� H0/
�
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Perturbations in expanding Universe

gapped mode

slow mode
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Perturbations in expanding Universe

gapped mode

slow mode

c� � k/kc ⇥ 1

DE clusters at large scales

NB. Can be thought of as UV completion of ghost condensation

�(t,x) = t + ⇥(t,x) , �(t,x) = �̄ + �(t,x)
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+ = k2

c + O(k2)

�2
� � k4/k2

c



Solar system constraints

all PPN parameters the same as in GR 

except             ,  �PPN
1 �PPN

2 �
measure preferred 

frame effects

Blas, Pujolas, S.S. (2011)



h00 = �2GN
m

r

�
1� �PPN

2

2
(xivi)2

r2

⇥

h0i =
�PPN

1

2
GN

m

r
vi

⇥v

r

Definition of �PPN
1,2

Experimental bounds:

|�PPN
1 | � 10�4 , |�PPN

2 | � 10�7



• barring cancellations

• vanish if                
from gravity wave emission

� , ⇥ , ⇤⇥ � 10�7 ÷ 10�6

�PPN
1 = �4(�� 2⇥)

�PPN
2 =

(�� 2⇥)(�� ⇤� � 3⇥)
2(⇤� + ⇥)

� = 2⇥

� , � , �� � 10�2

Blas, Sanctuary (2011)
Yagi et al. (2013)

interesting for cosmology



Cosmological signatures of CDM�
ds2 = a2(t)[(1 + 2�)dt2 � (1� 2�)dx2]

k2� = �4�GNa2
��

�n�n + ��� + ���

�

k2(� � �) = �12�G0a
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Poisson equation:

shear equation:
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Two models for numerical studies 7

To understand these e↵ects, let us work in the Newto-
nian gauge. The Poisson equation (i.e., the sub-Hubble
limit of the (00) Einstein equation) reads

k2(2�� ↵ ) = �8⇡G0a
2

X

other

⇢
n

�
n

� ↵k2(�̇+H(1�B)�)� ↵G0

c2
⇥⌧↵G

cos

✓
H

↵

˙̃⇠ �  

⌧
a

◆
.

(37)

Let us first concentrate on the contribution of standard
matter. Using the Friedmann equation (17), the (time-
dependent) fraction of the total energy density of the
Universe due to each matter component is given by

f
n

⌘ 8⇡G
cos

3H2
⇢

n

. (38)

The Poisson equation takes the form

k2� = �4⇡G
N

a2
X

other

⇢
n

�
n

= �3
2

G
N

G
cos

H2
X

other

f
n

�
n

,
(39)

where for the time being we have omitted the terms in the
second line of (37) and neglected the anisotropic stress
(i.e. we have set  = �). If we assume that the back-
ground evolution of the Universe is standard, with H
and f

n

being exactly the same as in ⇤CDM, Eq. (39)
implies that the strength of the gravitational potential
produced by density perturbations is modified by the
factor G

N

/G
cos

. When this modified potential is sub-
stituted into the matter equations of motion (which have
the standard form), it leads to a di↵erent growth rate of
perturbations with respect to the ⇤CDM case. For in-
stance, a straightforward calculation shows that during
the matter dominated epoch, the density contrast grows
according to the modified power-law (cf. [12])

� / a
1

4

(�1+
p

1+24G

N

/G

cos

) . (40)

Notice that for small values of the parameters (↵, �, �)
the anomalous growth is proportional to

G
N

G
cos

� 1 =
⌃
2

+ O(↵2) , (41)

where we have defined

⌃ ⌘ ↵+ � + 3� . (42)

For ⌃ = 0, the e↵ect of modified self-gravity is strongly
suppressed. Hence we expect cosmological bounds on (↵,
�, �) to be weaker along this degeneracy direction. In-
cidentally, in the Einstein-aether case ⌃ is required to
vanish (or, rather, be extremely small) by the PPN con-
straints, see (9b). This explains why the cosmological
bounds on Einstein-aether theory are rather mild [11, 16].

Model ↵ � � ⌃

enhanced gravity 0.2 0 0.1 0.5

shear 0.05 0.25 �0.1 0

TABLE I: Parameters for the enhanced gravity and shear

models.

On the other hand, in the khronometric model the PPN
constraints are compatible with ⌃ 6= 0 and the influ-
ence of Lorentz violation on cosmological perturbations
is more pronounced.

The second e↵ect is understood from the tracefree part
of the (ij) Einstein equation,

k2( � �) =

� 12⇡G0a
2

X

other

(⇢
i

+ p
i

)�
i

+ �k2(�̇+ 2H�). (43)

Since the khronon field introduces a preferred direction
u

µ

in space-time, it may generate anisotropic stress. This
e↵ect (proportional to �) is accounted for by the last term
in the previous equation. Generally speaking, adding
anisotropic stress amounts to increasing the viscosity of
the cosmic fluid, and leads to a damping of small-scale
perturbations.

The third e↵ect comes from gravitational interactions
between ordinary matter species and the scalar fields �
and ⇠̃. This interaction, described by the second line in
Eq. (37), may play an important role under the condi-
tion that the fields cluster and form su�ciently dense
clumps. This might be the case through a mechanism
described in Ref. [4]. The mixing between the dark en-
ergy perturbation ⇠̃ and the khronon � (see Eqs. (21))
gives rise to a mode whose sound speed vanishes in the
limit of small momentum k. This property implies that
the e↵ective pressure associated with the mode is small,
and that the density perturbations (�⇢

�

, �⇢
⇠

) can be am-
plified e�ciently by gravitational collapse. Hence, the
⇥CDM model features clustering dark energy. A semi-
quantitative analysis of this e↵ect was performed in [4],
showing that structure formation is enhanced at small
comoving momenta (large wavelengths), k . H

↵

. Unfor-
tunately, in this range, the quality of cosmological data
is rather poor, and this e↵ect does not play a significant
role in actual observational constraints on the model.

To illustrate how the above e↵ects impact observable
quantities, we study numerically the evolution of cosmo-
logical perturbations in two reference models using the
Boltzmann code class. We will call them the enhanced
gravity and the shear models. The corresponding param-
eter values are listed in Table I. Clearly, in the enhanced
gravity model we keep the e↵ect (i) while switching o↵
the e↵ect (ii); in the case of the shear model the situa-
tion is opposite. The e↵ect (iii) is present in both models
but we will see that it is always subdominant. Note that
the values in Table I have been chosen very large in order

use CLASS   Blas, Lesgourgues, Tram (2011)
and MONTE PYTHON   Audren et. al. (2012)
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scales, the peaks are further suppressed by Silk damp-
ing. Indeed, due to the shift in the phase of oscillations,
they correspond to smaller physical scales at recombina-
tion, that are more a↵ected by di↵usion damping. The
Doppler e↵ect, which depends on ⇥̇

�

at recombination,
is also modified. Finally, a prominent feature clearly vis-
ible on the plot is the significant enhancement of the
ISW contribution in the range 10 < l < 100, i.e. be-
tween the regions usually a↵ected by the early ISW e↵ect
(100 < l < 200) and the late ISW e↵ect (2 < l < 10).
The ISW e↵ect is proportional to the time derivative of
the gravitational potential. In the ⇤CDM model, the po-
tential varies only during the epochs of radiation and ⇤
domination. However, in the enhanced gravity model, the
growth of density perturbations entails a slow increase of
the gravitational potential also during the matter domi-
nated era, enhancing the ISW e↵ect on a wide range of
scales.

All in all, we conclude that the enhanced gravity model
produces significant modifications in the spectrum of
CMB anisotropies. The pattern of these modifications
is quite specific, and apparently not degenerate with the
e↵ects of standard cosmological parameters.

Shear model : We recall that in this model, the � field
generates some anisotropic stress and contributes to the
shear of the perturbed metric, as described by Eq. (43).
The presence of shear tends to smooth out metric per-
turbations on scales smaller than the sound horizon asso-
ciated with the sound speed of the � field. Note that for
parameters of the particular shear model studied here,
the field � is superluminal16 (c

�

=
p

3) and the suppres-
sion appears already on super-Hubble scales.

This is indeed observed on the top panel of Fig. 1,
where the gravitational potential is clearly smaller (in
absolute value) compared to ⇤CDM. It also exhibits no-
table wiggles caused by oscillations in the �-field [4]. The
fact that c

�

is much larger than the photon-baryon sound
speed explains the shift between the phase of the oscil-
lations seen in  and in ⇥

�

. The suppression of  shifts
the zero-point of the oscillations in the photon tempera-
ture ⇥

�

. On the other hand, we do not see any shift in
the positions of the peaks, which is compatible with the
previous discussion: the self-gravity of radiation is not
modified in this model.

For fixed initial conditions ⇥
�

(⌧0), the amplitude of
the acoustic oscillations depends crucially on boosting
e↵ects, imprinted around the time of Hubble crossing,
and caused by the three gravitational driving terms on
the right-hand side of Eq. (44). In the shear model, the
amplitude of acoustic oscillations is damped as a conse-
quence of smaller metric fluctuations and reduced grav-
itational boosting. This translates into an overall sup-

16 As pointed above, this does not present any inconsistencies in
theories without Lorentz invariance.

 0

 1e-10

 2e-10

 3e-10

 4e-10

 5e-10

 6e-10

 7e-10

 8e-10

 9e-10

 1e-09

 10  100  1000

l(l
+1

)C
l

ΛCDM
enhanced gravity

 0

 1e-10

 2e-10

 3e-10

 4e-10

 5e-10

 6e-10

 7e-10

 8e-10

 9e-10

 1e-09

 10  100  1000

l(l
+1

)C
l

l

ΛCDM
shear

FIG. 2: Temperature anisotropy spectrum (solid) and its
decomposition in terms of Sachs–Wolfe (dotted), Doppler
(dashed) and Integrated Sachs–Wolfe (dot-dashed) contribu-
tions. For clarity, we do not show cross correlations between
these contributions. Thick black lines represent the ⇤CDM
model, while thin blue lines are used for the two ⇥CDM ref-
erence models.

pression of the SW e↵ect visible in the bottom panel of
Fig. 1.

On Fig. 2, we see that the Doppler and ISW contri-
butions to the total temperature spectrum C

`

are also
lower in the shear model than in ⇤CDM. The net result
is a uniform suppression of all peaks. One may expect
that this e↵ect could be compensated, at least partially,
by a rescaling of the initial amplitude of perturbations.
This suggests that pure shear models might be less con-
strained than enhanced gravity ones.

Our shear model is similar to the one studied in [11],
where it was claimed that the dominant e↵ect on the
CMB comes through the ISW. Our analysis demonstrates
that the changes in the SW and Doppler contributions
are equally important for this model.
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On Fig. 2, we see that the Doppler and ISW contri-
butions to the total temperature spectrum C

`

are also
lower in the shear model than in ⇤CDM. The net result
is a uniform suppression of all peaks. One may expect
that this e↵ect could be compensated, at least partially,
by a rescaling of the initial amplitude of perturbations.
This suggests that pure shear models might be less con-
strained than enhanced gravity ones.

Our shear model is similar to the one studied in [11],
where it was claimed that the dominant e↵ect on the
CMB comes through the ISW. Our analysis demonstrates
that the changes in the SW and Doppler contributions
are equally important for this model.

l l

CMB anisotropies

Temperature anisotropy spectrum (solid) and its decomposition in 
terms of Sachs-Wolfe (dotted), Doppler (dashed) and integrated 
Sachs-Wolfe (dot-dashed) contributions.
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FIG. 4: Ratios of the matter power spectra in the two refer-
ence ⇥CDM models and in ⇤CDM at redshift z = 0.

If we normalize perturbations to the same initial value
of  , the evolution of (�⇢

cdm

, �⇢
b

) is identical above the
Hubble scale in the ⇤CDM and shear models. However,
in the shear case, the anisotropic stress of the khronon
cannot be neglected soon after the time of Hubble cross-
ing. This leads to a smoothing of metric perturbations
and to a suppression of �⇢

cdm

and �⇢
b

that is clearly vis-
ible in the lower right panel of Fig. 3. Well after Hubble
crossing, the khronon anisotropic stress becomes negligi-
ble and (�⇢

cdm

, �⇢
b

) evolve like in ⇤CDM, but with a
constant o↵set coming from the suppression experienced
soon after Hubble crossing.

This suppression is seen better in Fig. 4. For the cho-
sen parameter values, the e↵ect of the shear model is
smaller than for the enhanced gravity model. In order
to see clearly both e↵ects with the same scale, we mul-
tiplied the di↵erence between the power spectra in the
shear model and in ⇤CDM by 20. Inside the Hubble ra-
dius, the suppression of the power spectrum in the shear
model is almost scale-independent. When approaching
the current value of the Hubble scale, the suppression is
reduced by the counteracting e↵ect of additional density
fluctuations in the ⇠ field. However, this reduction is only
significant on scales that are too large to be observed with
good precision (due to the sampling variance associated
to a given survey). Besides, on such scales our definition
of the matter power spectrum is no longer applicable20.

We reach the same conclusion as in the CMB case: on
observable scales, the e↵ect of pure shear models can be
mimicked by an overall reduction of the primordial fluc-
tuation amplitude, which suggests that these models are

20 Like in the enhanced gravity model, we note that in a scenario
with tiny values of c⇥ or c

�

, density fluctuations in the ⇠̃ or �
field could in principle be significant on much smaller scales.

more weakly constrained than enhanced gravity models.

V. COMPARISON WITH CURRENT DATA

We will now compare the khronometric ⇥CDM model
to CMB and LSS data, using the parameter inference
code Monte Python

21 [20]. For the CMB, we use here
WMAP 7-year data [37], and SPT data from 2008 and
2009 [38]. Updating our analysis with recent Planck data
[39] could give a small improvement on parameter con-
straints, without changing their order of magnitude. For
LSS, we rely on galaxy power spectrum data from the
WiggleZ redshift survey [40]. We choose to perform our
runs in the synchronous gauge.

We include in the fit eight free cosmological parame-
ters, which are the usual six free parameters of the min-
imal flat ⇤CDM model, plus � and � + � (this combina-
tion is chosen to facilitate the convergence of the chains).
The parameter ↵ is fixed to 2�, which is the condition
for satisfying all bounds coming from Solar System tests
in the khronometric model22. As far as cosmology is con-
cerned, this condition is actually not necessary, but we
implement it anyway in order to deal only with realistic
models. We also vary three nuisance parameters describ-
ing the foreground contamination of SPT data, and we
marginalize over these parameters following strictly the
approach of Ref. [38].

We show our results for the Bayesian minimum cred-
ible interval of each parameter in Table II. The one-
dimensional and two-dimensional posterior parameter
distributions are displayed in Fig. 5 (omitting the three
SPT nuisance parameters for clarity).

The ⇥CDM parameters are found to be weakly cor-
related with the six standard model parameters, and
strongly correlated with each other. Isoprobability con-
tours in the (�,� + �) space have a complicated shape.
They are very elongated along two directions of degen-
eracy, corresponding to � + � ' 0 and � ' 3/2(� + �).
Away from these two special directions, the contours are
more regular, and closer to an ellipse centered on the ori-
gin. The posterior probability peaks at (�,�+�) ' (0, 0),
showing that the data brings no evidence in favor of the
⇥CDM model. The two directions of degeneracy can be
interpreted as follows.

First, the case � + � ' 0 corresponds to ⌃ ' 0 for
our choice of ↵. This is the region of pure shear models,
discussed in the previous subsection. We already argued
that the di↵erences with ⇤CDM are less important in this

21
http://montepython.net

22 We decided to focus only on the khronometric case, since from
the comments after Eq. (42) it is clear that the bounds are
stronger in this model than in the Einstein-aether case. This
is confirmed by comparing our results with the constraints pre-
sented in Ref. [11].

Matter power spectrum

Ratios of the matter power spectra in the two reference    CDM models
and    CDM at redshift           . 

�
� z = 0
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100 !
b

!
cdm

n
s

10+9A
s

h z
reio

� � + �

2.219+0.041
�0.044 0.1205+0.0027

�0.0029 0.9552+0.011
�0.011 2.556+0.09

�0.092 0.6782+0.013
�0.013 10.05+1.2

�1.2 < 0.05 < 0.012

TABLE II: Mean values and 68% confidence limits of the minimum credible interval of the parameters of the khronometric
⇥CDM model. For � and � + �, we show instead 95% upper limits.
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FIG. 5: Triangle plot showing the one-dimensional marginalized posterior distribution and the two-dimensional probability
contours (at the 68, 95 and 99% confidence level) of the parameters of the khronometric ⇥CDM model.
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OUTLOOK

Lorentz violation is a consistent framework to test 
deviations from   CDM

A simple, technically natural model for DE 

Signatures of    CDM:              , enhanced structure 
formation,                      ,  additional shear

Bounds from WMAP+SPT+WiggleZ at the level 
several           . Can be improved with Planck+BOSS.

Lorentz violation in dark matter   
     fifth force in DM sector           
         further enhancement of structure
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GN �= Gcosm
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