Electronic Structure Theory in Practice

Oliver T. Hofmann, Trieste, Aug 7th 2013

Solving the Schrödinger equation $\hat{H}\Psi = E\Psi$, with $\Psi = \Psi(\{R_{Nuc}\}, \{r_{elec}, \sigma_{elec}\})$ $\hat{H} = \hat{T}^{Nuc} + \hat{V}^{Nuc-Nuc} + \hat{T}^e + \hat{V}^{Nuc-e} + \hat{V}^{e-e}$

- Full many body solution typically not attainable
- → Born-Oppenheimer Approximation

 $\hat{\mathbf{H}}^{e} \Phi_{\nu} = E^{e}_{\nu} \Phi_{\nu}, \text{ with}$ $\hat{\mathbf{H}}^{e} = \hat{\mathbf{T}}^{e} + \hat{\mathbf{V}}^{e-\operatorname{Nuc}} + \hat{\mathbf{V}}^{e-e}$

- Assumption: electrons are in an eigenstate of H^e
- Separation of nuclear and electronic coordinates

Outline

- Solving the electronic part
 - Self-consistent field method
 - Achieving and accelerating convergence
- Structure optimization
 - (Global structure optimization)
 - Local structure optimization
 - Vibrations
- What can we learn from this?
 - Visualization

Where are the electrons?

- All ground state properties related to electron distribution [1] $\Phi(r_1, r_2, ..., r_N) \iff n(r)$
 - Relative energy of conformers, dipole moments, reactivities, etc.
 - \rightarrow Density functional theory (DFT)
- Kohn-Sham scheme [2]

Map electron density on effective one-particle orbitals

$$n(r) \Longrightarrow \sum_{i} f_i |\phi_i|^2$$

Kohn-Sham DFT

- We want to determine all Φ_i such that
 - E[n] → min
 - H is consistent with Φ_i
- Approaches
 - Direct minimization
 - Self-consistent field method

Self-consistent field method

Self-consistent field method

7

Importance of the initial guess

- Different minima might exist, <u>qualitative</u> changes
- Example: Two different stable spin-states for O₂
- Common issue, e.g., for magnetic solids

Finding an initial guess

- Superposition of spheric atomic densities
 - Straightforward to implement
 - "Mostly sufficent", but can overemphasize symmetry
 - No density matrix / orbitial coefficients

Finding an initial guess

- Extended Hückel Theory [1]
 - Linear combination of atomic orbtials: $\phi_i = \sum_j c_{ij} \psi_j$
 - Hamiltonian:

 H_{ii} : parameterized valence ionization energies $H_{ij} = \frac{1}{2}KS_{ij} (H_{ii} + H_{jj}) [2,3]$

- Solve set of linear equations: $\sum_{i} [H_{ij} ES_{ij}]c_{ij} = 0$
- Improved flexibility, specific orbitals can be populated
- Random basis set coefficients
 - Backup method

Usually plane-waves only

[1] R. Hoffmann, J Chem. Phys (**1963**), 1397
 [2] R. S. Mulliken, J. Chem. Phys. (**1946**) 497
 [3] M. Wolfsberg and L. Helmholtz, J. Chem. Phys (**1952**), 837

Self-consistent field method

11

Naive Mixing – Good guess Naively take the newly calculated density: $n^{j+1} = n^j + \Delta n$ <u>Example:</u> H₂, d=1.5Å, projected in 1 dimension, PBE calculation

Naive Mixing – Bad guess Naively take the newly calculated density: $n^{j+1} = n^j + \Delta n$

Example: H₂, d=1.5Å, projected in 1 dimension, PBE calculation

Linear mixing

Damp oscillations by reducing steplength: $n^{j+1} = n^j + \alpha \Delta n$

Example: As previous, α=0.3

Linear mixing

Damp oscillations by reducing steplength: $n^{j+1} = n^j + \alpha \Delta n$

Example: As previous, α=0.8

Linear mixing

Damp oscillations by reducing steplength: $n^{j+1} = n^j + \alpha \Delta n$ <u>Example:</u> As previous, $\alpha = 0.03$

Pulay mixing [1]

Generate optimized input density: $n^{j+1} = n^{opt} + \alpha R[n^{opt}]$

- a.k.a. <u>Direct Inversion in Iterative Subspace</u> (DIIS) [1]
- Account for previous densities:

 $n^{opt} = \sum_{\mu=1}^{j} \beta^{(\mu)} n^{(\mu)}$, under the constrain that $\sum \beta = 1$

• Assuming linearity of residual ...

 $R[n^{opt}] = R[\sum_{\mu} \beta^{(\mu)} n^{\mu}] = \sum_{\mu} \beta^{\mu} R[n^{\mu}]$

 ... the residual is minimized and the new density is constructed

Preconditioning

- Potential during SCF deviates from correct potential, causes spurious "charge overshooting"
- Often pathological for surfaces, slab, thin films, etc.
- Solution: Make lpha depend on Δ n(r) $n^{j+1} = n^j + \hat{G} \Delta n$

– Kerker preconditioning [1]:
$$\hat{m{G}}=lpharac{
abla^2}{
abla^2+q_0^2}$$

Preconditioning

- Again, no *a priori* known ideal choice for q₀
- Reasonable values close to Thomas-Fermi screening constant

$$q_0 \approx \sqrt{\frac{4k_f}{\pi}}$$

Broadening of states

- $n = \sum_{i} f_i |\phi_i|^2 \qquad \qquad f = \Theta(\epsilon E_F)$
- Stepfunction: Discontinuity for bands crossing E_F
- Solution: Replace Θ by an approximate, smooth function

Broadening of states

[1] N. Mermin, Phys. Rev.137, A1441 (1965).
[2] C.-L. Fu, K.-H. Ho, Phys. Rev. B 28, 5480 (1983).
[3] M. Methfessel, A. Paxton, Phys. Rev. B 40, 3616 (1989).

Broadening of states

- Total energy now depends on σ, no longer variational
- Optimize free energy: $\Omega = E_{tot} \sigma S(\sigma)$
- Backextrapolation to $\sigma \rightarrow 0$
- S similar for different situations (absorption)

Cu (111) 5 layer slab Gaussian smearing PBE calculation 12x12x1 k-points

- Ground state electron density determined iteratively
- Initial guess needs initial thought, can change results qualiatively
- Density update by
 - Linear mixing (slow)
 - Pulay mixing

Convergence acceleration by

- Preconditioner
- Broadening of states

Structure optimization

Structure optimization

- Most electronic properties sensitive to geometry
- "Geometry determines function"

Global structure search

- Born-Oppenheimer energy surface can contain several minima
 - Constitution isomery
 - Configuration isomery
 - Conformation isomery
- System in equilibrium is given by ensemble average over all minima
- Often dominated by global minimum (but watch out for tautomers)

Global structure search

- Methods to find the global minimum:
- Stochastical or Monte-Carlo
- Molecular dynamics: Simulated annealing [1,2]
- Genetic algorithm [3]
- Diffusion methods [4]
- Experimental structure determination

Local structure optimization

- Once we have an reasonable guess, find closest minimum
- Different approaches possible:
 - Mapping of the potential energy surface
 - Requires a lot of calculations
 - Typically only for dynamics

Local stucture optimization

- Once we have an reasonable guess, find closest minimum
- Different approaches possible:
 - Mapping of the whole potential energy surface
 - Gradient free methods: e.g,. Simplex method [1]
 - Choose n+1 start points
 - Determine best and worst energy
 - Remove worst point
 - Project new point by reflection
 - Expand, contract, compress
 - Repeat until self-consistent

Local structure optimization

- Once we have an reasonable guess, find closest minimum
- Different approaches possible:
 - Mapping of the whole potential energy surface
 - Gradient free method: e.g., simplex
 - Gradient-based methods
 - Calculate gradient (a.k.a. "forces")

$$F = \frac{\delta E}{\delta R}$$

Search for minimum by following the gradient

$$\frac{\delta E}{\delta R} = \langle \Psi_0 | \frac{\delta \hat{H}}{\delta R} | \Psi_0 \rangle + \langle \frac{\delta \Psi_0}{\delta R} | \hat{H} | \Psi_0 \rangle + \langle \Psi_0 \rangle | \hat{H} | \frac{\delta \Psi_0}{\delta R} \rangle$$

Search for minimum by following the gradient

$$\frac{\delta E}{\delta R} = \left\langle \Psi_0 | \frac{\delta \hat{H}}{\delta R} | \Psi_0 \right\rangle + \left\langle \frac{\delta \Psi_0}{\delta R} | \hat{H} | \Psi_0 \right\rangle + \left\langle \Psi_0 \right\rangle | \hat{H} | \frac{\delta \Psi_0}{\delta R} \rangle$$

• affects only V^{nuc-nuc} and V^{e-nuc}

$$F_i^{Hellman-Feynman} = Z_i \sum_j \nabla R_i \frac{Z_j}{|R_i - R_j|} + \int d^3r \ n(r) \nabla R_i \frac{Z_i}{|R_i - r|}$$

Search for minimum by following the gradient

$$\frac{\delta E}{\delta R} = \langle \Psi_0 | \frac{\delta \hat{H}}{\delta R} | \Psi_0 \rangle + \langle \frac{\delta \Psi_0}{\delta R} | \hat{H} | \Psi_0 \rangle + \langle \Psi_0 \rangle | \hat{H} | \frac{\delta \Psi_0}{\delta R} \rangle$$

$$\frac{\delta\Psi_0}{\delta R} = \underbrace{\frac{\delta\Psi_0}{\delta c}}_{\delta c} + \frac{\delta\Psi_0}{\delta\phi} \frac{\delta\phi}{\delta R}$$

$$\nabla^{Pulay} = -2\sum_{i\sigma} \langle \frac{\delta\phi_{i\sigma}}{\delta R} | \hat{h} - \epsilon_{i\sigma} | \phi_{i\sigma} \rangle$$

- First term vanishes
- Second term survives for atom-centered basis functions

Search for minimum by following the gradient

$$\frac{\delta E}{\delta R} = \langle \Psi_0 | \frac{\delta \hat{H}}{\delta R} | \Psi_0 \rangle + \langle \frac{\delta \Psi_0}{\delta R} | \hat{H} | \Psi_0 \rangle + \langle \Psi_0 \rangle | \hat{H} | \frac{\delta \Psi_0}{\delta R} \rangle$$

- Additional contributions from atom-centered approximations
 - Multipole expansion
 - Relativistic corrections
 - (Integration grids)
- All straightforward but lengthy

Geometry update – Steepest descent

Follow negative gradient to find minimum

$$R^{n+1} = R^n - \alpha F(R^n)$$

- Steplength α variable
- Guaranteed but slow convergence
- Oscillates near minimum
- Not suitable for saddle points
- Improved versions exists

 Conjugated gradient [1]

(Quasi)Newton methods

Approximate PES by quadratic function

$$\begin{split} E(\Delta R) &\approx E(R_{Min}) + \frac{\delta E}{\delta R} \Delta R + \frac{1}{2} \frac{\delta^2 E}{\delta R^2} \Delta R^2 \\ F(R) & H \dots \text{ Hessian} \end{split}$$

- Find minimum: $\Delta R = H^{-1}F$
 - Newton: calculate exact H
 - Quasi-Newton: approximate H
 - Update as search progresses [1]

$$\tilde{H} \leftarrow \tilde{H} - \frac{\tilde{H} \Delta R (\tilde{H} \Delta R)^T}{\Delta R^T \tilde{H} \Delta R} - \frac{\Delta F \Delta F^T}{\Delta F^T \Delta R}$$

[1] J. Nocedal and S. J. Wright, "Numerical optimization" (Springer, 2006)

(Quasi)Newton methods

- Initial Hessian critical for performance
- Naive choice: Scaled unit matrix $\tilde{H} = \beta \overline{\mathbf{1}}$
- Improved version: Apply "penalties" on different kind of coordinates

$$\begin{split} \tilde{E} &= E + F\Delta R \\ &+ \sum_{ij} k_{ij} \ d_{ij}^2 \text{ Bond streching} \\ &+ \sum_{ijl} k_{ijl} \ a_{ijl}^2 \qquad \text{bending} \\ &+ \sum_{ijlm} k_{ijlm} \ \tau_{ijlm}^2 \quad \text{torsion} \\ &- \textit{k parameterized [1]} \end{split}$$

Effect of the Initial Hessian

Proper initialization leads to significant speed-up

(Quasi)Newton methods

- Soft degrees of freedom can cause large ΔR
- Step control needed: $\Delta R = \alpha H^{-1}F$
 - Line search method: If new point is worse than old, interpolate $E(\alpha) = E(R + \alpha \Delta R)$
 - Trust radius method
 - Enforce upper limit for ΔR
 - Evaluate quality of quadratic model

• Adjust ΔR_{max} based on q

Conclusions

- (Global optimization: PES feature-rich, methods to find global minima exist)
- Local geometry optimization: Follow gradient
 - Hellman-Feynman from moving potentials
 - Pulay from moving basis functions
 - + additional terms
- Quasi-Newton method *de-facto* standard
 - Require approximation and update of Hessian
 - Step control by line search or trust radius method

- Vibrations give important information about the system:
 - Classification of stationary point (minimum / saddle point)
 - If saddle-point: Provides search direction
 - Thermodynamic data
 - Zero-point energy
 - Partion sum
 - Finite temperature effects
 - Connection to experiment:
 - Infra-red intensities: derivative of dipole moment
 - Raman intensities: derivative of polarizability

Expand Energy in Taylor series:

Nuclear Displacement

20

0

Expand Energy in Taylor series:

- Solve Newtons equation of Motion: $F = M \Delta \ddot{R}$
 - Exponential ansatz: $\Delta R = u e^{i\omega t}$
 - Leads to generalized eigenvalue problem: $Hu = \omega^2 Mu$

- Negative ω: Transition state
- Large ω = large force constant, e.g., bond streching
 - Small ω : small force constant, e.g., out-of-plane vibrations

Free energy for finite temperature

$$F(T) = E_{min} + \sum_{\nu} \left(\frac{\hbar\omega}{2} + k_b T \ln[1 - e^{\frac{\hbar\omega}{k_B T}}] \right)$$

Partition sum

$$z_{vib} = \Pi_j \sum_{\nu} \exp\left(-\frac{\hbar\omega(\nu + \frac{1}{2})}{k_B T}\right)$$

- Hessian from geometry optimization not sufficent
 - Analytic second derivative using perturbation theory [1]
 - Numerical differentiation

Vibrations – beyond harmonic

- For high T or double-well minima
 - Molecular dynamics: Luca Ghiringhelli
- Re-introducting quantum nuclei:

- See talk by Roberto Car

Conclusions

- Often calculated in harmonic approximation
- Yield information about stability of geometry
- Required for temperature effects
- Anharmonic effects via molecular dynamics

Visualization

PBE: Electron density difference upon adsorption of p-bezoquinone on Li

Visualization

- Nuclear coordinates
- Electron distribution

- What else can we learn?
- How can we visualize results that are not just "numbers"

Format for visualization

- Codes use different types of basis functions and grids to store n / Ψ. No standard format to save information about custom grids
- Solution: Extrapolate and save quantities on evenly-spaced grids
 - Common format: cube [1]
 - Very memory intensive
- 3 examples:
 - Electron density
 - Orbtials
 - Scanning tunneling microcopy

Electron density

- Contains core and valence electrons
- Resolution typically not sufficient for QM-postprocessing
- Even electron counting can be challenging
- Can be used, e.g., for charge differences (ΔSCF)

Total density of neutral pentacene

Total density of the pentacene cation

△SCF density. Cyan are negative values

Orbitals

Valence orbtials contain "chemical information"

The LUMO of p-Benzoquinone exhibits nodes on the C=O double bond

- Eigenstate densities $n_i = |\psi_i|^2$
 - <u>tend</u> to agree well with Δ SCF

Pentacene HOMO density

ΔSCF density for electron removal Cyan: electron density reduced: Magenta: Increased

Scanning Tunneling Microscopy

- Scan over (x,y) and measure tunnel current
- 2 Modes:
 - Constant height
 - Constant current
- Tunnel current
 - Depends on energy (E) and tunnel matrix elements (M) of both tip (μ) and sample (ν)

$$I = \frac{2\pi e}{h} \sum_{\mu,\nu} f(E_{\nu}) [1 - f(E_{\nu} - eV) | M_{\mu\nu} |^2 \delta(E_{\mu} - E_{\nu})]$$

[1] OJ. Bardeen, Phys. Rev. Lett. 6, 57 (1961)[2] J. Tersoff, Phys. Rev. B 40 (1989) 11990.

Scanning Tunneling Microscopy

- Simulation by Tersoff-Hamann [1]
 - Neglect impact of tip
 - Assume single point-like atom at apex

$$I \approx \int_{E_f-V}^{E_f} \sum_{\nu} |\psi_{\nu}(r)|^2 \delta(\epsilon_{\nu} - E_F)$$

- Works only for s-type tips [2]
 - CO-functionlized tips probe gradient

Scanning Tunneling Microscopy

- Problem for adsorbate systems:
 - Point-like tip can penetrate layer
 - Resulting pictures too "crisp"
 - Solution:
 - Average over adjacent points
 - Model tip as extended object [1]

Experimental STM [2]

Simulated STM [1]

[1] G. Heimel et al., Surface Science 600 (2006) 4548–4562 [2] W. Azzam et al., Langmuir 19 (2003) 4958.

Conclusion

- Electronic Schrödinger equation
 - Solved by direct minimization or self-consistent field method
 - Initial guess requires some thought
 - Mixer: Tradeoff between stability and time
 - Convergence accelleration: Preconditioner, Broadening
- Structure optimization
 - Evaluate energy gradients
 - Contribution from Hellman-Feynman and Pulay forces
 - Solution by (Quasi)Newton-Methods

Conclusion

- Vibrations
 - Information about stability of geometry
 - Characterization of thermodynamic properties
 - Allow to account for temperature effects
- Visualization
 - Fields saved on regular grid
 - Helpful for direction connection with experiment, e.g.:
 - Scanning tunneling microscopy

Thank you for your attention