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Solving the Schrodinger equation

HU = E¥, with
V= \Ij({RN’U,C}J {Teleca Oelec})
H = TNuc + v Nuc—Nuc 1+ Te + yNuc—e 1+ yve—e

* Full many body solution typically not attainable

* - Born-Oppenheimer Approximation
He &, = E¢®,,, with
I:Ie — Te e \A/e—Nuc e \A/e—e

— Assumption: electrons are in an eigenstate of H®
— Separation of nuclear and electronic coordinates



Outline

* Solving the electronic part

— Self-consistent field method

— Achieving and accelerating convergence
* Structure optimization

— (Global structure optimization)

— Local structure optimization

— Vibrations
* What can we learn from this?

— Visualization



Where are the electrons?

* All ground state properties related to electron
distribution [1] ®(rq,79,...,7N) < n(r)

— Relative energy of conformers, dipole moments, reactivities,
etc.

— =2 Density functional theory (DFT)

 Kohn-Sham scheme [2]

— Map electron density on effective one-particle orbitals

n(r) =3, fildi|*

[1] P. Hohenberg, W. Kohn, Phys Rev. (1964), B864
[2]: W. Kohn, L.J. Sham, Phys. Rev. (1965), A1133



Kohn-Sham DFT

/
(%VQ + f ‘:'(T ) dr’ + Ve + Ve:ct) Pi = €;P;

_fr/‘

Te \A/’e—e, depends on n = Zf,, ‘¢@|2

* We want to determine all @, such that
* E[n] 2 min
* His consistent with O,

* Approaches
e Direct minimization
e Self-consistent field method



Self-consistent field method

Initial guess n®

. Calculate initial potential
e.g. density

Ve

Update potential Construct Hamiltonian

Obtain new eigenvalues,
ni*l= ni+f(An) eigenvectors, and density

ni

Update density /

density matrix Converged?

(mixer, preconditioner)

Yes

Finished



Self-consistent field method

Guess initial density Calculate initial potential

Vo

Update potential Construct Hamiltonian

Obtain new eigenvalues,
ni*1= ni+f(An) eigenvectors, and density

ni

Update density /

density matrix Converged?

(mixer, preconditioner)

Yes

Finished



Importance of the initial guess

* Different minima might exist, gualitative changes
* Example: Two different stable spin-states for O,
« Common issue, e.g., for magnetic solids

Hartree-Fock total energy of 02
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Finding an initial guess

* Superposition of spheric atomic densities
— Straightforward to implement
— ,Mostly sufficent”, but can overemphasize symmetry
— No density matrix / orbitial coefficients

o




Finding an initial guess

» Extended Hiickel Theory [1]

— Linear combination of atomic orbtials: ¢: = )_, ci;¥;

— Hamiltonian:
H,;: parameterized valence ionization energies
Hij; = 5K Sij (Hyi + Hy;) [2,3]

— Solve set of linear equations: >_i[Hij — ESi;]cij =0

— Improved flexibility, specific orbitals can be populated

« Random basis set coefficients
— Backup method
— Usually plane-waves only

[1] R. Hoffmann, J Chem. Phys (1963), 1397
[2] R. S. Mulliken, J. Chem. Phys. (1946) 497
[3] M. Wolfsberg and L. Helmholtz, J. Chem. Phys (1952), 837



Self-consistent field method

Guess initial density Calculate initial potential

Vo

Update potential Construct Hamiltonian

Obtain new eigenvalues,
ni*1= ni+f(An) eigenvectors, and density

ni

Update density, etc. Mo
pdate density, etc Converged?

(mixer, preconditioner)

Yes

Finished
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Naive Mixing — Good guess
Naively take the newly calculated density: n " —nl 4 An

Example: H,, d=1.5A, projected in 1 dimension, PBE calculation

Starting Guess

1:8¢ k

0.5 f

Electron density difference (e/A)

Position (A)




Naive Mixing — Bad guess
Naively take the newly calculated density: n " —nl 4+ An

Example: H,, d=1.5A, projected in 1 dimension, PBE calculation

Starting Guess

A

Bistable solution:

Total energy and sum of eigenvalues appear converged

Position (A) 13




Linear mixing
Damp oscillations by reducing steplength: n'™ =n! + aAn
Example: As previous, a=0.3

! Starting Guess

18

0.5 f

Electron density difference (e/A)

Position (A)




Linear mixing
Damp oscillations by reducing steplength: n'™ =n’! + @An
Example: As previous, a=0.8

F Starting Guess

15

0.5 f

Electron density difference (e/A)

Position (A)




Linear mixing
Damp oscillations by reducing steplength: n'*" =n! + aAn
Example: As previous, a=0.03

Starting Guess

Ideal choice system dependant

No clear recipe to choose ideal a

Position (A) 16




Pulay mixing [1]

Generate optimized input density: 7n/T! = n°P! 4 aR[n°P)
* a.k.a. Direct Inversion in lterative Subspace (DIIS) [1]

* Account for previous densities:

noPt — Z;l B n(#) under the constrain that Y 8 =1

* Assuming linearity of residual ...
R[n°P] = Ry, fWn#] = 3 B#R[n#]

* ... the residual is minimized and the new density is
constructed

[1] P. Pulay, Chem. Phys. Lett. 73, 393 (1980).



Preconditioning

* Potential during SCF deviates from correct potential,
causes spurious ,,charge overshooting“

e Often pathological for surfaces, slab, thin films, etc.
« Solution: Make a depend on An(r) /! = ni + GAn

. A \e
— Kerker preconditioning [1]: G = Aor 2 e

[1] G. Kerker, Phys. Rev. B 23, 3082 (1981).



Preconditioning

8 layer Al slab, PBE calculation

e L T :
14
] No Preconditioner
c 013
<]
0.01+
1E3:——"1T""""-""""""""""""""""""
0 2 4 6 8 10 12 14 16
Iteration

* Again, no a priori known ideal choice for q,

* Reasonable values close to Thomas-Fermi screening constant

~ ] 4ky
qo ~ £/ —



Broadening of states

n=3, filg:? f = 6(c — Ep)

 Stepfunction: Discontinuity for bands crossing E;

e Solution: Replace © by an approximate, smooth
function



Broadening of states
n=>, f(Er — &)V f(z) = ©(—z)
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f(x) = (e:cp(% + 1))_1 Fermi [1]
1
f(z) = gerfe (%) Gaussian [2]

T

1 X n z\?
f(z) = 5erfc (;) + D m AmHapr 41 X o P (;) Methfessel-Paxton [3]

[1] N. Mermin, Phys. Rev.137 , A1441 (1965).
[2] C.-L. Fu, K.-H. Ho, Phys. Rev. B 28, 5480 (1983).
[3] M. Methfessel, A. Paxton, Phys. Rev. B 40, 3616 (1989).



Broadening of states

Total energy now depends on o, no longer
variational

Optimize free energy: ) = F;,; — oS (o)
Backextrapolation toc 2 0
S similar for different situations (absorption)

Total energy uncorrected i

Cu (111)
5 layer slab
Gaussian smearing

PBE calculation
12x12x1 k-points

Relative Energy (meV)
) o I\ A

| |
(o)] B
1 ) 1 L




Summary SCF

Ground state electron density determined
iteratively

Initial guess needs initial thought, can change
results qualiatively

Density update by
— Linear mixing (slow)
— Pulay mixing

Convergence acceleration by
— Preconditioner
— Broadening of states



Structure optimization




Structure optimization

* Most electronic properties sensitive to geometry

 ,Geometry determines function“




Global structure search

* Born-Oppenheimer energy surface can contain

O —_
o=
H

several minima

— Constitution isomery
— Configuration isomery
— Conformation isomery

* System in equilibrium is
given by ensemble average
over all minima

* Often dominated by global
minimum (but watch out for
tautomers)

H




Global structure search
* Methods to find the global minimum:

* Stochastical or Monte-Carlo

* Molecular dynamics: Simulated annealing [1,2]
* Genetic algorithm [3]

» Diffusion methods [4]

* Experimental structure determination

[1]: S. Kirkpatrick, et al., Science, (1983), 671

[2]: S.R. Wilson and W. Cui, Biopolymers (1990), 225

[3]: R.S. Judson, Rev. Comput Chem., (1997), 1

[4] J. Konstrowicki, H. A. Scheraga, J Phys. Chem. (1992), 7442



Local structure optimization

* Once we have an reasonable guess, find closest minimum

» Different approaches possible:

— Mapping of the potential energy surface
* Requires a lot of calculations

* Typically only for dynamics 1701
1.65
1.60
_ 155
dcco < 150
© 1.40
135
1.30-:
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Local stucture optimization

* Once we have an reasonable guess, find closest minimum

* Different approaches possible:
— Mapping of the whole potential energy surface
— Gradient free methods: e.g,. Simplex method [1]

* Choose n+1 start points 1701
1.654
* Determine best and worst energy 1601
* Remove worst point = ::
*  Project new point by reflection O 1451

i point by Qi NS

* Expand, contract, compress o] W
* Repeat until self-consistent 1.30

I 9|5 | ‘I(I)O I 1[|)5 | 1‘i0 | 1%5 ' 12|0 I 1é5 | 1C">0 | 15’)5
(o]
acco (°)

[1]: J. Nelder and R. Mead, Comp J (1965), 308



Local structure optimization

* Once we have an reasonable guess, find closest minimum

» Different approaches possible:
— Mapping of the whole potential energy surface
— Gradient free method: e.g., simplex

— Gradient-based methods
» Calculate gradient (a.k.a. ,,forces“)

SE
F=—
R

Energy

|||||||||||||||||




Total energy gradient

* Search for minimum by following the gradient

oF oW
oR

oV

(‘I’0| |‘I’0) < |H|‘I’0> (‘I’0>’H|

7/




Total energy gradient

* Search for minimum by following the gradient
oW,

/\

oF oW

SR (‘I’0| |‘I’0) < |H|‘I’0> (‘I’0>’H| >
. affects only Vnucnuc gngd \e-nuc

Hellman—Feynman __ r7 . Z 3 _ Zz
F; y _Z%ZjVRqR R3|+fd rn )VRZ—|RZ-—7“]

v'w




Total energy gradient

* Search for minimum by following the gradient

O = (Wl O W) + @w (W) | H1°2)

oWy AU oWy oo * First term vanishes

ot "a 2L » Second term survives for
ula 0Pic 3 - -
FPulay — _9 Zza( | — tio|dio) atom-centered basis

functions

v'w




Total energy gradient

* Search for minimum by following the gradient

§FE H 50, oW, >

SR (‘I’o\ |‘I’0> < |H\‘I’0> (‘POHH\

* Additional contributions from atom-centered
approximations
— Multipole expansion
— Relativistic corrections
— (Integration grids)

* All straightforward but lengthy



Geometry update - Steepest descent

* Follow negative gradient to find minimum

Rl = R™ — aF (R™)
* Steplength a variable

* Guaranteed but slow convergence

e QOscillates near minimum o5
* Not suitable for saddle points |< 1222;
Q 1.454

* Improved versions exists
— Conjugated gradient [1]

95 100 105 110 115 120 125 130 135

acco (0)

[1] M. Hestenes, E. Stiefel (1952). "Methods of Conjugate Gradients for Solving Linear Systems"



(Quasi)Newton methods

* Approximate PES by quadratic function
oK 16%E

E(AR) ~ E(Ryin) + — AR+ = — AR?
(BR) =~ B Rain) SR, 20R?
F(R) H ... Hessian
e Find minimum: AR=H 'F | o

— Newton: calculate exact H = :-:é
— Quasi-Newton: approximate H |5

* Update as search progresses [1] 1.35
e e - IzIAR(E[AR)T . AFAFT o 95 100 105 110 115 120 125 130 135
S ARTHAR AFTAR acco (°)

[1] J. Nocedal and S. J. Wright, “Numerical optimization” (Springer, 2006)



(Quasi)Newton methods

* |nitial Hessian critical for performance
* Naive choice: Scaled unit matrix H = (51

* Improved version: Apply ,,penalties“ on different kind of
coordinates

" 1.70
FE=FE+FAR o)
]2 : 55

+ > ;i kij di; Bond streching 21

o2 2 Q 1.45]

2 . 1.35-

+ Zzglm kzglm Tfijlm torsion 1.30

95 100 105 110 115 120 125 130 135

— k parameterized [1] 2cco ()

[1] R. Lindh et al. , Chem. Phys. Lett. 241, 423 (1995).



Effect of the Initial Hessian

Proper initialization leads to significant speed-up

0.1+

0.014

AE (eV)

1E-3 -

1E-4

0 2 4 6 8 10 12 14 16 18 20
Ilteration




(Quasi)Newton methods

* Soft degrees of freedom can cause large AR

e Step control needed: AR=ao H'F

— Line search method: If new point is worse than old, interpolate
FE(a) = E(R+ aAR)

1.704
1.65—:
— Trust radius method e
* Enforce upper limit for AR % 150
1.45 -
« Evaluate quality of quadratic model | 1«
_ Etrue :22
q Ee;f;pected I 9|5 I‘I(I)OI1(|)5‘1“IO‘1%5'12|0I1é5‘15’>0‘12|’>5
o
* Adjust AR, _, based on q acco (°)

[1] R. Lindh et al. , Chem. Phys. Lett. 241, 423 (1995).



Conclusions

* (Global optimization: PES feature-rich, methods to
find global minima exist)

* Local geometry optimization: Follow gradient
— Hellman-Feynman from moving potentials
— Pulay from moving basis functions
— + additional terms

* Quasi-Newton method de-facto standard
— Require approximation and update of Hessian
— Step control by line search or trust radius method






Vibrations

* Vibrations give important information about the
system:
— Classification of stationary point (minimum / saddle point)
— If saddle-point: Provides search direction

— Thermodynamic data
* Zero-point energy
* Partion sum
* Finite temperature effects

— Connection to experiment:
* Infra-red intensities: derivative of dipole moment
 Raman intensities: derivative of polarizabilty



Vibrations

* Expand Energy in Taylor series:

E-E, (mH)

60 -

40

20 -

Nuclear Displacement

Vanishes for R,



Vibrations

* Expand Energy in Taylor series:

Hessian H

Nuclear Displacement




Vibrations

* Solve Newtons equation of Motion: F = MAR

— Exponential ansatz:

AR = ue™w?

— Leads to generalized eigenvalue problem: Hu = w?Mu

Vibration I

7

=

Vibration |

Negative w: Transition state

Large w = large force
constant, e.g., bond
streching

Small w : small force
constant, e.g., out-of-plane
vibrations



Vibrations

* Free energy for finite temperature

F(T) = Epin + 3, (%w + kpTn[1 — e%—“%])

 Partition sum

hw(v + 1
Zuib — Hj Zu exp (— ]({BT 2))

* Hessian from geometry optimization not sufficent
— Analytic second derivative using perturbation theory [1]
— Numerical differentiation

[1] S. Baroni et al., Rev. Mod. Phys. 73, 515 (2001).



Vibrations — beyond harmonic

* For high T or double-well minima
— Molecular dynamics: Luca Ghiringhelli

* Re-introducting quantum nuclei:
— See talk by Roberto Car

1401.1.1,1.1....11..,,

1204
100
80
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40
20
0;

E-E, (mH)

Nuclear displacement




Conclusions

Often calculated in harmonic approximation
Yield information about stability of geometry
Required for temperature effects

Anharmonic effects via molecular dynamics



Visualization

to *’Q 80 60 60
N4

;O s\> ;0 ;0 sO

/t°¢ﬁ &&

PBE: Electron density difference upon adsorption of p-bezoquinone on Li




Visualization

Nuclear coordinates

Electron distributio%

What else can we learn?

How can we visualize results that are not just
,humbers“



Format for visualization

* Codes use different types of basis functions and grids to store
n / Y. No standard format to save information about custom
grids

* Solution: Extrapolate and save quantities on evenly-spaced

grids 100!
— Common format: cube [1] (e
— Very memory intensive o
= 0.50
(T
> 1
* 3 examples: 0.25 |
— Electron denSity 0.00 ——— : | — — |
. 1 2 3 4 5 6 7 8 9 10
— Orbtials Grid point

— Scanning tunneling microcopy

[1] P. Bourke http://paulbourke.net/dataformats/cube/



Electron density

* Contains core and valence electrons

* Resolution typically not sufficient for QM-postprocessing
* Even electron counting can be challenging

* Can be used, e.g., for charge differences (ASCF)

Total density of neutral pentacene Total density of the pentacene cation

£

ASCF density. Cyan are negative values



Orbitals

» Valence orbtials contain ,,chemical information“

The LUMO of p-Benzoquinone exhibits
nodes on the C=0 double bond

* Eigenstate densities n; = [¢;]?
— tend to agree well with ASCF

LR

Pentacene HOMO density ASCF density for electron removal
Cyan: electron density reduced: Magenta: Increased



Scanning Tunneling Microscopy

* Scan over (x,y) and measure tunnel current

« 2 Modes:

— Constant height
— Constant current

 Tunnel current

* Depends on energy (E) and tunnel
matrix elements (M) of both tip (u)
and sample (v)

I=25  f(E)L - (B, - eV)|Mu*5(E, - E,)

[1] OJ. Bardeen, Phys. Rev. Lett. 6, 57 (1961)
[2] J. Tersoff, Phys. Rev. B 40 (1989) 11990.




Scanning Tunneling Microscopy

» Simulation by Tersoff-Hamann [1]
— Neglect impact of tip
— Assume single point-like atom at apex

1% [y £ 1(r)P3(er — Er)

E,-V

-1
E-EF (eV)

* Works only for s-type tips [2]
* CO-functionlized tips probe gradient | \

[1] J. Tersoff, Phys. Rev. B 40 (1989) 11990.
[2] L. Gross et al, Phys. Rev. Lett. (2011), 086101



Scanning Tunneling Microscopy

* Problem for adsorbate systems: I 1
* Point-like tip can penetrate layer ",
* Resulting pictures too ,crisp“
* Solution:

* Average over adjacent points

* Model tip as extended object [1]
. | @ & > y
Experimental STM [2] Simulated STM [1] X
[1] G. Heimel et al., Surface Science 600 (2006) 4548—-4562 56

[2] W. Azzam et al., Langmuir 19 (2003) 4958.



Conclusion

* Electronic Schrodinger equation

— Solved by direct minimization or self-consistent field
method

— Initial guess requires some thought
— Mixer: Tradeoff between stability and time
— Convergence accelleration: Preconditioner, Broadening

e Structure optimization
— Evaluate energy gradients

— Contribution from Hellman-Feynman and Pulay forces
— Solution by (Quasi)Newton-Methods



Conclusion

* Vibrations
— Information about stability of geometry
— Characterization of thermodynamic properties
— Allow to account for temperature effects

* Visualization
— Fields saved on regular grid

— Helpful for direction connection with experiment, e.g.:
* Scanning tunneling microscopy



Thank you for your
attention



