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Solving the Schrödinger equation 
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• Full many body solution typically not attainable 
 

•  Born-Oppenheimer Approximation 

 

 

 

– Assumption: electrons are in an eigenstate of He 

– Separation of nuclear and electronic coordinates 



Outline 

• Solving the electronic part 

– Self-consistent field method 

– Achieving and accelerating convergence 

• Structure optimization 

– (Global structure optimization) 

– Local structure optimization 

– Vibrations 

• What can we learn from this? 

– Visualization 
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Where are the electrons? 

• All ground state properties related to electron 
distribution [1] 
 

– Relative energy of conformers, dipole moments, reactivities, 
etc.  

–  Density functional theory (DFT) 

 

• Kohn-Sham scheme [2] 
 

– Map electron density on effective one-particle orbitals 
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[1] P. Hohenberg, W. Kohn, Phys Rev. (1964), B864 

[2]: W. Kohn, L.J. Sham, Phys. Rev. (1965), A1133  



Kohn-Sham DFT 
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 • We want to determine all Φi such that 

• E[n]  min 

• H is consistent with Φi 
 

• Approaches 
• Direct minimization 

• Self-consistent field method 
 



 
 
 

6 

Initial guess 
e.g. density 

Calculate initial potential 

Construct Hamiltonian 

Obtain new eigenvalues, 
eigenvectors, and density 

Converged? 
Update density /  

density matrix  
(mixer, preconditioner) 

Update potential 

Finished 

Yes 

No 

n0 

V0 

nj 

nj+1= nj+f(Δn) 

Vj+1 

Self-consistent field method 



Self-consistent field method 
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Guess initial density Calculate initial potential 

Construct Hamiltonian 

Obtain new eigenvalues, 
eigenvectors, and density 

Converged? 
Update density / 

density matrix 
(mixer, preconditioner) 

Update potential 

Finished 

Yes 

No 

n0 

V0 

nj 

nj+1= nj+f(Δn) 

Vj+1 



Importance of the initial guess 
• Different minima might exist, qualitative changes 

• Example: Two different stable spin-states for O2 

• Common issue, e.g., for magnetic solids 

3O2 1O2 

1O2 

3O2 



Finding an initial guess 

• Superposition of spheric atomic densities 

– Straightforward to implement 

– „Mostly sufficent“, but can overemphasize symmetry 

– No density matrix / orbitial coefficients 
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Finding an initial guess 

• Extended Hückel Theory [1] 
– Linear combination of atomic orbtials: 

– Hamiltonian:  

 

 
– Solve set of linear equations:  

– Improved flexibility, specific orbitals can be populated 

 

• Random basis set coefficients 
– Backup method 

– Usually plane-waves only 
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[1] R. Hoffmann, J Chem. Phys (1963), 1397 
[2] R. S. Mulliken, J.  Chem.  Phys. (1946) 497 
[3] M. Wolfsberg  and L. Helmholtz,  J.  Chem.  Phys (1952), 837  



Self-consistent field method 
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Guess initial density Calculate initial potential 

Construct Hamiltonian 

Obtain new eigenvalues, 
eigenvectors, and density 

Converged? 
Update density, etc. 

(mixer, preconditioner) 

Update potential 

Finished 

Yes 

No 

n0 

V0 

nj 

nj+1= nj+f(Δn) 

Vj+1 



Naive Mixing – Good guess 
Naively take the newly calculated density: 
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nnn jj 1

Example: H2, d=1.5Å, projected in 1 dimension, PBE calculation 



Naive Mixing – Bad guess 
Naively take the newly calculated density: 
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nnn jj 1

Example: H2, d=1.5Å, projected in 1 dimension, PBE calculation 

Bistable solution:  
Total energy and sum of eigenvalues appear converged 



Linear mixing 
Damp oscillations by reducing steplength: 
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nnn jj  1

Example: As previous, α=0.3 



Linear mixing 
Damp oscillations by reducing steplength: 
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nnn jj  1

Example: As previous, α=0.8 



Linear mixing 
Damp oscillations by reducing steplength: 
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nnn jj  1

Example: As previous, α=0.03 

Ideal choice system dependant 

No clear recipe to choose ideal α 



Pulay mixing [1] 
Generate optimized input density: 
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[1] P. Pulay, Chem. Phys. Lett. 73 , 393 (1980). 

• a.k.a. Direct Inversion in Iterative Subspace (DIIS) [1] 
 

• Account for previous densities: 

 
 

• Assuming linearity of residual ... 

 
 

• ... the residual is minimized and the new density is 
constructed 



Preconditioning 

• Potential during SCF deviates from correct potential, 
causes spurious „charge overshooting“ 

 

• Often pathological for surfaces, slab, thin films, etc. 

 

• Solution: Make α depend on Δn(r) 

 

– Kerker preconditioning [1]:  
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[1] G. Kerker, Phys. Rev. B 23 , 3082 (1981). 



Preconditioning 
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• Again, no a priori known  ideal choice for q0 
 

• Reasonable values close to Thomas-Fermi screening constant 

 

8 layer Al slab, PBE calculation 



Broadening of states 

• Stepfunction: Discontinuity for bands crossing EF 

 

• Solution: Replace Θ by an approximate, smooth 
function 
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Broadening of states 

Methfessel-Paxton [3] 

[1] N. Mermin, Phys. Rev.137 , A1441 (1965). 
[2] C.-L. Fu, K.-H. Ho, Phys. Rev. B 28 , 5480 (1983). 
[3] M. Methfessel, A. Paxton, Phys. Rev. B 40 , 3616 (1989). 

Gaussian [2]  

Fermi [1] 



Broadening of states 

• Total energy now depends on σ, no longer 
variational 

• Optimize free energy: 

• Backextrapolation to σ  0 

• S similar for different situations (absorption) 
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Cu (111) 
     5 layer slab 
     Gaussian smearing 
     PBE calculation 
     12x12x1 k-points 



Summary SCF 

• Ground state electron density determined 
iteratively 
 

• Initial guess needs initial thought, can change 
results qualiatively 
 

• Density update by 
– Linear mixing (slow) 

– Pulay mixing  
 

• Convergence acceleration by  
– Preconditioner 

– Broadening of states 
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Structure optimization 
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Structure optimization 

• Most electronic properties sensitive to geometry 

 

•  „Geometry determines function“ 
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Global structure search 

• Born-Oppenheimer energy surface can contain 
several minima 

– Constitution isomery 

– Configuration isomery 

– Conformation isomery 
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• System in equilibrium is 
given by ensemble average 
over all minima 
 

• Often dominated by global 
minimum (but watch out for 
tautomers) 



Global structure search 

• Methods to find the global minimum: 

 

• Stochastical or Monte-Carlo  

• Molecular dynamics: Simulated annealing [1,2] 

• Genetic algorithm [3] 

• Diffusion methods [4] 

• Experimental structure determination 
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[1]: S. Kirkpatrick, et  al.,  Science, (1983), 671 
[2]: S.R. Wilson and W. Cui, Biopolymers (1990), 225 
[3]: R.S. Judson, Rev. Comput Chem., (1997), 1 
[4]  J. Konstrowicki, H. A. Scheraga, J Phys. Chem. (1992),  7442 



Local structure optimization 
• Once we have an reasonable guess, find closest minimum 

 

• Different approaches possible: 

– Mapping of the potential energy surface 
• Requires a lot of calculations 

• Typically only for dynamics 
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dCC 

aCCO 



Local stucture optimization 
• Once we have an reasonable guess, find closest minimum 

 

• Different approaches possible: 

– Mapping of the whole potential energy surface 

– Gradient free methods: e.g,. Simplex method [1] 
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• Choose n+1 start points 

• Determine best and worst energy 

• Remove worst point 

• Project new point by reflection 

• Expand, contract, compress 

• Repeat until self-consistent 

[1]: J. Nelder and R. Mead, Comp J (1965), 308  



Local structure optimization 
• Once we have an reasonable guess, find closest minimum 

 

• Different approaches possible: 

– Mapping of the whole potential energy surface 

– Gradient free method: e.g., simplex 

– Gradient-based methods 
• Calculate gradient (a.k.a. „forces“) 
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Total energy gradient 

• Search for minimum by following the gradient 
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Total energy gradient 

• Search for minimum by following the gradient 

 

 

•          affects only Vnuc-nuc and Ve-nuc 
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Total energy gradient 

• Search for minimum by following the gradient 
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• First term vanishes 
 

• Second term survives for 
atom-centered basis 
functions 
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Total energy gradient 

• Search for minimum by following the gradient 

 

 
 

• Additional contributions from atom-centered 
approximations 

– Multipole expansion 

– Relativistic corrections  

– (Integration grids) 
 

• All straightforward but lengthy 
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Geometry update – Steepest descent 

• Follow negative gradient to find minimum 

 
 

• Steplength α variable 
 

• Guaranteed but slow convergence 
 

• Oscillates near minimum 
 

• Not suitable for saddle points 
 

 

• Improved versions exists 
– Conjugated gradient [1] 
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[1] M. Hestenes, E. Stiefel (1952). "Methods of Conjugate Gradients for Solving Linear Systems" 



(Quasi)Newton methods 

• Approximate PES by quadratic function 

 

 

 
 

• Find minimum: 

– Newton: calculate exact H 

– Quasi-Newton: approximate H 
• Update as search progresses [1] 
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... Hessian 

[1] J. Nocedal and S. J. Wright, “Numerical optimization” (Springer, 2006) 



(Quasi)Newton methods 

• Initial Hessian critical for performance 
 

• Naive choice: Scaled unit matrix 
 

• Improved version: Apply „penalties“ on different kind of 
coordinates 

 

 

 

 
 

– k parameterized [1] 

 
 

37 
[1] R. Lindh et al. , Chem. Phys. Lett. 241 , 423 (1995). 

Bond streching 

bending 

torsion 



Effect of the Initial Hessian 
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Proper initialization leads to significant speed-up  

 

 

 
 



(Quasi)Newton methods 

• Soft degrees of freedom can cause large ΔR 

 

• Step control needed: 

– Line search method: If new point is worse than old, interpolate 
 

 

– Trust radius method 
• Enforce upper limit for ΔR 

• Evaluate quality of quadratic model 

 

 

• Adjust ΔRmax based on q 
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[1] R. Lindh et al. , Chem. Phys. Lett. 241 , 423 (1995). 



Conclusions 

• (Global optimization: PES feature-rich, methods to 
find global minima exist) 
 

• Local geometry optimization: Follow gradient 

– Hellman-Feynman from moving potentials 

– Pulay from moving basis functions 

– + additional terms 
 

• Quasi-Newton method de-facto standard 

– Require approximation and update of Hessian 

– Step control by line search or trust radius method 
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Vibrations 
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Vibrations 

• Vibrations give important information about the 
system: 

– Classification of stationary point (minimum  / saddle point) 

– If saddle-point: Provides search direction 

– Thermodynamic data 
• Zero-point energy 

• Partion sum 

• Finite temperature effects 

– Connection to experiment: 
• Infra-red intensities: derivative of dipole moment 

• Raman intensities: derivative of polarizabilty 
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Vibrations 

• Expand Energy in Taylor series: 
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Vanishes for R0 



Vibrations 

• Expand Energy in Taylor series: 
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Hessian H 



Vibrations 

• Solve Newtons equation of Motion: 

– Exponential ansatz: 

– Leads to generalized eigenvalue problem:  
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• Negative ω: Transition state 

 

• Large ω = large force 
constant, e.g., bond 
streching 

 

• Small ω :  small force  
constant, e.g., out-of-plane 
vibrations 

 

 



Vibrations 

• Free energy for finite temperature 

 

 

• Partition sum  

 

 

• Hessian from geometry optimization not sufficent 

– Analytic second derivative using perturbation theory [1] 

– Numerical differentiation 
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[1] S. Baroni et al. , Rev. Mod. Phys. 73 , 515 (2001). 



Vibrations – beyond harmonic 
• For high T or double-well minima 

– Molecular dynamics: Luca Ghiringhelli 

• Re-introducting quantum nuclei: 

– See talk by Roberto Car 
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Conclusions 

• Often calculated in harmonic approximation 

 

• Yield information about stability of geometry 

 

• Required for temperature effects 

 

• Anharmonic effects via molecular dynamics 
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Visualization 
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PBE: Electron density difference upon adsorption of p-bezoquinone on Li 



Visualization 

• Nuclear coordinates 
 

• Electron distribution 

 

 

• What else can we learn?  
 

• How can we visualize results that are not just 
„numbers“ 
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• Codes use different types of basis functions and grids to store 
n / Ψ. No standard format to save information about custom 
grids 
 
 

• Solution: Extrapolate and save quantities on evenly-spaced 
grids 
– Common format: cube [1] 

– Very memory intensive 

 

• 3 examples: 
– Electron density 

– Orbtials 

– Scanning tunneling microcopy 

 

Format for visualization  

51 
[1] P. Bourke http://paulbourke.net/dataformats/cube/ 



Electron density 
• Contains core and valence electrons 

• Resolution typically not  sufficient for QM-postprocessing 

• Even electron counting can be challenging 

• Can be used, e.g.,  for charge differences (ΔSCF) 
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Total density of neutral pentacene Total density of the pentacene cation 

ΔSCF density. Cyan are negative values 



Orbitals 
• Valence orbtials contain „chemical information“ 

 

 

 

 

• Eigenstate densities 

– tend to agree well with ΔSCF 
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ΔSCF density for electron removal  
Cyan: electron density reduced: Magenta: Increased 

The LUMO of p-Benzoquinone exhibits 
nodes on the C=O double bond 

Pentacene HOMO density 



Scanning Tunneling Microscopy 

[1] OJ. Bardeen, Phys. Rev. Lett. 6, 57 (1961) 
[2] J. Tersoff, Phys. Rev. B 40 (1989) 11990. 

• Scan over (x,y) and measure tunnel current 
 

• 2 Modes:  

– Constant height 

– Constant current 

 • Tunnel current 

• Depends on energy (E) and tunnel 
matrix elements (M) of both tip (µ) 
and sample (ν) 



Scanning Tunneling Microscopy 

• Simulation by Tersoff-Hamann [1] 

– Neglect impact of tip 

– Assume single point-like atom at apex 

 

 

 

 

 

• Works only for s-type tips [2] 

• CO-functionlized tips probe gradient 

 

 

 

[1] J. Tersoff, Phys. Rev. B 40 (1989) 11990. 
[2]  L. Gross et al, Phys. Rev. Lett. (2011), 086101 

EF 

EF-V 



Scanning Tunneling Microscopy 
• Problem for adsorbate systems: 

• Point-like tip can penetrate layer 

• Resulting pictures too „crisp“ 

• Solution:  
• Average over adjacent points 

• Model tip as extended object [1] 

56 [1] G. Heimel et al., Surface Science 600 (2006) 4548–4562 
[2] W. Azzam et al., Langmuir 19 (2003) 4958. 
 

Experimental STM [2]  Simulated STM [1] 



Conclusion 

• Electronic Schrödinger equation 

– Solved by direct minimization or self-consistent field 
method 

– Initial guess requires some thought 

– Mixer: Tradeoff between stability and time 

– Convergence accelleration: Preconditioner, Broadening 

• Structure optimization 

– Evaluate energy gradients 

– Contribution from Hellman-Feynman and Pulay forces 

– Solution by (Quasi)Newton-Methods 
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Conclusion 

• Vibrations 

– Information about stability of geometry 

– Characterization of thermodynamic properties 

– Allow to account for temperature effects 

 

• Visualization 

– Fields saved on regular grid 

– Helpful for direction connection with experiment, e.g.: 
• Scanning tunneling microscopy 

58 



Thank you for your 
attention 
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