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éc'? Challenges in Theoretical Chemistry

Large (+extended) Systems:
Proteins, Nucleic Acids
Extended n-Systems

Solids + surfaces

» % %V

High Accuracy Needed
Chemical phenomena are
happening on a scale of relative
energies of ~1 kcal/mol

» Vv

Conformational Complexity
Multiple minima separated by
shallow barriers lead to a large
conformational space and dynamics

» Vv

» Relativistic effects
* Heavy atoms
* Advanced spectroscopies (EPR, XAS)

; ;J n-stacking » Excited states

- . > Intermolecular interactions
’ (including environment modeling)
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(o The Underlying Simplicity

Just 2 Laws:
1. Coulomb‘s Law
GD ——Q
4,4,

I _r2‘

47‘(’80

2. Kinetic Energy

( E=T +T,+V, +V, +V, )
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(S Approximate Methods
H(xR)¥(x,....x, | R) = BR)U(x, ...x, |R) |
(Hartree-FockJ(.................C..(.).ff ...............
& .
| Functional
e [ Theory
[Semi-Empiricaa (0 N\ N :
I Configuration Interaction | | Multireference
i | (Many Body Perturbation) Cl, PT, CC
[ Force Fields J : . Coupled Cluster JAN y

accuracy
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(c?{’ Wavefunction vs DFT Methods

¢ ¢, Reaction Energies _ ., Reaction Bariers Bond Distances
o 5 £ 35 =
= 3 a
5 4 < 39 :
L;é.l) ] :::_'n :5‘ EZ
5 2 € 154 D
11.,‘- & ) S £
?‘ I .I : 2 III :
O 14 w - u;l
c | < 051 . <
?f 0.l ) ) . . - 0.0
B & N &P R N L L AN «Q
N & S & §® P &
S Q¥ S Y Q &
QO @) G cj‘/ ‘;C/ ¥ (JC/ @ G (;Q’ ‘\C/ ¥
21 Reocion energies kom e G2 set: def2-QIVFP boss DSH24 Knolic fast 30t fom Tty del2QIVPP boss Specirascopic constants from 15 Giatomic molecules; cet2.QIVPP boss
7 o Harmonic Frequencies g o4/ H-bonded Dimers s  {Weak Interactions
3] = -
< 50 o 3
Q) N ;!'
% ~ =
% 40 - ‘E:? g 34
& 30 = C
Q ¢ 02 8 3.
s 5 =
[ 20 o~ 3
(] @ ©
- £ > 1 vy
£ 10 o €
= c w
< = -
< ol < 00/ . . s 04
O - Q 9 c,O \\ \\ Q’L N T T T T T
o 0% & & S N & & & S AP P ST A L. LG\
‘3 Q ) ) Q A Ne ) | N\ Vs N
Oo N« (\O S P I < S S < @ &.,0 & & & S s D
Spechoscopic constants from 15 dotomic malecules: def2-QIVPP bag ! neulrd ¢ 4 chorged H-bonded dmers. Bosse MortneKiopper.: Sel2-QIVPP bay 10 systervs #om e 522 teur set of Hobzo

FN, A. Hansen, F. Wennmohs, S.- Grimme (2009) Acc. Chem. Res. 42, 641

Freitag, 9. August 13



’ MO

e The Exact Energy

Exact Energy =

“Mean Field” Instantaneous electron-

Hartree-Fock electron interaction

Correlation energy= 15 z Sij(T )+ SI.I.(T 1)
W/ Flectron pars  permi-Correlation  Coulomb-correlation
/ 7

Relatively easy due to Extremely hard to

“Fermi hole” in the calculate due to
mean-field interelectronic cusp at
the coalescence point

r,=r
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(S Definition of the Correlation Energy

The Hartree-Fock model is characterized by:

v The use of a single Slater determinant which describes a system of N quasi-
independent electrons (independent particle or mean field model!)

v' The orbitals are optimized to achieve the lowest possible energies.

v' The method is variational. It provides an upper bound to the exact solution of the
Born-Oppenheimer hamiltonian (usually >99.7% of the exact nonrelativistic
energy is recovered): not good enough :-(

v The remaining energy error is called correlation error and arises from
winstantaneous® electron-electron interactions (as opposed to the mean-field
interaction present in HF theory).

v Thus, we define the correlation energy as (Lowdin):

E — E — E This definition is quite problematic
corr excact HF but is still the widely accepted one.
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ee-  Solving the Many Particle Schrodinger Equation

4 N
Basic idea of wavefunction based correlation methods:

multideterminantal Ansatz

- Y
Solving the many particle Schrodinger equation is then a trivial exercise:

~ R
Assume: complete set of N-electron expansion functions {®} available.

Ansatz: \IJ(Xl,...,XN):ZC[(I)](Xl,...,XN)

I
v H|W ‘C H
Variational principle:  E|U] = < A > _ ZIJ CI*CJ 1J
<\Ij ‘ \Ij> ZIJ CICJSIJ
Perform variation: HC = E£ESC

Lowest eigenvalue = exact ground state energy
\ /

First Problem: Where to get a complete many particle expansion basis from?
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(S Construction of the N-Particle Space

We can construct a complete (infinite) N-electron expansion set from the (presumed
exact!) solutions of the HF equations by replacing 1,2,...,N electrons in the HF Slater

determinant by virtual orbitals (so called excitations - not to be confused with actual
excited STATES)!

4 )
L i RG 1)2 Z i Aab 1)2 Z itk A abc .
v=C P, + ZC@CI)Z. +(3)7 0% +(3) C2.20 + ...+ (n— fold exc.)
1 1jab , \ ykabce ,
\ Singles Doutbles T ri;?les )

conventions:

i, j,k,l . internal (occupied) orbitals (occupied in the HF determinant)
a,b,c,d : external (virtual) orbitals (unoccupied in the HF determinant)
p,q,7r,S : general orbitals (occupied or unoccupied)

L,V,K,T : basis functions

Capital symbols : N-particle space

Lowercase symbols : 1-particle space

Freitag, 9. August 13 9
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Orbital Energy

C
b
a
gl
j }
i i

The Boliling ,,Electron Sea*“

-

|W>=‘\I'O>+;C:

I -y -l’ | ! I

’\/o‘ """ N/

‘PPZ kl||(d t* "

wﬁ>+

¥)+3>-Cl
ijab

v+ Ly o
ijkabc
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éc%@ Structure of the Full Cl Problem

Letuslookat: HC = ESC

In terms of our infinite set of excited determinants. First we recognize that since the
HF orbitals are assumed to be orthonormal we get S=1.

If we order the determinants according to excitation level 0, 1 (S), 2 (D), 3 (T), 4
(Q), ... Owing to Slater‘s rules, the structure of the Hamilton matrix is:

(

E, (0|H|S) (0|H|D) 0 0
(S|H|S) (0|H|D)  (S|H|T) 0
H = <D\]§HD> <D\ﬁ\T> <D]H\Q

Thus, the Hamiltonian has a nice block structure in the determinantal basis.

Freitag, 9. August 13
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(e Nesbet's and Brillouin’s Theorems

Start from the Schrddinger equation ﬁBO\If = EWV

Insert the expansion

0 HF T ZC (I)a Zczjq)ab ) o HF T ZC (I)a ZCUbCI)Zb )

ijab 1jab

Multiply with the HF function from the left:
Cy (e |y | @)+ 33 C7 (@ | iy | 87)+432C (@, | H | 2)

1jab v
E F (ifllab)

et

corr

F =h + Z<ZJ | a]> Matrix element of the HF operator

_ 1 ZCZJ <zj | ab> pair-correlation energy

<ZJ | &b> = <7,] | Clb> — <Z] | ba> — (ia | jb) — (ib | ja) antisymmetrized

two-electron integral.

Freitag, 9. August 13
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Wegst 3 CIE, +43 e, =C,E
ia ij

corr

However, if the orbitals really do satisfy the canonical HF equations

sz :giwi

then we see immediately by multiplying from the left with wa and integrating:

(0, | F |, )=

e, (¥, 14, )=0

Note: this does not imply that the coefficients on the single excitations in the exact wavefunction are zero! They are not zero for
HF orbitals. (there is a set of orbitals for which the singles coefficients are zero, the so called Brueckner orbitals).

Thus, for HF orbitals the matrix elements of the BO Hamiltonian with single excited
determinants is zero! (Brillouin‘s theorem)

Finally:

LN~ <z’j | ab>

1jab

— 1 —
2 Zgzj - CO Ecorr
Y

(Nesbet‘s theorem)

If we would know the precise values of the double excitation coefficients we
would know the EXACT correlation energy!

Freitag, 9. August 13
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v Too bad that we don‘t know the exact values of the double coefficients :-( since
each coefficient of a given excitation level directly depends on the coefficients of
the higher (up to 2 levels) and lower (up to two levels) excitation levels

(consequently all coefficients are indirectly dependent on each other!).

v The expansion is still infinite and therefore pretty academic! In practice all we
can do is of course to truncate the expansion by not using an infinite set of

orbitals but a finite one. Then the determinantal expansion also becomes finite.

Freitag, 9. August 13
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Correlation Energy

HF Energy

Deviation from Basis Set Limit

\_ J

v Then we do not obtain the exact correlation energy from the full-Cl but the basis

set correlation energy and hope that we can get to the basis set limit

v' In the Hartree-Fock theory that is not too hard. Unfortunately for Cl the correlation

energy converges very slowly with the basis set! (F12-methods, extrapolation)

Freitag, 9. August 13 15



e Size of the Full Cl Space

Let us determine how many terms we have in the expansion if we assume N

occupied and V=N-M (M=size of the basis) virtual HF orbitals at our disposal. For

excitation level n:

Number of ways to choose n out of N electrons to be excited: N
. )
( \
Number of ways to choose n out of V acceptor orbitals (virtual): V
. " " \ n )
Combine the two and sum over all excitation levels n up to N:
N N
M — N)!
v Fen=3 NV =y S|
) n=1 n nzln' )'n'(M N ) N

Using Stirling‘s formula: k!~ AN 27 + 1 exp(—k)

M w-ny( w )T Much!
e

N | NM-N)| N | |(M-N
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e Truncated Configuration Interaction

Nesbet's theorem implied a special role of the double excitations for the correlation problem
(and an analysis of many body perturbation theory would confirm that). Hence, one might
contemplate an Ansatz that only contains double excitations:

) = |2+ 122C0] 7))

1jab

The coefficients of the double excitations were estimated to first order as (MP2):

CZ)(D _ <Z‘7 H &b>

e +e —e& —¢€
a b 1 9

But what about calculating these coefficients variationally? — Configuration Interaction

( \( \ ( \

B H
HC=ESC—| = v || _p |
H H C, C,

0D DD )\

\

Large-dimensional eigenvalue problem — iterative solution (Davidson algorithm)

Freitag, 9. August 13 17
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(S Size Consistency

If we treat a supersystem consisting of non-interacting subsystems, we should obtain the
sum of the individual subsystem energies. Is that the case for CID?

<LPHI-' + lpmrr H-E HF

T (Wt W+,

corr corr

\{J)If'-+-\}l >

corr

Now, for localized orbitals, it is easy to show that the numerator gives:

<\IJHF _|_ \IJ | H | \IJHF —I— \chorr> — <\IJHF —|— \IJ(A) —I— \Ij(cfi’)r ’ H | \IJHF —|— \IJ(A) _|_ \Ij(cf:r> E()(A —|_ XB)

corr corr corr

For the denominator we have:
<\IJHF —I_ \chorr ‘ \IJHF —|_ \:[]corr>

.
1+Y,+7,)

| Y o4 X : : :
Hence: O p— T+ A, [I E_(A)+E | B)] Truncated Cl is NOT size consistent
1+Y, +7Y,

%(XA—FXB)

(and hence useless for chemistry)

L= (Y, +Y, +.

Freitag, 9. August 13 18
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e Analysis of Size Consistency in (Hz)2

For a single minimal basis H, molecule we found that the CID matrix was of the form:

P —
V A V:<\I!0]]£7\\IJD> L &
|
Grognd statg of the
With the lowest eigenvalue: ot e

B :l(A—\/N +4v2)

0 2

It is easy to show that for N noninteracting H2 molecules CID gives:

B = %(A—\/N +4NV2)

0

Which is not size consistent. We return to N=2 and study what is missing from CID.

Freitag, 9. August 13



Obviously, one step beyond CID is to include higher excitations. In the minimal basis
2x H, model system this would be a , simultaneous pair excitation® in which both

H,'s are put in their excited state.

c,— —o, _H__G GZ_—]-J—G; GZ_H_—H—G
%ﬂ— c ——H—GB GA—H——GB c,— —0,

‘DA> ‘DB> ‘Q>:‘DA+DB>

Matrix-elements:

<DA H DA> = <DB H DB> = <O H O> + A Diagonal doubles

<QFI Q> — <o‘ﬁ1 o> +2A Diagonal quadruple

<0 H DA> = <0 H DB> = < > =V Doubles/ground state

<0 H Q> =0 Quadruple/ground state

<DA )24 Q> _ <DB a4 Q> . Quadruple/doubles
=Doubles/ground state!

Freitag, 9. August 13 20



In order to solve the problem we form again the symmetry adapted linear
combination of the two doubles: ‘D>:L(IDA>+‘DB>)

2

The variational principle leads us then to the Cl matrix (the configurations are in the
order |0>, D>, |Q>):
0 v o

H=| o A ov

0 V2v 2A

\ /

The lowest root is (without proof; look in a formula collection or use a computer
algebra system):

E, =A—~N +417

":> This is twice the energy of a single H,. Thus, the inclusion of the
quadruple excitation restores the size consistency!

Furthermore:
A2 1
CQ = / C,= Cf)
E—-2A 2C,
%f_/
Cp/2C,

For noninteracting subsystems, the coefficients of the quadruples are
exactly products of doubles coefficients!

Freitag, 9. August 13
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/[ED

(S Conclusions and Generalization

We had 3 key results in studying the 2xH, problem:

1. Inclusion of the simultaneous pair excitation exactly restores the size consistency.

2. The product of the simultaneous pair excitation was exactly proportional to the square
of the coefficients of the double excitations (also follow from MBPT).

3. The matrix elements of the quadruple excitation with the doubles was equal to the

matrix elements of the doubles with the ground state. Both sets of determinants differ

by a double substitution from each other.

Now we want to generalize these findings and restart from the full-Cl equations.

Ansatz:
)=o) ) ]
xpD> LN <1>“b>
ijab
V)= Y O o)

yklabed

Freitag, 9. August 13 22



Insert into the Schrodinger equation and multiply from the left with the HF wavefunction
gives the energy expression:

H{( 4| 05) +] %)) = B ) +]95) +] %))

<\IJHF HE:EHF—l_E :EHF+<\IJHF|H‘\IJD>

corr

=By 4205 (i || ab)

1jab

Multiplication from the left with a double excitation (X is a compound label X=(ij,ab))
gives the amplitude equation:

(O | H W, ) 40 [ H W, )4+ (T, | H |0, = BC,

(iillab) doubles/doubles doubles/quadruples
Interaction Interaction

In order to break the full-Cl hierarchy we have to approximate the doubles/quadruples
interaction! Let us try to use the insights gained from the Hz-dimer

\IJD> — ZCXEX \IJHF>
> ZC CYEXEY

BIG approximation 1: ,,disconnected quadruples*

> (the E‘s are second quantized
He excitation operators)

Freitag, 9. August 13
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We then insert into the amplitude equation:

<\11D H | \IJQ> - g;cycz <pr |HE E, \\IJHF>
~ X;Cy <\11X | HE B, \foHF>

transfer

~C > C, <\IJHF | HE, | \I;HF> BIG approximation 2: Matrix element
Y

=036, (v, 1H|v,)C,E,,

Hence, we arrive at a key result (MANY treatments arrive just therel):

\ J \

(il

<\IJX|H|\IJHF>+<\IJX\H|@D>+<@X]H\QJQ>:ECX

(U | H W, )+ (V| H )+ B, C = C

corr X @ X
+F

EHF

(U, [H |, )+(V, | H|Y,)=E,C,

These are the CEPA/0O-equations. You would have arrived there upon neglect of the
normalization of the denominator in the Ritz functional as well ... or in many other
ways! They also look like CID equation shifted with a diagonal shifted by Ecorr

Freitag, 9. August 13
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(o Exclusion principle violating terms

We have been a bit too hasty in making one-specific simplification: we can only perform a
double excitation on top of another double excitation if the two double excitations are truly
L,disconnected” (share no orbital label). Hence, we have to repair that:

CX;CY <\IJHF | HEY | \IJHF> - X;OY <\IJHF | HEY | \IJHF> _CX;(CY <\IJHF | HEY | \IJHF>
OX Ecorr o Z CY <\DHF | HEY | \IJHF>]
C

YCX read: ,joint with®, e.qg.

— A(XEPV>) shares orbital labels

corr

The shifts are called ,Exclusion principle violating terms”.

Inserting into the full-Cl equations now gives us the celebrated ,Coupled Electron Pair”
(CEPA) equations:

(U [H |, )+ (T, |H|,)=(E, +A"")C

X

They are simply shifted Cl equations. Without proof, the best CEPA method is CEPA/1:

E

AEPV) _ A(EPV) _ ZE n :, i %Z<ZJ | ab>CZ

b
X zyab ¢ ]
Pair correlation energy £ = E £,
)

Freitag, 9. August 13 25



ACCOUNTS

of chemical research

Accurate Theoretical Chemistry with Coupled
Pair Models

FRANK NEESE,*t* ANDREAS HANSEN,¥ FRANK WENNMOHS,*
AND STEFAN GRIMMES

CEPA is beautiful

For the overwhelming majority of cases CEPA is within 1-2 kcal/mol of
CCSD(T) and systematically better than QCISD and CCSD.

Both are very close to experiment if large basis sets are used

Freitag, 9. August 13

26



égg@ Generalization of CEPA

In deriving CEPA we made two major approximations:
v Expressing the quadruples in terms of disconnected doubles amplitudes

v Expressing doubles/quadruples matrix elements in terms of pair correlation energies

The first approximation is physically sound, the second is mathematically sloppy. So let us
avoid the second approximation. This is most easily done by introducing the excitation

operators:

\Ijs> — q \IJHF>
\IJD> — é2 \IJHF>
¥,)~C,C, |, )

Freitag, 9. August 13
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«e-  Quadratic Configuration Interaction Equations

This Ansatz leads immediately to what we consider as the most proper CEPA version: the

quadratic configuration interaction with singles and doubles, QCISD). (This is NOT, how
this method was historically perceived.)

These equations contain disconnected triples in the singles equation and disconnected
quadruples in the doubles equation. Once the matrix elements are evaluated (perhaps best
in terms of diagrams) and properly solved, the result are size consistent, unitarily invariant

EQOISD = i - iZ@ | ab> Cfb

1jab

B, Ci=(W[H1+C +C, +C

corr a

B, Co=(w'|H1+C +C, +C,

corr  ab

A

1,00
C)l,,)

correlation energies of excellent quality.

Freitag, 9. August 13
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®

Generalization: The exponential Ansatz

m
\/c:

Instead of putting in products of excitation operators ,,by hand®, we can choose an
Ansatz that incorporates them from the beginning:

In the limit where either all C-operators or all T-operators are

1} > — I T I ‘ U > included in the treatment, the Cl and CC wavefunctions are
‘ e p(\ L :|_ 3 T ) HF identical and CC is a more complicated way of parameterizing the
T full-Cl wavefunction. For truncation of the C-operator series or the

more accurate.

- A - T-operator series the CC expansion is more complicated but much
(1+T+§T2+—T3+...)‘\IJHF> > P P

A X i Lo We have purposely renamed the CI coefficients C to cluster
o — 4 E :tab {aa a, CL] a. } amplitudes t and the C-operators to T-operators to:
ijab a) follow the conventions used in the literature and
A g b) emphasize that the two types of quantities are different
T = g £ {a+a+a+a a.a }
3 36 abc a b ¢ 'k 7

v' This is the famous ,,Coupled Cluster Expansion®.

v' In Cl theory the unknowns are the Cl coefficients C of the single, double, triple,...
excitations which are determined from the variational principle.

v' In Coupled Cluster theory the unknowns are the ,cluster amplitudes* t for the

single, double, triple,... excitation operators.

Freitag, 9. August 13 29
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(S Connection of Cl and CC approaches

While these t‘s and C's appear to be closely related there is an important difference which
becomes obvious upon expanding the linear and nonlinear terms in the power series
expansion of the exponential. Restricting, the cluster operator at the moment to the T, and

T, terms:

exp(T, +T )zl%—f1 +T2 +§YZ2++T1T2 +%T22+...

Thus, at each spin-orbital excitation level n the coupled cluster expansion has
amplitudes arising from ,,genuine“ (connected) n-tuple excitations and those
(disconnected) parts which arise as products of lower excitations. In Cl theory each n-

tuple excitation is only associated with a single coefficient.
(In other words - if the CC T-operator is truncated, the model still contains highly excited determinants. This is not the
case for the Cl model where each determinant in the treatment comes with its own coefficient. In the CC model the

coefficients of the higher excitations are approximated as products of coefficients of lower excitations!)

>

[E—

>

>

N |—

N |—

>

(S

>

(\9)

(O8]

>
>
>

—_

w
_|_

~
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(S Solution of the CC Equations

v Inserting the CC Ansatz into the variational functional:
<\P‘H“P> <eTTO‘ﬁeTT>
() ()

shows that this is a hopeless idea — the expansion does not terminate.
v Thus, an alternative is needed and is readily derived from inserting the CC-Ansatz
into the Schrddinger equation:

H,|¥)=E|¥)
F[BOeT“PO> :EeT“PO>

v The amplitudes are determined by projecting onto the Schrédinger equation. In Cl
that gave the same results as the variational treatment. In CC theory this is evidently
not so.

Ece = <LP0 FIBOeT‘LPO>
0=_¥, |H,e"|¥,)

W, is some excited determinant

v' The correlation energy results from projection with the HF determinant

E,, =4 t;(ijllab)
u}

Freitag, 9. August 13 31



some diagramsinthe /... % | 2 } ...........
doubles equation: AV Vo V4 \\/_ i3 Nt WAL O

—P(i5)t88, frmet$ - P(ij)tgn (mnllje)ts  — L P(ij)ti (mnllef)tss
Xl \/\/Q \2"§/ \><,/
— P(i5)t8 (mn|le f)t5th & (mn|ij)ead, (mnjlij)2a.en

FP(i5)tal (mn|lie}ts P(ij)ta.th (mnl|ie)ts htad #5 (mn]lef)
SO NS ONOESE
st tht (mnjlef) jtabatitl (mnllef) tathtit] (mml|ef)
i/ (abllef) titf(abllef) — AP (ab)tif (am||ef)th, — P(ab)tetf (amllef)td,

el g W wg {g oy

P(i7) P(ab)ts, (mbllej) — P(ij)P(ab)es .<mn||ea>£’> P(if) P (ab)tis, (mbl|ef)t]

N O SO . e N S

—P(ij) P(ab)tis (mnllef)tht]! LP(i7)P(ab)tisth (mnllef) — P(ij)P(ab)tsts, (mbllej)

—P(ab)t3. (mbllij) P(ig)ti{ablles)

Source: Gauss J. (1998) in: von Schleyer, P.v.R. et al. Encyclopedia Computational Chemistry, pp 615-636.
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i Triple Excitations

In recent years it has become possible for small molecules to pursue very accurate
calculations which explicitly include the triple and quadruple excitations in CCSDT and
CCSDTQ. However, in the majority of cases, these calculations are simply too expensive as
already CCSDT features an effort which scales as O(N®). On the other hand it is clear that
one has to go beyond CCSD if high accuracy (i.e. ,,chemical accuracy” of 1-3 kcal/mol)

should be reached.

The compromise is the ,,gold standard® CCSD(T) model in which a perturbative correction
to the connected triple excitations is calculated based on the converged amplitudes of a
CCSD calculation. The correction features an asymptotic O(N’) effort and reads:

Z%ﬁ( ;]bkc _I_tzjk)(ga TE TE —¢ — G _5k)

ijkabe
 _ _pliPlabe >t (belldi)y = 15 (lc]|| jk)

b
e E +e +e —e —g —¢
c 1 J k

N t' (be 7k
t " = —P(ijk)P(abc) a< || >
e 5 g E —& —& —§
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(S Convergence of CC Energies

Deviation from full-Cl (CO molecules, cc-pVDZ basis, frozen core) in mE,, for CI
and CC models with various excitation levels:

Cl CC
SD 30.804 12.120
SDT 21.718 1.0112
SDTQ 1.775 0.061
SDTQP 0.559 0.008
SDTQPH 0.035 0.002

a: 1.47 mg,, for CCSD(T)

) For a given excitation level, the CC models are about one order of
" magnitude more accurate than Cl models (which becomes even more
significant for larger molecules)!

source: Gauss, J.; Lecture notes for ,Coupled Cluster Theory“, Workshop, Mariapfarr, Austria, 2004.

Freitag, 9. August 13
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(S High Accuracy Thermochemistry with CC

Using the most accurate modern CC methods together with large basis sets and
corrections for relativistic effects, one can calculate the atomization energy for small
molecules to better than 1 kcal/mol.

Example: CO molecule, atomization energy [kcal/mol]:

HEF-Level : 174.40 kcal/mol
Correlation (CCSD(T)) : 85.30
Zero—Point Vibration : -3.10
Spin-0Orbit Coupling : —-0.29

Scalar Relativity : —-0.17
Correlation (>CCSD(T)) : -0.04

Non Born-Oppnheimer : 0.03

Sum (Theory) 256.29
Experiment 256 .2

source: From Gauss, J.; Lecture notes for ,Coupled Cluster Theory“, Workshop, Mariapfarr, Austria, 2004.
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Problem with Wavefunction Methods

Freitag, 9. August 13
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Problem with Wavefunction Methods
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(3 Aim of the Development

Premises
v’ Coupled cluster would be the method of choice if it would be applicable in
reasonable turnaround times to molecules of current chemical interest.
... this means 50-200 atoms (QM/MM for larger)
... currently these studies are done with DFT (mostly B3LYP)
... if the accuracy of DFT is in question, typically CC calculations on model systems
are called upon

Conclusions
v Produce methodology that is as black box as DFT or canonical CC
v' The method must be computationally affordable (Not much more expensive
than the gold standard B3LYP)
v' The method must be generally applicable to properties, open shells, transition
metals, ...

Freitag, 9. August 13



mip! .
(e Aim of the Development
~ ™
Premises . . :
Efficient and accurate local approximations to coupled-electron pair
v’ Cou| approaches: An attempt to revive the pair natural orbital method  ple in
reas Frank Neese,"®? Frank Wennmohs,' and Andreas Hansen' 5t.
thiL J. Chem. Phys., 2009, 130, 114108
W,
... currently these studies are done with DFT (mostly B3LYP)
] < \
Lt | systems
THE JOURNAL OF CHEMICAL PHYSICS 131, 064103 (2009)
are C;i . . : : :
Efficient and accurate approximations to the local coupled cluster singles
doubles method using a truncated pair natural orbital basis
Frank Neese,a) Andreas Hansen, and Dimitrios G. Liakos
Lehrstuhl fiir Theoretische Chemie, Universitit Bonn, Wegelerstr. 12, D-53115 Bonn, Germany
C on Clu Si o (Received 27 April 2009; accepted 18 June 2009; published online 10 August 2009)
g /
v Produce methodology that is as black box as DFT or canonical CC
4
v  The e
than . An efficient and near linear scaling pair natural orbital based local
» coupled cluster method _
‘/ The Christoph Riplinger and Frank Neese?! tion
me t' Max Planck Institut fiir Chemische Energiekonversion, Stiftstr. 34-36, D-45470 Miilheim an der Ruhr, Germany
) : (Received 28 September 2012; accepted 13 December 2012; published online XX XX XXXX)
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The ORCA Project

Hartree-Fock Semiempiri Density Functional

LDA, GGA, Hybrid Functionals
Double hybrid functionals,
RI-Approx., Newton-Raphson
RKS,UKS,ROKS

RHF,UHF,ROHF,CASSCF INDO/S,MNDO
Direct, Semidirect, Conventional,
rox., Newton-Raphson

Electron Correla States

MP2/RI-MP2 R
CCSD(T),QCISD(T),CEPA,CPF
(all with and without RI, Local)

MR-MP2, MR-MP3, MR-MP4(SD)
MR-CI, MR-ACPF, MR-AQCC

TD-DFT/CIS+gradients
MR-CI/DDCI/SORCI

» L\

Relativistic Methods =~ Molecular Properties

radients(HF,DFT,MP2) + Geometries + Trans. States
les, Magnetizabilities (Coupled-Perturbed HF/KS)
OSMO Solvation Model Throughout

d Resonance Spectra (Numerical Frequencies)

EPR-Parameters (g,A,D,J,Q)
Mdssbauer-Parameters (6,AEq)
ABS,CD,MCD Spectra
alysis, NBOs, Localization, Multipole Moments,...

1st-5t Order Douglas-Kroll-Hess \

Zero‘th Order Regular Approximation (ZORA)

Infinite Order Regular Approximation (IORA)

Picture Change Effects, All electron basis sets,
(Effective core potentials)
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)\ o

cec  Saving Time in Electronic Structure Calculations

] N —————
y ok Correlation:
'C o0 1
. . & R
Exploit Sparsity! = S ]
. c 1\
& 2 1.5
10-10 S|
B
0 5 10 15 20 25 0 5 10 15
Atom Distance Atom Distance
( \ ( \
| S
Compress Data! M — U'MU . 0
M = i M, —
\ ) \ )
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(S Canonical Virtual Orbitals and Correlation

Canonical virtual orbitals are a ,,chaotic® space for correlating electron pairs

MO120 MO140 MO98

Truncation schemes based on canonical MOs are unlikely to be
highly successful

Freitag, 9. August 13
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éc%@ Projected Atomic Orbitals

Projected atomic orbitals, PAOs, Pulay, P. CPL, 1983, 100, 151 | /i) = (1 -3

> Only the PAOs of ,domains® close to a given occupied orbitals are taken

jl> Pair domains are constructed from individual orbital domains

Solid local basis for electron correlation! Leads to linear scaling when done
properly (Pulay, Werner, Schitz)

If domains are chosen to be accurate they contains >10-20 atoms and then
the calculations still become expensive or not feasible

An even more compact set is obtained by using pair natural orbitals (Meyer,
Kutzelnigg, Staemmler, Taylor). Local PNOs (FN)

Freitag, 9. August 13
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(S Most Compact Expansion: Natural Orbitals

100
90

80 —

0. . ]

60 - -

50 - -
40 ~ Shortest possible accurate virtual | -
space expansion through neglecting

natural orbitals with occupation
number Tcutpno (<1077)

30

20 -

10 - -

Percentage Correlation Energy Recovered

T T T T T 17T " T T T v T T T T T T T T 7T T T T 71
HF 1s 2s 2p 3s 3p 3d 4s 4p 4d 4 565d b5f 5p 5g 5s all

Natural Orbitals included in the CI
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éc“?zr” The Beauty of Pair Natural Orbitals

> Small number of significant PNOs per electron pair
> Vanishing (0-5) PNOs for weak pairs (But see talk of HJ

Werner)

\\(\ > Located in the same region of space as the internal pair
~ | n=0.0003 but as delocalized as necessary
~ : > Asymptotically basis set independent number of PNOs
&( N=0.0010 for each pair

- \
e"( n=0.0011 o~

Q- n=0.0002

o/
™S _ |
95 N M n=0.0004

8\/\  h=0.0035 1&:
| n=0.0011
& J

FN; Wennmohs, F.; Hansen, A. J. Chem. Phys. 2009, 130, 114108
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éc“?z@ Convergence of LPNO-CCSD

5 LPNO -CCSD

g 100

O L

(®)

]

o

&0

S 95

C L

- - 100,4-

.8 100,2-: \

© 100,0 ]

g 90_ 99.8-

o) i 99,6-

U ]

- - 99,4

= | .

Q 99,2

ud 85+ 90l 1]

3] - 1E-4 1E-5 1E-6 1E-7 1E-81

a [ T T Leve o0 0 0 ]
1E-4 1E-5 1E-6 1E-7 1E-8

CutPNO

i’ v Ty»pically 99.8-99.9% of the canonical correlation energy is recbvered in LPNO-

. (CEPA,QCISD, CCSD)

v' Energetics of the canonical counterpart methods is reproduced to 1 kcal/mol or
better

v' The methods are robust and completely black box in character (as the canonical

counterparts)

Riplinger, C. FN J. Chem. Phys, 2013, 138, 034106
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Attractive Features of the LPNO Approach

9)
(10)

Simplicity. Only one critical cut-off (T pno); OCal approximations only ,boost

efficiency. Tcutpno €can be use to control the absolute desired accuracy

No real-space cut-offs or fragmentation necessary

No redundant integral generation or amplitude optimizations

No reliance on sparsity

Correlation space for each electron pair is optimal: a) very small for weak pairs, b) as
delocalized as necessary

Excellent behavior with basis set size

With (moderately) conservative thresholds only 0.1-0.3% of E_ is lost. Reproduces

the canonical result to within a few 0.1 kcal/mol
Very weak or no dependence on the localization method. Well localized internal

space not even required
P 9 Canonical:

Very smooth error; no kinks and jumps in PESs :_ch'g_VTZ CCSD

Black box character ! cc-pVTZ cc-pVTZ/C DLPNO-CCSD

—— —

Freitag, 9. August 13
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How Local are the PNQOs?

~\\(\n=0.0003
&
&(\ n=0.0010

o)

9"(\ n=0.0011

S
05"\ n=0.0030

é/ n=0.0035

o' o’

Freitag, 9. August 13

PNOs are localized in the same region of space as the internal
orbitals that they correlate

> PNOs can be mapped onto domains

:> How large are these domains?

Tmkn=0.1

- - Twmkn=0.01

- "

-.J

~

AR

=

\
Correlated bond

(ICQC, 2009)
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L The best of Both Worlds DLPNO

v The original LPNO-Method Expanded the PNOs in terms of virtual MOs. Hence,
the PNOs were local but the expansion basis was not

» undesirable fifth order scaling steps limited the applicability of the method to about
100 atoms

» Expansion of the PNOs in terms of PAOs eliminates all bottlenecks and leads
to (near) linear scaling LPNO-CCSD (,Domain Based‘ LPNO, DLPNO)

o)

LPNO-CCSD

ay=> d"
1] aa

DLPNO-CCSD |i,) =

i | W
2 Y| P +
Dr. Christoph
Riplinger, C. FN J. Chem. Phys, 2013, 138, 034106 Riplinger
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(S Pair Natural Orbital Construction

(i1 ] j7)
e +e —F —F
fi Z i Jj

Pair density construction: LMP2 amplitudes T =~

Dij _ Tij+sz i szTZj+ Tij _ 1 (4TZ] . 2Tij+)
146,

The PNOs are obtained as the eigenfunctions of the virtual pair density
DYd? = n?d"

PNOs with occupation numbers below Te,ipno are neglected

Problem: if this is done for each electron pair, the cost will be significant since
even in a local MP2 context the amplitude construction becomes expensive.

Solution: Use a pair prescreening to estimate which pairs are worthwhile
computing and obtain a reliable estimate of the pair truncation effect

Pair Correlation
>y

0 5 10 15 . .
Atom Distance tail to be estimated
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(ce Electron Pair Prescreening

v' MP2 pair correlation energy:

,Coulomb* »Exchange“—0
_SC-MP2 _ _Z 4(ia | 3b)(2a | 3b) — 2(¢a | 7b) (2| ja))
! ab €, —|—5b _F;;z _Eyj

> Introduce a set of orbital specific virtual orbitals (=PNQOs of diagonal pairs) and
drop the exchange part

b ,Orbital specific
v Long range part SSC-08V 42 (za, | J )/ virtuals® (OSVs)
ab 8 —|_ 5 — Fjw — ij

]

OSV—-DIP __ 8 (<Z ‘ r | d@' ><‘7 ‘ r | gj >)2

v Multipole Expansion € = —
sz ab (a +e —F, _ij)

a.
?

> Very small effort: only OSVs and dipole integrals
(Generation in O(N) time)

Hetzer, G.; Pulay, P.; Werner, HJ Chem. Phys. Lett., 1998, 290, 143 Riplinger, C. FN J. Chem. Phys, 2013, 138, 034106
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(K Numerical Example: Benzene Dimer

T os =107

4t
Cutosv TCutOSV_ 10

0,01
10 OSVs/MO -~ 34 OSVs/MO

-
S
w

e SC-MP2
. SC-0OSV
OSV-DIP

m
A

Pair correlation energy (Eh)

s
"

10°® T =10"°

Cutosv

134 OSVs/MO

-
m
O,

Pair correlation energy (Eh)

-
m
(o))

100 200 300 400 100 200 300 400
Electron Pair Electron Pair
Riplinger, C. FN J. Chem. Phys, 2013, 138, 034106
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b Scaling of DLPNO-CCSD

3000 -
I ¥ DLPNO-CCSD retains all the good
o | | features of LPNO-CCSD
2500 |- E - (Smoothness, accuracy and
E '_ robustness) but is near linear scaling. |
c o | v DLPNO-CCSD and and LPNO-CCSD
g 2000 |- = f are about equally efficient up to 50
) 05 : ™ atoms. Beyond that DLPNO-CCSD is
E 1500 Number of Atoms | much faster
X
3 LPNO-CCSD
O 1000 |-
:
(1090)
500 |- DLPNO-CCSD
O X | 1 |
0 100 200 300

Number of Atoms
Riplinger, C. FN J. Chem. Phys, 2013, 138, 034106
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cec  Calculations on some larger molecules

Accuracy of the correlation energy Heme-CO Vancomycin
Penicillin/def2-TZVPP

Canonical CCSD (1006 basis functions; 74 Atoms 176 Atoms

212 correlated electrons 542 correlated electrons

12 days on 16 cores) def2-SVP SV(P)
-4.3799 Eh 782 Basis functions 1797 Basis functions
DLPNO-CCSD (4 hours on 1 core)
tscFr=4.6 h tscr=? h
-4.3781 Eh teno-cc=31 h teno-cc=14 h

def2-TZVP (=3593 BF)
teno-cc=121 h

$ >200 atoms/>4000 basis functions can be treated well

FN; A. Hansen, D.G. Liakos, J. Chem. Phys., 2009 131, 064103; Riplinger, C. FN J. Chem. Phys, 2013, 138, 034106
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et The largest CCSD Calculation ever

»;-4
" Ry
Reat
C150H302=452 atoms 08
def2-TZVPP Basis Set = 8878 Basis Functions \f»
20460 Auxiliary basis functions >~
ias
S
. Wb Lo
vk ’i«-#i‘#_&"—""h"t’{ I
~ T )
~4 e
%" ... LPNO-CCSD runs through on a single processor in j
% justafew days. Jod
A< ... future highly parallelized codes will be able to treat M.
..;,'i,. huge molecules efficiently thus pushing the boundaries M
* ¢ of computational chemistry 994
4 ) * 4
€N o -
< Nig » | e ‘\‘,’, :
T ONESEN T
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Real World Applications

Asymmetric Hydrogenation Catalysts

~
TIT112

Pfaltz, A.; Drury, W.J. PNAS, 2004, 101,

+

M. T. Reetz, A. Meiswinkel, G. Mehler, K.
Angermund, M. Graf, W. Thiel, R. Mynott,
and D. Blackmond, J. Am. Chem. Soc. 127,

10305-10313 (2005)

Dr. Manuel Sparta

56



e Local ,Natural® Triple Excitations

The highly successful perturbative triple excitation correction (T) involves:

W « > "(ia | bd) tjk ke | j0t" + (5 permutations
ab

abc
w

Y

7 gk 0 Jk
[ab dec Tab lLl ,C

v' In alocal context only a linear number of pairs must be included in the triples correction
v' The problem, again, is to represent the virtual space

PAO based domain treatment (Schitz & Werner): Linear scaling achievable
OSV based treatment (Chan, Werner et al.): Linear scaling achieved
Fragment based approach by Kallay, Piecuch: Linear scaling achieved
Approach by Pulay: Not strictly linear scaling but very accurate

DLPNO-CCSD:

v Domains are available but are too large for the Schiitz & Werner approach
(>500 basis functions/pair)
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(o Natural Triple Excitations

Our suggestion: Natural triples orbitals

V' Three-pair density: D* = 1(D” 4+ D" + D)

P

(The operator D* =%"|a )a, |+

a ><1 -3 ><, projects onto the joint PNO
 space of the three pairs)

v Formation of the three pair density in the PAO basis is linear scaling:
v’ Eigenfunctions: D%x" = »n"x" (cut-off below a given nik(min) just as for PNOs)
v Recanonicalize: x" Fx*

v Amplitudes are projected into the TNO basis: T” INO — Gukii Pi:PNO Grijkiis

D> b, ik Qyy,:Cy ol b o

= Problem is that projection of existing PNO integrals onto the
TNO basis is not good enough (sad history :-()

= |Integrals over TNOs must be generated for each triple

(oookkeeping complicated but linear scaling) Dr. Christoph

: L , , Riplinger
= Linear scaling implementation achieved

Riplinger, C. FN J. Chem. Phys, 2013, submitted
Freitag, 9. August 13



(K Consistency checks

5100 B97.5

) [ =

2 90 : Q97.0 -
¥ nd 1

S 85F c ]

3 80§ 296.5 ¢

e 396.0 ]

5 70 — E ]

~ 65} 2955 ]

- ' — F ]

O ntk — .

e 60 A S YT AP TTTP AP S (YT S S (TYTT A S S MYYTT I S S (T T A C L

S 1E-5 1E-6 1E-7 1E-8 1E-9 1E-10 1E-11 B o5 0 Lo e -

T o 1E-4 1E-5 1E-6
CutTNO o

597'5 CutPairs_MP2

) — .

> \

So7.0f 1 v Local (To) converges smoothly to about

= I | 97-98% of (To)

S96.5 00 00 00 00 00 000 o _ _

i 1|V Sufficient to include MP2 pairs at 0.1

896.0 - TcutPairs

%g | |V Domains are converged at the default

=95.5 .

= ' TcutMkN

-

5950 I P TP PP PPN PP T

$ 01 001 1E3 1E4 1E-5 1E6 1E7

T cumen Riplinger, C. FN J. Chem. Phys, 2013, submitted
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e Error Statistics

Reaction & Isomerization Energies (ISO34 set; relative to canonical CCSD/CCSD(To))

kcal/mol MAD MAX ME
DLPNO-CCSD 0.41 2.10 -0.23
DLPNO-CCSD(T) 0.50 1.70 -0.06

e ———— S —

f| J 'I:he additional error due to the triples is limited

Riplinger, C. FN J. Chem. Phys, 2013, submitted
Freitag, 9. August 13
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(x Scaling of DLPNO-CCSD(T)

500 . l ' l ' l . l
T —=— CCSD(T)
400 L —o— DLPNO-CCSD(T)
—&A— Triples-Correction
c
S
> 300 |
£
|_
S
e 200
@)
&
; 100
O X | L | L
0 50 100 150 200

Number of Atoms
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(/;“:’?: CCSD(T) Calculations on Entire Proteins

Riplinger, C. FN J. Chem. Phys, 2013, submitted
Freitag, 9. August 13

Crambin

644 atoms
def2-SV(P)/6187 basis functions

Canonical computation time
~5 Million Years

DLPNO-CCSD(T)
~3 weeks/1 Core
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- Gonsistency of Local Correlation: QM/MM

Mata, R. A., Werner, H.-J., Thiel, S., & Thiel, W. (2008).
J. Chem. Phys.,128, 025104-8.

_ > ‘{j;’ VvV g »
ﬂ\/ -{ ) J- 7
ap | =<

i\ |
v 10 representative snapshot of the reaction = - < K
were selected by MD simulation. . ﬁ/\“"f‘ - b

v PHBH is a flavoprotein monooxygenase . (
that catalyzes the hydroxylation of the ‘(
substrate p-hydroxybenzoate by the ,(
cofactor flavin hydroperoxide N

v For each snapshot GS and TS were
optimized

v QM/MM calculations of the active site (49
atoms) embedded into the point charge
distribution to account for the rest of the
protein

N
o)

N
o

-
(6}

v Computation of (T) accounts for ~30% of
the computation time

Activation Energy (kcal/mol)

v Almost >2/3rd of the (large) triples effect is
recovered by DLPNO-CEPA/1

-
o

LCcsp

Dr. Manuel Sparta
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Towards Applications: V2Os

V40,5H ¢ V12040H29 V200¢2H24

D Maganas; M Havecker; A Knop-Gericke; M Roemelt; R Schlogl; A Trunschke; FN, PCCP 2013, 15, 7260-76.
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Structure oprimization with high-level wavefunctions
(LPNO-CCSD)

—— BP86
- , ——B3LYP
70- .  ——LPNO-CCSD 50 - : ——BLYP
‘ . ——MP2 | . —— B2PLYP
60 9 ' ‘ s
—_ : = 40 :
CE’ 50 - ; g 4 Equilibrium X-Ray distance
= 40 i Equilibrium X-Ray distance = 30- + V=0--V=0 2.79 A
S | V=0--V=0 2.79 A S | :
X 30 X 20- :
> '
D 10 Non Interacting layers 0 | : Non Interacting layers
(18] - w 1 -
0 “ 0 -
-10- ‘ ;
T b T o T v T v T b T . ‘10 T T v T T T v 1
2 3 y 40 VSO A 6 7 2 3 4 5 6 7
=0-—-V=0(A) V=0--V=0(A)
~— BP86-D
: ~— BLYP-D
] +  ——B2PLYP-D
B 30 “ ' - \ "E
E < * Equilibrium X-Ray distance o ¢ z
] 20- | V=0--V=02.79 A > w E
X @ ' |
o 101 £ 3
OCD : Non Interacting Iay.ers B §
w o LS| k=
4 3 s
@
-1 0 ) i o r v T - L4 - v 4 ad Y v 2 | ' g
P 3 4 5 6 : 514 516 518 520 522 524 526

V=0---V=0(A) Photon Energy (eV)
D Maganas; M Havecker; A Knop-Gericke; M Roemelt; R Schlogl; A Trunschke; FN, PCCP 2013, 15, 7260-76.
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Summary &
Conclusions

Have fun with
... ORCA

* LPNO based correlation methods
provide a highly reliable, robust and
systematic route towards wavefunction
calculations on large molecules.

* Deviations from canonical results are
small. Presently ~200-600 atoms can
be treated.

* Parallelized closed (and open-shell)
codes are available.

* Extensions to properties, F12, excited
states etc. are coming forward

We are always looking for ¢
highly motivated Ph. D.
students and postdocs to ‘

1ni |
join the L=zl - .) ://www.cec.mpg.de/downloads
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