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Motivation

Where is electron dynamics important?

v

Electron-hole pair creation and exciton propagation in solar cells

\4

Photosynthesis and energy transfer in light-harvesting antenna complexes

» Quantum computing (e.g. electronic transitions in ultracold atoms)

v

Molecular electronics, quantum transport
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Motivation - Decoherence in Quantum Mechanics
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Outline

Linear Response in DFT
» Response functions

» Casida equation

» Sternheimer equation

Real-space representation and real-time propagation
» Real-space representation for wavefunctions and Hamiltonians

» Time-propagation schemes

» Optimal control of electronic motion
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Time-dependent density-functional theory

> One-to-one correspondence of time-dependent densities and potentials

v(r,t) &L p(r,t)

For fixed inital states, the time-dependent density determines uniquely the
time-dependent external potential and hence all physical observables.

E. Runge, and E.K.U. Gross, Phys. Rev. Lett. 52, 997 (1984).

Heiko Appel (Fritz-Haber-Institut der MPG) Intro to real-space, linear-response, and TD methods August 12, 2013

5/ 44



Time-dependent density-functional theory

> One-to-one correspondence of time-dependent densities and potentials

v(r,t) &L p(r,t)

For fixed inital states, the time-dependent density determines uniquely the
time-dependent external potential and hence all physical observables.

E. Runge, and E.K.U. Gross, Phys. Rev. Lett. 52, 997 (1984).
» Time-dependent Kohn-Sham system
The time-dependent density of an interacting many-electron system can be

calculated as density N
= loi(rr
j=1

of an auxiliary non-interacting Kohn-Sham system
2172
0y (r,1) = (=" + 100 ) )

with a local multiplicative potential

vs[p(r’ )] (r, 1) = vexs(r,t) + |pr( )|d3 "+ vzelp(r’ )] (x, t)
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Linear Response Theory

» Hamiltonian R .
H(t) = Ho+ O(t —to)vi(r, 1)

> Initial condition: for times ¢ < to the system is in the ground-state of the
unperturbed Hamiltonian Ho with potential vo and density po(r)
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Linear Response Theory

» Hamiltonian R .
H(t) = Hy + @(t — to)m (1 [,)

> Initial condition: for times ¢ < to the system is in the ground-state of the
unperturbed Hamiltonian Ho with potential vo and density po(r)

» For times t > to, switch on perturbation v (r,¢): — leads to time-dependent density

plx,t) = po(r) + 5p(xt)
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Linear Response Theory

» Hamiltonian R .
H(t) = Ho + @(t — t0)£'| (:I‘A /)

> Initial condition: for times ¢ < to the system is in the ground-state of the
unperturbed Hamiltonian Ho with potential vo and density po(r)

> For times ¢ > to, switch on perturbation v (r,/): — leads to time-dependent density

plx,t) = po(r) + 5p(xt)

» Functional Taylor expansion of p[v](r,t) around vo:

plv](r, 1) = plvo + v1](r, 1)
= plwo](r,t)

dp[v](rt)
ou(r’t) lv

// 82p[ v] (rt)
dv(r't")ov( r”t”)

o ('t d® dt’

(I‘/f/\)l' ( " //)d?’?”/dt d3 ”dt”
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Computing Linear Response

Different ways to compute first order response in DFT

> Response functions, Casida equation

> (frequency-dependent) perturbation theory, Sternheimer equation

> real-time propagation with weak external perturbation
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Response functions

» Functional Taylor expansion of p[v](r,t) around external potential vg:

dp[v](rt)

/47 3/ ’
So(r't) v (e't)drdt + ...

plvo + v1](r,t) = plvo] (r) +

» Density-density response function of interacting system

x(rt, x't") == 6(5/)1)[(]’(23’))

= Ot — t'){0l[p(r, ), p(x', ') ]]0)

> Response of non-interacting Kohn-Sham system:

Solvet)

1IN 33,0 34
t
Sus (1) vs(r't)d r'dt’ +

plvs,o +vs1](r,t) = plvs,ol(r) +

> Density-density response function of time-dependent Kohn-Sham system

dps[vs](rt)
dvs(r't’)

xs(rt,r't) ==

vS,0
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Derivation of response equation
» Definition of time-dependent xc potential
Vge(rt) = vrs(rt) — Vert(rt) — v (rt)

» Take functional derivative

Svee(rt)  Surs(rt)  Oven(rt) (¢ —t')

Sp(r't’) — Sp(r't')  bp(r't)  [r—r|

fae(rt, v't)) i= xg (vt v't") — x ' (xt,v't)) — W,(rt,x't')
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Derivation of response equation
» Definition of time-dependent xc potential
Vge(rt) = vrs(rt) — Vert(rt) — v (rt)

» Take functional derivative

Svee(rt)  Surs(rt)  Oven(rt) (¢ —t')

Sp(r't’) — Sp(r't')  bp(r't)  [r—r|

fae(rt, v't)) i= xg (vt v't") — x ' (xt,v't)) — W,(rt,x't')

> Act with reponse functions from left and right

XS | Wc+f.re :Xgl _X_l | X
XS(WC + frc)x =X Xs

> Dyson-type equation for response functions

X = Xs + XS(WC + fzc)X
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First order density response

» Exact density response to first order

p1 = X1
= Xsv1 + XS(WC + fzc)pl

> In integral notation
pi(rt) = /d3r'dt'xs(rt,r't') [vl (r't")
+ / & dt" (We(e't 2"ty + fzc(r't',r”t”))pl(r'/t//)]
» For practical application: iterative solution with approximate kernel fz.

_ duaclpl't)
5,0(1‘"t") 00

fzc (r/t/, r//t/l)
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Lehmann representation of linear response function
» Exact many-body eigenstates
H(t = to)jm) = Em|m)

> Lehmann representation of linear density-density response function:
X(r,t5, v, ) = Ot — t'){0|[A(x, t)mr, p(x', ") ]]0)
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Lehmann representation of linear response function
> Exact many-body eigenstates
H(t = to)jm) = Em|m)

> Lehmann representation of linear density-density response function:
X(r,t5, v, ) = Ot — t'){0|[A(x, t)mr, p(x', ") ]]0)

» Neutral excitation energies are poles of the linear response function!

oy (0]p(r) rr|m) (m|p(x)1]0) — (O|p(x") rr|m) (m|p(r)m|0)
x(r,r'sw) = lim ( w— (BEm—Eo)+im  w+ (BEm— Eo) +in )

+
n—0 ™
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Lehmann representation of linear response function
> Exact many-body eigenstates
H(t = to)jm) = Em|m)

> Lehmann representation of linear density-density response function:
X(r,t5, v, ) = Ot — t'){0|[A(x, t)mr, p(x', ") ]]0)

» Neutral excitation energies are poles of the linear response function!

oy (0]p(r) rr|m) (m|p(x)1]0) — (O|p(x") rr|m) (m|p(r)m|0)
x(r,r'sw) = lim ( w— (BEm—Eo)+im  w+ (BEm— Eo) +in )

+
n—0 ™

» Exact linear density response to perturbation v1 (w)

p1(w) = X(w)v1(w)
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Lehmann representation of linear response function
> Exact many-body eigenstates
H(t = to)jm) = Em|m)

> Lehmann representation of linear density-density response function:
X(r,t5, v, ) = Ot — t'){0|[A(x, t)mr, p(x', ") ]]0)

v

Neutral excitation energies are poles of the linear response function!

oy (0]p(r) rr|m) (m|p(x)1]0) — (O|p(x") rr|m) (m|p(r)m|0)
x(r,r'sw) = lim ( w— (BEm—Eo)+im  w+ (BEm— Eo) +in )

+
n—0 ™

v

Exact linear density response to perturbation v1(w)

p1(w) = X(w)v1(w)

v

Relation to two-body Green's function

iQG@)(r, t, et et v ) = x(r, 6,1, ) + p(r)p(r”)
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Lehmann representation of linear response function
> Exact many-body eigenstates
H(t = to)jm) = Em|m)

> Lehmann representation of linear density-density response function:
X(r,t5, v, ) = Ot — t'){0|[A(x, t)mr, p(x', ") ]]0)

v

Neutral excitation energies are poles of the linear response function!

oy (0]p(r) rr|m) (m|p(x)1]0) — (O|p(x") rr|m) (m|p(r)m|0)
x(r,r'sw) = lim ( w— (BEm—Eo)+im  w+ (BEm— Eo) +in )

+
n—0 ™

v

Exact linear density response to perturbation v1(w)

p1(w) = X(w)v1(w)

v

Relation to two-body Green's function

iQG@)(r, t, et et v ) = x(r, 6,1, ) + p(r)p(r”)

v

Current-current response function:

o s(r, t;,1,t") = Ot — t'){0|[ja(r, ), Js (r,t) ] 0)
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Excitation energies

» Dyson-type equation for response functions in frequency space
[1 = Xs(@)(We + foc(w))]p1(w) = xs01(w)
> p1(w) has poles for exact excitation energies 2;
p1(w) = oo for w— Q;

» On the other hand, rhs xsv1(w) stays finite for w — Q;
hence the eigenvalues of the integral operator

[ = Rs(@)(We + foe(@))]E(w) = Aw)éw)

vanish, A(w) — 0 for w — Q;.

> Determines rigorously the exact excitation energies

(1= X5 () (We + foe())]E(Q;) =0
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Casida equation

> (Non-linear) eigenvalue equation for excitation energies

SZF] = M?F]'
with
Qiao,ibr = 00,r0i,70a,6(€a — €i)2 +2v/(€a — €) Kiao,jbor v/ (€6 — €5)
and
1
Kicoor (@) = [ @ [ @000 0000 0) [y + foelrd )] - 0)60: (1)

> Eigenvalues w; are exact vertical excitation energies

» Eigenvectors can be used to compute oscillator strength

» Drawback: need occupied and unoccupied orbitals
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Adiabatic approximation

> Adiabatic approximation: evaluate static Kohn-Sham potential at time-dependent
density

v [pl(rt) i= v [p(1)] (rt)
» Example: adiabatic LDA
B p)(rt) = v (p(1)) = —ap(r, )7 4.

» Exchange-correlation kernel

504 o] () Ovac”
MO (rt, r't) = 2 L — 5t — ) (r — 1) 228
( ) Sp(r't') ( ol ) 9p(r) lpo(r)
82€hom
=6(t—tNo(r—1' -
( ) ( ) on2 ()
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Failures of the adiabatic approximation in linear response

\4

Hs> dissociation is incorrect
E(SH - E(S ) ™0 (in ALDA)

Gritsenko, van Gisbergen, Grling, Baerends, JCP 113, 8478 (2000).
> sometimes problematic close to conical intersections

> response of long chains strongly overestimated
Champagne et al., JCP 109, 10489 (1998) and 110, 11664 (1999).

» in periodic solids fzc(q,w, p) = ¢(p), whereas for insulators,

0 .
oot 1751 /4% divergent

> charge transfer excitations not properly described
Dreuw et al., JCP 119, 2943 (2003).
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Relation of TDHF eigenvalue problem to RPA, CIS and drCCD energies

> RPA equation
A B X)) (X
B -A Yy )T \v )¥

» RPA correlation energy
ERPA — %Tr(w —A)

> CIS correlation energy from Tamm-Dancoff approximation TDA: B =0

ES™S = %T?‘(JJ —A)
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Relation of TDHF eigenvalue problem to RPA, CIS and drCCD energies

> RPA equation
A B X\ (X
-B -A Yy )" \y)¥

RPA correlation energy

v

ERPA — %Tr(w —A)

v

CIS correlation energy from Tamm-Dancoff approximation TDA: B = 0

ES™S = %Tr(& —A)

> Keeping only particle-hole ring contractions, yiels matrix Ricatti equation for CCD
cluster amplitudes

B+ AT +TA+TBT =0, £ =T

v

Correlation energy in direct ring Coupled Cluster Doubles (drCCD)

ETOP = éTr(BT)

Heiko Appel (Fritz-Haber-Institut der MPG) Intro to real-space, linear-response, and TD methods August 12, 2013 16 / 44



Relation of TDHF eigenvalue problem to RPA, CIS and drCCD energies

(5 53 )= (v )

» Multiplication of RPA equation with X~ from right yields

» RPA equation

A +BT = XwX ™, where T := YX™*!
» Taking trace yields correlation energies

ZECdrCCD _ TT(BT) _ TT(XCUX71 _ A) — Tfr(w — A) = 2E§PA
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Relation of TDHF eigenvalue problem to RPA, CIS and drCCD energies

(5 53 )= (v )

Multiplication of RPA equation with X~ from right yields

> RPA equation

v

A +BT = XwX ™, where T := YX™*!

v

Taking trace yields correlation energies

ZECdrCCD _ TT(BT) _ TT(XWX71 _ A) . Tfr(w — A) = 2E§PA

v

Multiplication of RPA equation with (T, —1) from left and X' from right

(T, _1)( ﬁa —i ) ( Y;*I ) = (T, _1)( Y)i*l )X“’X_l

Expanding yields drCCD Ricatti equation

v

B+ AT+ TA+TBT =0

— T =YX satisfies drCCD amplitude equation

G. Scuseria, et. al. J. Chem. Phys. 129, 231101 (2008).
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Computing Linear Response

Different ways to compute first order response in DFT

> Response functions, Casida equation

» (frequency-dependent) perturbation theory, Sternheimer equation

> real-time propagation with weak external perturbation
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Sternheimer equation

PHYSICAL REVIEW VOLUME 84, NUMBER 2 OCTOBER 15, 1951

On Nuclear Quadrupole Moments

R. STERNHEIMER
Los Alamos Scientific Laboratory, Los Alamos, New Mexico, and Brookhaven National Laboratory, Uplon, New York*
(Received June 18, 1951)

units. If E, denotes the unperturbed Is energy, the
Schroedinger equation becomes

(H ot Hy) (wok-0) = Eo (o), 3)

since the first-order perturbation of the energy is zero
for s states. Upon subtracting Houy= Et, and to the
first order in Q, we obtain

(Hy— Eoym= — Hyuo. 4)
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Sternheimer equation

> Perturbed Hamiltonian and states (zero frequency)

(FIO+)\H1+)(’lﬁo-ﬁ-)\’(f}l—i-):(Eo-i-)\El-i-)(wo-i-)\?,bl—i-)

> Expand and keep terms to first order in A

Hovo + ANH1o + AHoy1 = Eotho + AEo1 + AE190 + O()\Q)

> Use oo = Eotbo

(Ho — Eo)py = —(Hy — E1)o, Sternheimer equation
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Sternheimer equation in TDDFT

> (Weak) monochromatic perturbation

v1(r,t) = Ar; cos(wt)
» Expand time-dependent Kohn-Sham wavefunctions in powers of A
Y (1, 8) = exp(—i(ef) + Aefy)t)x
{w) n A[exp(zwt) D (r,w) + exp(—iwt)pP (r, w)]}

> Insert in time-dependent Kohn-Sham equation and keep terms up to first order in A
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Sternheimer equation in DFT

» Frequency-dependent response (self-consistent solution!)
[fl(o) —€ tw+ in} 1/)(1)(r, tw) = lfl(l)(:I:w)w(o)(r)7

with first-oder frequency-dependent perturbation

A (w) = v(r) + T1(r w) d*r’ /fch r, v’ w)p (v, w)d*r’

and first-order density response

0 =3 RO 0) + O 0] 0O @)

» Main advantages

> Only occupied states need to be considered
> Scales as N2, where N is the number of atoms
> (Non-)Linear system of equations. Can be solved with standard solvers

» Disadvantage

> Converges slowly close to a resonance
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Different types of perturbations

The response equations can be used for different types of perturbations

» Electric perturbations

v(r) =r;

© (arb. units)

Response contains information about
polarizabilities, absorption, fluoresence,
etc.

\_/\,&,_.._
4

Energy (V)

> Magnetic perturbations
v(r) =L;

Response contains e.g. NMR signals,
etc.

» Atomic displacements

9u(r)
v(r) =
OR;
20 CHy 1250 am't
Response contains e.g. phonons, etc. : ot
asym stretch . *

Frequency
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Outline

Real-space representation and real-time propagation
» Real-space representation for wavefunctions and Hamiltonians

» Time-propagation schemes

» Optimal control of electronic motion

August 12, 2013
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Real-space grids

v

Simulation volumes: sphere, cylinder, parallelepiped

v

Minimal mesh: spheres around atoms, filled with uniform mesh of grid points

\4

Typically zero boundary condition, absorbing boundary, optical potential

v

Finite-difference representation ("stencils”) for the Laplacian/kinetic energy

\4

Pseudopotentials

v

Domain-parallelization

Domain A Domain B

Ghost Points of Domain B
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Real-space grids
» Example: five-point finite difference Laplacian in 2D

2

o T e L L i 1)+ 2000, 5) — (i + 1, 5)]
2

o g ™ e |~ 00T = 1)+ 200.0) = 906, + )

» Stencil notation for kinetic energy

e i RLCr)

> Leads to sparse matrices

Heiko Appel (Fritz-Haber-Institut der MPG)
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Real-space grids

» Size of Hamiltonian matrix can easily reach 107x10”

» Basic operation Hvy) — sparse matrix vector operations

» Sparse solvers
» Conjugate gradients

> Krylov subspace/Lanczos methods

» Davidson or Jacobi-Davidson algorithm

v

Multigrid methods
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Real-time evolution for the time-dependent Kohn-Sham system

> Time-dependent Kohn-Sham equations

2v72

M (e, 1) = (—Z +uslt, t)) os(r,)

&'+ vae[p(r', 1)) (r, )

vs[p(r’, t)](r, t) (r t)+/| v

D=3l

» Initial value problem

i(r,t) = o (r)
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Real-time evolution for the time-dependent Kohn-Sham system

> Time-dependent Kohn-Sham equations

2v72

M (e, 1) = (—Z +uslt, t)) os(r,)

&'+ vae[p(r', 1)) (r, )

vs[p(r’, t)](r, t) (r t)+/| v

2
t) = Z ;i (r,7)]
j=1
» Initial value problem

i(r,t) = o (r)

» Time-evolution operator U (t, )

@;i(r,t) = Ul(t, to)p;(r, to)
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Properties of ﬁ(t, to)

> U(LZ to) is a non-linear operator
» The propagator is unitary UT = U ™!

> In the absence of magnetic fields the propagator is time-reversal symmetric

U~ (t,to) = Ulto, t)
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Properties of ﬁ(t, to)

v

U(t,to) is a non-linear operator

» The propagator is unitary ot=0""

> In the absence of magnetic fields the propagator is time-reversal symmetric
U~ (t,to) = Ulto, t)

» Equation of motion for the propagator

ihdU(t, to) = H(t)U(t, to), Ulto, to) = 1
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Properties of ﬁ(t, to)

v

U(t,to) is a non-linear operator

» The propagator is unitary ot=0""

> In the absence of magnetic fields the propagator is time-reversal symmetric
U~ (t,to) = Ulto, t)

» Equation of motion for the propagator

ihdU(t, to) = H(t)U(t, to), Ulto, to) = 1

> Representation in integral form

Ult,to) =1 — i/t drH (1)U (7, to)

to
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Properties of ﬁ(t, to)

U(t7 to) is a non-linear operator

v

» The propagator is unitary ot=0""

> In the absence of magnetic fields the propagator is time-reversal symmetric
UMt to) = Ulto, t)

» Equation of motion for the propagator

ihdU(t, to) = H(t)U(t, to), Ulto, to) = 1

> Representation in integral form

Ult,to) =1 — i/t drH (1)U (7, to)

to

v

Iterated solution of integral equation - time-ordered exponential

Ult, to) = Z( /dtl/ dts .. /dtn H(ts) ..

n=0

m>

(tn)]

:Texp(—i/t drH (7))
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Real-time evolution - Short-time propagation

» Group property of exact propagator
Ulti,t2) = U(tr, t3)U(t3, t2)

> Split propagation step in small short-time propagation intervals

N—

Ult, to) H (tj, t; + Aty)

» Why is this a good idea?
> If we want to resolve frequencies up to wmax, the time-step should be no larger than
~ 1/wmax

> The time-dependence of the Hamiltonian is small over a short-time interval

> The norm of the time-ordered exponential is proportional to At.
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Real-time evolution - Magnus expansion

» Time-ordered evolution operator
Ult, to) = n| /dtl/ dts .. /dt TIHt)H(ts) ... H(t,))]
n= 0

:Texp(—i/ drH(1))

to
> Magnus expansion

U(t + At,t) = exp (01+Qz+§23+---)

» Magnus operators

) tHAt
O :—z/ H(r)dr

/t+At/ T2)]dT2dT1

@>
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Real-time evolution - Magnus expansion

» Second-order Magnus propagator - Exponential midpoint rule
UP (t 4 At,t) = exp (Ql) +0(A?)
Q1 = —iH(t 4+ At/2) + O(A®).
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Real-time evolution - Magnus expansion

» Second-order Magnus propagator - Exponential midpoint rule
UP (t 4 At,t) = exp (Ql> +0(A?)
Q1 = —iH(t + At/2) + O(AL).
» Fourth-order Magnus propagator

UM (t+ At,t) = exp ( 1+ Qz) + O(AL°)
H

Qo = —i[H (1), H(72)] 5
T1.2 —t—i—(%ﬂ:%)At

August 12, 2013
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Real-time evolution - Crank-Nicholson/Cayley propagator

» Padé approximation of exponential, e.g. lowest order (Crank-Nicholson)

exp(—iHAL) ~ ﬁ

> Need only action of operator on a state vector

Wt + AL) = %lw))

> (Non-)Linear system of equations at each time-step

(1+iHAL/2)|U(t + Ab)) = (1 — iHAL/2)[T(t))
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Real-time evolution - Operator splitting methods

» Typically, the Hamiltonian has the form H=T+V

v

Tis diagonal in momentum space, Vin position space

v

Baker-Campbell-Hausdorff relation

etef = exp(A + B+

v

Split-Operator

exp(—iAH(T + V) ~ exp(—iAtT/2) exp(—iAtV) exp(—iAtT/2)

Use FFT to switch between momentum space and real-space.

» Higher-order splittings possible, but require more FFTs
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Real-time evolution - Enforced time reversal symmetry

» Enforced time-reversal symmetry

exp(-l—i%f](t A T(L+ AL)) = exp(—i%f[(t))hll(t))

> Propagator with time-reversal symmetry

OFTRS (4 4 At 1) = exp(—i%ﬁ(t + A1) exp(—i%ﬁ(t))
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Real-time evolution - Matrix exponential

1—iHAt/2
14 iHAt/2
U™M(t + At t) = exp (—iAtFI(t + At/Q))

UN(t 4 At t) =

USC(t + At, t) = exp(—iAtT /2)exp(—iAtV )exp(—iAtT/2)

OFTRS (4 4 At 1) = exp(—i%fl(t + Anexp(~i LA (1))
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Real-time evolution - Matrix exponential

1—iHAt/2

14 iHAt/2

U™M(t + At t) = exp (—iAtFI(t + At/Q))

USC(t + At, t) = exp(—iAtT /2)exp(—iAtV )exp(—iAtT/2)

UN(t 4 At t) =

UPTRS (4 + AL t) = exp(—i%l?l(t + At))exp(—i%ﬂ(t))
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Real-time evolution - Matrix exponential

C. Moler and C. Van Loan, Nineteen Dubious Ways to Compute the Exponential of A Matrix, SIAM Review 20, 801 (1978)

C. Moler and C. Van Loan, Nineteen Dubious Ways to Compute the Exponential of A Matrix,
Twenty-Five Years Later, SIAM Review 45, 3 (2003)

Task: Compute exponential of operator/matrix
» Taylor series
> Chebyshev polynomials
» Padé approximations
» Scaling and squaring
» Ordinary differential equation methods
» Matrix decomposition methods

> Splitting methods

Task: Compute e for given v
» Taylor series

» Chebyshev rational approximation

» Lanczos-Krylov subspace projection
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Real-time evolution - Movie time

Proton scattering of fast proton with ethene
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Octopus code

» Octopus: real-space, real-time TDDFT code, available under GPL
http://tddft.org/programs/octopus/wiki/index.php/Main_Page

(Parsec: real-space, real-time code using similar concepts)

> libxc: Exchange-Correlation library, available under LGPL
(used by many codes: Abinit, APE, AtomPAW, Atomistix ToolKit, BigDFT, DP,
ERKALE, GPAW, EIk, exciting, octopus, Yambo)

http://tddft.org/programs/octopus/wiki/index.php/Libxc
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Optimal control theory

Control of ring current in a quantum ring

t=0]] t=10

external potential

density profile

Optimal Control of Quantum Rings by Terahertz Laser Pulses, E. Rasanen, et. al, Phys. Rev. Lett. 98, 157404 (2007).
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Optimal control theory

Goal: find optimal laser pulse €(t) that drives the system to a desired state ®y

> maximize overlap functional

J[V] = [(W(T) | @f) [,

> constrain laser intensity

T
bM:—m/e%Mﬁ
0
> Lagrange multiplier density to ensure evolution with TDSE

J3[W, X, €] = —2|m/0T<X(t)

Q@_ﬁwﬂwm>m

Find maximum of J1[¥] + Jo[e] + J3[¥, x, €
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Optimal control theory

» First variation of the functional

0J = 0w + 0y J + 0. =0
» Control equations

bod =0+ (D= HO)[x0) =0, [X(T)) = &) (s ¥(T))

5T =0 (iat—ﬁ(t))|\ll(t)):0, |(0)) =|®;),

0eJ =0 : aoge(t)=—Im{x®)|a|v ().
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Optimal control theory

Optimal laser pulse and level population

(ba) (b)

N
r\ 1=_2v1=2 o.
1=-1*- l7"=1 1=—1 =1
1=0 1=0

0.5 01 0.9999
3 3
< < c
~0.05 €x -0.1 g 0.999
1 1
I=-1 1=1 1=-2 2 3
0.8 0.8 8
H 1=0 § -101 o 0%
2 0.6 % 0.6
] s
8 0.4 8 0.4 0.9
o o
0.2 0.2
0 25 50 0 35 70 %
t(a.u) t(a.u)

Optimal Control of Quantum Rings by Terahertz Laser Pulses, E. Rasanen, et. al, Phys. Rev. Lett. 98, 157404 (2007).
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