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Microscopic

Length-scale: L < 1μm
Potential:      U1 - U2 ~ 1 V
Field:           ∇U ≫ 10-6 V/Å
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Field:           ∇ U ≪ 10-6 V/Å

local non-equilibrium
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Macroscopic

Length-scale: L > 1cm
Potential:      U1 -U2 ~ 100V
Field:           ∇ U < 10-6 V/Å

U1 U2 U3

U1 > U2 > U3 

Global non-equilibrium,
but local equilibrium!

L. Onsager, Phys. Rev. 37, 405 (1931).
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Macroscopic

Length-scale: L > 1mm
Potential:      U1 -U2 ~ 100V
Field:           ∇ U ≪ 10-6 V/Å
Flux:            j(r) ~ σ ∇U(r)

local equilibrium

Length-scale: L < 1μm
Potential:      U1 - U2 ~ 1 V
Field:           ∇U ≫ 10-6 V/Å
Flux:            J ~ G(U1 - U2)

local non-equilibrium
L. Onsager, Phys. Rev. 37, 405 (1931).
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BASICS OF MACROSCOPIC TRANSPORT

    The Diffusion Equation:
 (e.g. mass, heat & charge transport)

@⇢(r, t)

@t
= �r2⇢(r, t)

    Proportionality of flux 
          and gradient:

j = �� r⇢

    The Continuity Equation:
 (valid for any conserved quantity ρ)

@⇢

@t
+r · j = 0



MACROSCOPIC TRANSPORT

Fourier‘s Law:
Jh = � rT

+ –
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Jq Jh

rT

Ohm‘s Law:
Jq = �� rU = � E

Can we compute transport 
coefficients from the electronic & 

nuclear dynamics?



I. THE HARMONIC CRYSTAL
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THE INTERATOMIC INTERACTION
The total energy E is a 3N-dimensional surface

Taylor expansion:

Only valid for small
elongations!

E = V (R1,R2, · · · ,RN )
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THE HARMONIC APPROXIMATION

 Determine harmonic force constants Φij:
• from Density-Functional Perturbation Theory

S. Baroni, P. Giannozzi, and A. Testa, Phys. Rev. Lett. 58, 1861 (1987) &
S. Baroni, et al., Rev. Mod. Phys. 73, 515 (2001).

• from Finite Differences
K. Kunc, and R. M. Martin, Phys. Rev. Lett. 48, 406 (1982) &
K. Parlinski, Z. Q. Li, and Y. Kawazoe, Phys. Rev. Lett. 78, 4063 (1997).

E ({R0 + �R}) ⇡ E ({R0}) +
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Static Equilibrium Energy
Forces vanish at R0

Hessian Φij



THE HARMONIC SOLID
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Eigenvalue problem:
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R = R0 +

X

s

As
cos (�s + !st)p

Mi
· ⌫s



THE HARMONIC APPROXIMATION
Phonon band structure                  & DOS
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THE HARMONIC FREE ENERGY
Static Equilibrium Energy

Zero-point vibration
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THE HARMONIC FREE ENERGY
Static Equilibrium Energy
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THE HARMONIC FREE ENERGY
Static Equilibrium Energy

Zero-point vibration
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Quasi-harmonic approximation:

Compute F(T, V) by varying the lattice constants a
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THE HARMONIC FREE ENERGY
Static Equilibrium Energy
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II. HEAT TRANSPORT
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+ vast experience
+ established methodologies
– accuracy is a question



time

m 

mm

µm

nm

fs             ps             ns            µs            ms           

space

Heat Transport Mechanisms

TIME AND LENGTH SCALES

Semi-empirical potentials:
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+ established methodologies
– accuracy is a question

+ more accurate interactions
– limited time and length scales
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TIME AND LENGTH SCALES

Semi-empirical potentials:

First-principles approaches:
+ more accurate interactions
– limited time and length scales

This talk:
How to adapt heat transport simulation techniques developed 

for semi-empirical potentials to first-principles calculations.



BOLTZMANN TRANSPORT EQUATION
R. Peierls, Ann. Phys. 395,1055 (1929). 

D. A. Broido et al., Appl. Phys. Lett. 91, 231922 (2007).

Boltzmann-Peierls-Transport-Equation describes the 
evolution of the phonon phase space distribution f(ω,q,t).

f(ω,q,t) f(ω,q,t+dt)Boltzmann
Transport
Equation



Boltzmann-Peierls-Transport-Equation describes the 
evolution of the phonon phase space distribution f(ω,q,t).

f(x,p,t) f(x,p,t+dt)Boltzmann
Transport
Equation

Single-mode relaxation time approximation

Harmonic phonon theory

 ⇠
X

s

c2
s !2

s ns(ns + 1) ⌧s

Group velocity Frequency Equilibrium 
population

phonon 
lifetime

?

(A) BOLTZMANN TRANSPORT EQUATION
R. Peierls, Ann. Phys. 395,1055 (1929). 

D. A. Broido et al., Appl. Phys. Lett. 91, 231922 (2007).



Phonon Lifetimes from First Principles

• from Density Functional Perturbation Theory
J. Garg et al., Phys. Rev. Lett. 106, 045901 (2011).

• from fitting the forces in ab initio MD
K. Esfarjani, and H. T. Stokes, Phys. Rev. B 77, 144112 (2008).

• from fitting the phonon line width determined via ab initio MD 
N. De Koker,  Phys. Rev. Lett. 103,125902 (2009).

All these approaches give very accurate results for good 
thermal conductors at low temperatures.

Results are questionable at high levels of anharmonicity!



FIRST-PRINCIPLES APPROACHES 
Order of 

interaction
Validity & 

Applicability
Finite Size 

Effects
Disorder

Boltzmann-
Transport Eq.

~�(r3) low T Minute Parameter

Non-Equilib. 
MD

Laser-flash 
MD

Green-Kubo 
MD

Boltzmann-Transport-Eq. gives very accurate results 
for perfect crystals at low temperatures.



NON-EQUILIBRIUM MD
S. Stackhouse, L. Stixrude, and B. B. Karki, Phys. Rev. Lett. 104, 208501(2010).

heat
source

heat
sink

•Temperature gradient ∇T 
•Stationary heat flux J

⇓
Thermal conductivity can be calculated 

by applying Fourier‘ s Law.

J = � rT
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Here, the factor of 4 accounts for the fact that as phonons
travel along the length of the simulation cell from the source
to the sink, its average distance since the last scattering event
should be Lz/4. In other words, if we randomly select several
phonons, on average they will be at a distance Lz/4 from
either the source or the sink where the last anharmonic scat-
tering event occurred. This assumes it has not undergone any
anharmonic phonon-phonon scattering in the region between
the source and the sink "i.e., it moves ballistically across the
system#. Equation "3# suggests that a plot of 1/$ vs 1/Lz
should be linear, and that the thermal conductivity of an in-
finite system can be obtained by extrapolating to 1/Lz!0.
Indeed, this procedure has been carried out by Oligschleger
and Schon to obtain $ from simulations of trigonal Se
crystals.4
In addition to ballistic phonon transport, Cenian and

Gabriel27 have found that solitonlike modes may propagate
ballistically across a system, resulting in deviations from
Fourier’s law and a system-size-dependent thermal conduc-
tivity. However, these effects depend strongly on the energy
of the input pulse and are only important for input energies
on the order of a few eV. This can be compared to the rather
small input energies used here (%10#4 eV). In the last sec-
tion, we showed that the current simulation results depend
only weakly on the excitation energy &', which is an indi-
cation that ballistic soliton propagation is not important in
the current work. Even if solitons were a significant mode of
energy transport in the current work, Eq. "3# should still be a
useful way of determining the mean-free path for an infinite
system l! as long as the system sizes used are at least com-
parable to l! . In Ref. 27, the soliton mean-free path was
found to be about 70 lattice parameters at temperatures be-
low 50 K and can be expected to decrease strongly with
increasing temperature. Since we use rather long simulation
cells "between 96 and 768 lattice parameters# and high tem-
peratures "500 and 1000 K#, we believe that we are always in
a regime where Lz is significantly larger than the soliton
mean-free path. Therefore, Eq. "3# should apply to the cur-
rent work regardless of whether the ballistic component is
phononlike or solitonlike.
For the Si system, we have performed simulations as a

function of both Lz and simulation temperature T. We used
systems ranging from 96 to 768 unit cells long, correspond-
ing to Lz from 52 to 417 nm. For a nonprimitive unit cell
containing eight atoms the largest system, 4$4$768, con-
tained 98 304 Si atoms. The results for the thermal conduc-
tivity are shown in Fig. 6. For comparison, we also show
data that we obtained for diamond using the Tersoff potential
for carbon.29 We first note from Fig. 6 that the slopes of the
T!500 K and T!1000 K data for Si seem to be very simi-
lar. To understand this effect, recall that the thermal conduc-
tivity in kinetic theory is given by

$! 1
3 cvl, "4#

where c is the specific heat of the phonons, v is the group
velocity of an acoustic branch, and l is the mean-free path for
scattering. For a purely classical simulation of the type de-
scribed here, each normal mode will have kBT of energy on
average. However, the specific heat in Eq. "4# is intended to
be only for those that carry a significant thermal current. In
the case of Si, which has three optical and three acoustic
branches, we expect that the majority of heat is carried by the
acoustic modes that have a significantly larger group veloc-
ity. With this assumption, the appropriate specific heat to use
in Eq. "4# is given by

c! 3
2 kBn , "5#

where n is the number density of atoms in the system. Now
if we use our simple approach for determining 1 (Eq. "3#) we
obtain

1
$

!
a3

4kBv ! 1l! "
4
Lz

" . "6#

This gives us a crude estimate of the slope of 1/$ vs 1/Lz
plots shown in Fig. 6. If we assume that v in Eq. "6# is given
by the average of the transverse and longitudinal branches as
v!1/3(vL"2vT), we obtain v*6500 m/s from the elastic
constants calculated in Ref. 21 for the SW potential. This
results in a prediction of the slope of 1/$ vs 1/Lz for the SW
Si model of 1.8$10#9 m2K/W, which can be compared to
the result of the linear fit in Fig. 6 at 500 K of (2.0%0.4)
$10#9 and (2.9% .5)$10#9 m2K/W at 1000 K. For dia-
mond, which has a smaller lattice constant and larger sound
velocity, we see the Eq. "6# predicts a smaller slope when
compared to Si, which is indeed observed in Fig. 6. Using
the experimental sound velocities,28 we obtain a prediction
for the slope of 2.2$10#10 m2K/W, which can be compared
to the result in Fig. 7 of (3.3% .01)$10#10 m2K/W. While
the predictions and actual observed results appear to differ
somewhat, and there appears to be some temperature depen-

FIG. 6. System size dependence of 1/$ on 1/Lz . Data are shown
for Si at T!500 K and T!1000 K and for diamond at T
!1000 K. We note that the rate of change of 1/$ with 1/Lz for Si
appears to be only slightly dependent on temperature. Also, the rate
of change for diamond appears to be different than the Si system.
This is the result of differences in the lattice constant and sound
velocities of diamond and Si.

COMPARISON OF ATOMIC-LEVEL SIMULATION . . . PHYSICAL REVIEW B 65 144306

144306-5

 P. Schelling, S. Phillpot, and P. Keblinski, 
Phys. Rev. B 65, 144306 (2002).
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Here, the factor of 4 accounts for the fact that as phonons
travel along the length of the simulation cell from the source
to the sink, its average distance since the last scattering event
should be Lz/4. In other words, if we randomly select several
phonons, on average they will be at a distance Lz/4 from
either the source or the sink where the last anharmonic scat-
tering event occurred. This assumes it has not undergone any
anharmonic phonon-phonon scattering in the region between
the source and the sink "i.e., it moves ballistically across the
system#. Equation "3# suggests that a plot of 1/$ vs 1/Lz
should be linear, and that the thermal conductivity of an in-
finite system can be obtained by extrapolating to 1/Lz!0.
Indeed, this procedure has been carried out by Oligschleger
and Schon to obtain $ from simulations of trigonal Se
crystals.4
In addition to ballistic phonon transport, Cenian and

Gabriel27 have found that solitonlike modes may propagate
ballistically across a system, resulting in deviations from
Fourier’s law and a system-size-dependent thermal conduc-
tivity. However, these effects depend strongly on the energy
of the input pulse and are only important for input energies
on the order of a few eV. This can be compared to the rather
small input energies used here (%10#4 eV). In the last sec-
tion, we showed that the current simulation results depend
only weakly on the excitation energy &', which is an indi-
cation that ballistic soliton propagation is not important in
the current work. Even if solitons were a significant mode of
energy transport in the current work, Eq. "3# should still be a
useful way of determining the mean-free path for an infinite
system l! as long as the system sizes used are at least com-
parable to l! . In Ref. 27, the soliton mean-free path was
found to be about 70 lattice parameters at temperatures be-
low 50 K and can be expected to decrease strongly with
increasing temperature. Since we use rather long simulation
cells "between 96 and 768 lattice parameters# and high tem-
peratures "500 and 1000 K#, we believe that we are always in
a regime where Lz is significantly larger than the soliton
mean-free path. Therefore, Eq. "3# should apply to the cur-
rent work regardless of whether the ballistic component is
phononlike or solitonlike.
For the Si system, we have performed simulations as a

function of both Lz and simulation temperature T. We used
systems ranging from 96 to 768 unit cells long, correspond-
ing to Lz from 52 to 417 nm. For a nonprimitive unit cell
containing eight atoms the largest system, 4$4$768, con-
tained 98 304 Si atoms. The results for the thermal conduc-
tivity are shown in Fig. 6. For comparison, we also show
data that we obtained for diamond using the Tersoff potential
for carbon.29 We first note from Fig. 6 that the slopes of the
T!500 K and T!1000 K data for Si seem to be very simi-
lar. To understand this effect, recall that the thermal conduc-
tivity in kinetic theory is given by

$! 1
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where c is the specific heat of the phonons, v is the group
velocity of an acoustic branch, and l is the mean-free path for
scattering. For a purely classical simulation of the type de-
scribed here, each normal mode will have kBT of energy on
average. However, the specific heat in Eq. "4# is intended to
be only for those that carry a significant thermal current. In
the case of Si, which has three optical and three acoustic
branches, we expect that the majority of heat is carried by the
acoustic modes that have a significantly larger group veloc-
ity. With this assumption, the appropriate specific heat to use
in Eq. "4# is given by

c! 3
2 kBn , "5#

where n is the number density of atoms in the system. Now
if we use our simple approach for determining 1 (Eq. "3#) we
obtain

1
$

!
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4kBv ! 1l! "
4
Lz

" . "6#

This gives us a crude estimate of the slope of 1/$ vs 1/Lz
plots shown in Fig. 6. If we assume that v in Eq. "6# is given
by the average of the transverse and longitudinal branches as
v!1/3(vL"2vT), we obtain v*6500 m/s from the elastic
constants calculated in Ref. 21 for the SW potential. This
results in a prediction of the slope of 1/$ vs 1/Lz for the SW
Si model of 1.8$10#9 m2K/W, which can be compared to
the result of the linear fit in Fig. 6 at 500 K of (2.0%0.4)
$10#9 and (2.9% .5)$10#9 m2K/W at 1000 K. For dia-
mond, which has a smaller lattice constant and larger sound
velocity, we see the Eq. "6# predicts a smaller slope when
compared to Si, which is indeed observed in Fig. 6. Using
the experimental sound velocities,28 we obtain a prediction
for the slope of 2.2$10#10 m2K/W, which can be compared
to the result in Fig. 7 of (3.3% .01)$10#10 m2K/W. While
the predictions and actual observed results appear to differ
somewhat, and there appears to be some temperature depen-

FIG. 6. System size dependence of 1/$ on 1/Lz . Data are shown
for Si at T!500 K and T!1000 K and for diamond at T
!1000 K. We note that the rate of change of 1/$ with 1/Lz for Si
appears to be only slightly dependent on temperature. Also, the rate
of change for diamond appears to be different than the Si system.
This is the result of differences in the lattice constant and sound
velocities of diamond and Si.

COMPARISON OF ATOMIC-LEVEL SIMULATION . . . PHYSICAL REVIEW B 65 144306

144306-5

Stillinger-Weber-Potential

Non-equilibrium MD exhibits strong finite-size artifacts 
in supercells typically accessible within DFT/AIMD.

 P. Schelling, S. Phillpot, and P. Keblinski, 
Phys. Rev. B 65, 144306 (2002).
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Here, the factor of 4 accounts for the fact that as phonons
travel along the length of the simulation cell from the source
to the sink, its average distance since the last scattering event
should be Lz/4. In other words, if we randomly select several
phonons, on average they will be at a distance Lz/4 from
either the source or the sink where the last anharmonic scat-
tering event occurred. This assumes it has not undergone any
anharmonic phonon-phonon scattering in the region between
the source and the sink "i.e., it moves ballistically across the
system#. Equation "3# suggests that a plot of 1/$ vs 1/Lz
should be linear, and that the thermal conductivity of an in-
finite system can be obtained by extrapolating to 1/Lz!0.
Indeed, this procedure has been carried out by Oligschleger
and Schon to obtain $ from simulations of trigonal Se
crystals.4
In addition to ballistic phonon transport, Cenian and

Gabriel27 have found that solitonlike modes may propagate
ballistically across a system, resulting in deviations from
Fourier’s law and a system-size-dependent thermal conduc-
tivity. However, these effects depend strongly on the energy
of the input pulse and are only important for input energies
on the order of a few eV. This can be compared to the rather
small input energies used here (%10#4 eV). In the last sec-
tion, we showed that the current simulation results depend
only weakly on the excitation energy &', which is an indi-
cation that ballistic soliton propagation is not important in
the current work. Even if solitons were a significant mode of
energy transport in the current work, Eq. "3# should still be a
useful way of determining the mean-free path for an infinite
system l! as long as the system sizes used are at least com-
parable to l! . In Ref. 27, the soliton mean-free path was
found to be about 70 lattice parameters at temperatures be-
low 50 K and can be expected to decrease strongly with
increasing temperature. Since we use rather long simulation
cells "between 96 and 768 lattice parameters# and high tem-
peratures "500 and 1000 K#, we believe that we are always in
a regime where Lz is significantly larger than the soliton
mean-free path. Therefore, Eq. "3# should apply to the cur-
rent work regardless of whether the ballistic component is
phononlike or solitonlike.
For the Si system, we have performed simulations as a

function of both Lz and simulation temperature T. We used
systems ranging from 96 to 768 unit cells long, correspond-
ing to Lz from 52 to 417 nm. For a nonprimitive unit cell
containing eight atoms the largest system, 4$4$768, con-
tained 98 304 Si atoms. The results for the thermal conduc-
tivity are shown in Fig. 6. For comparison, we also show
data that we obtained for diamond using the Tersoff potential
for carbon.29 We first note from Fig. 6 that the slopes of the
T!500 K and T!1000 K data for Si seem to be very simi-
lar. To understand this effect, recall that the thermal conduc-
tivity in kinetic theory is given by

$! 1
3 cvl, "4#

where c is the specific heat of the phonons, v is the group
velocity of an acoustic branch, and l is the mean-free path for
scattering. For a purely classical simulation of the type de-
scribed here, each normal mode will have kBT of energy on
average. However, the specific heat in Eq. "4# is intended to
be only for those that carry a significant thermal current. In
the case of Si, which has three optical and three acoustic
branches, we expect that the majority of heat is carried by the
acoustic modes that have a significantly larger group veloc-
ity. With this assumption, the appropriate specific heat to use
in Eq. "4# is given by

c! 3
2 kBn , "5#

where n is the number density of atoms in the system. Now
if we use our simple approach for determining 1 (Eq. "3#) we
obtain

1
$

!
a3

4kBv ! 1l! "
4
Lz

" . "6#

This gives us a crude estimate of the slope of 1/$ vs 1/Lz
plots shown in Fig. 6. If we assume that v in Eq. "6# is given
by the average of the transverse and longitudinal branches as
v!1/3(vL"2vT), we obtain v*6500 m/s from the elastic
constants calculated in Ref. 21 for the SW potential. This
results in a prediction of the slope of 1/$ vs 1/Lz for the SW
Si model of 1.8$10#9 m2K/W, which can be compared to
the result of the linear fit in Fig. 6 at 500 K of (2.0%0.4)
$10#9 and (2.9% .5)$10#9 m2K/W at 1000 K. For dia-
mond, which has a smaller lattice constant and larger sound
velocity, we see the Eq. "6# predicts a smaller slope when
compared to Si, which is indeed observed in Fig. 6. Using
the experimental sound velocities,28 we obtain a prediction
for the slope of 2.2$10#10 m2K/W, which can be compared
to the result in Fig. 7 of (3.3% .01)$10#10 m2K/W. While
the predictions and actual observed results appear to differ
somewhat, and there appears to be some temperature depen-

FIG. 6. System size dependence of 1/$ on 1/Lz . Data are shown
for Si at T!500 K and T!1000 K and for diamond at T
!1000 K. We note that the rate of change of 1/$ with 1/Lz for Si
appears to be only slightly dependent on temperature. Also, the rate
of change for diamond appears to be different than the Si system.
This is the result of differences in the lattice constant and sound
velocities of diamond and Si.
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Stillinger-Weber-Potential

Non-equilibrium MD can suffer from non-linear artifacts
in supercells typically accessible within DFT/AIMD.

 P. Schelling, S. Phillpot, and P. Keblinski, 
Phys. Rev. B 65, 144306 (2002).



FIRST-PRINCIPLES APPROACHES 
Order of 

interaction
Validity & 

Applicability
Finite Size 

Effects
Disorder

Boltzmann-
Transport Eq.

~�(r3) low T Minute Parameter

Non-Equilib. 
MD

Full all T Huge as in 
supercell

Laser-flash 
MD

Green-Kubo 
MD

Non-Equilibrium MD approaches are in principle exact,
in DFT however prohibitively costly to converge accurately. 



T = Tcold

„LASER FLASH“ MEASUREMENTS
W. J. Parker et al., J. Appl. Phys. 32,1679 (1961).



Heat

T = TcoldT = Thot

„LASER FLASH“ MEASUREMENTS
W. J. Parker et al., J. Appl. Phys. 32,1679 (1961).



T = Tcold

heat diffusion
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Heat Diffusion Equation:

Extract the heat diffusivity α by fitting T(x,t)

„LASER FLASH“ MEASUREMENTS
W. J. Parker et al., J. Appl. Phys. 32,1679 (1961).



„LASER FLASH“ SIMULATIONS
T. M. Gibbons and S. K. Estreicher, Phys. Rev. Lett. 102, 255502 (2009).

(A) Prepare two supercells: a small hot one and a large cold one.

Mimic the „Laser-Flash Measurements“ 
in ab initio MD simulations:



In the harmonic approximation, the
positions ri and the velocities vi are related to the
vibrational eigenfrequencies ωs and -vectors es.

Maxwell-Boltzmann 
distributed amplitudes

random
phase

harmonic 
approximation

r0i + �ri = +

X

s

As(T )

cos (�s + !st)p
Mi

· es

vi = �
X

s

As(T )

sin (�s + !st)p
Mi

· !s · es

Setup of the Cell in Non-Equilibrium



„LASER FLASH“ SIMULATIONS
T. M. Gibbons and S. K. Estreicher, Phys. Rev. Lett. 102, 255502 (2009).

Mimic the „Laser-Flash Measurements“ 
in ab initio MD simulations:



„LASER FLASH“ SIMULATIONS
T. M. Gibbons and S. K. Estreicher, Phys. Rev. Lett. 102, 255502 (2009).

(A) Prepare two supercells: a small hot one and a large cold one.
(B) Let the heat diffuse via ab initio MD 

and monitor the temperature profile T(x,t).

Mimic the „Laser-Flash Measurements“ 
in ab initio MD simulations:
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The finite number of atoms leads to large 
temperature fluctuations.

„LASER FLASH“ SIMULATIONS
T. M. Gibbons and S. K. Estreicher, Phys. Rev. Lett. 102, 255502 (2009).
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APPLICATION TO IMPURITIES IN SI
T. M. Gibbons, By. Kang, S. K. Estreicher, and C. Carbogno, Phys. Rev. B 84, 035317 (2011).

3

In this paper, we extend our earlier work [4] in sev-
eral ways. In Sec. II, we describe our theoretical method
in detail, including the specifics of supercell preparation,
the normal-mode phase matching at the hot/cold inter-
face, and the averaging required to obtain κ. In Sec. III,
we discuss the changes introduced by impurities in the
phonon density of states and the specific heat, predict
the temperature-dependence of the thermal conductivity
in the Si192 supercell, the dependence of κ on the con-
centration of impurities, and then focus on the change
in κ(T = 125 K) when the supercell contains 5.2 atomic
percent of vacancies or various isotopes of C, Si, Fe, or
Ge. The strong variation of κ with the impurity isotope
is correlated to the localization of some impurity-related
modes. The key results are discussed in Sec. IV.

II. METHODOLOGY

A. Supercell construction

The host crystal is represented by periodic supercells
constructed by stacking slices along a specific crystalline
direction. Most of our calculations are done with twelve
16-Si atoms slices stacked along the <100> direction to
create a parallelepiped which is 33 Å long and has a di-
ameter of 15 Å. We have also used [4] the Si384 and Si768

supercells to investigate the impact of the cross-sectional
area on the thermal conductivity (Fig. 1). A similar con-
struction can be performed for Si nanowires to investigate
the impact of the surface conditions or impurity content
on the thermal conductivity [31]. Because the thermal
conductivity calculations are highly computer intensive,
we restrict the Brillouin-zone sampling to the Γ point.

B. Electronic structure method

The first-principles DF calculations are carried out us-
ing the SIESTA package [32, 33], but our method is not
restricted to this particular electronic structure code. In-
deed, it has also been successfully used to calculate the
thermal conductivity of oxides [34] using the all-electron
simulation package FHI-aims [35].

In the SIESTA approach, the electronic core re-
gions are removed from the calculations using ab-initio
norm-conserving pseudopotentials with the Troullier-
Martins parameterization [36] in the Kleinman-Bylander
form [37]. The SIESTA pseudopotentials have been opti-
mized using the experimental bulk properties of the per-
fect solids and/or first-principles calculations [38] as well
as vibrational properties of free molecules or known de-
fects, when such experimental data are available.

The valence regions are treated using first-principles
spin-DF theory with the exchange-correlation poten-
tial of Ceperley-Alder [39] as parameterized by Perdew-
Zunger [40]. The calculations involving heavy elements

FIG. 1. (Color online) The Si192, Si384, and Si768 super-
cells consist of twelve Si16, Si32, and Si64 slices, respectively,
aligned along the <100> direction. The supercells are shown
with a random distribution of 5.2 atomic percent of substitu-
tional impurities (red atoms). The three supercells are 3.3 nm
long. Their diameters are 1.54, 2.44, and 4.50 nm, respec-
tively.

such as Fe or Ge are treated within the generalized gra-
dient approximation for the exchange-correlation poten-
tial [41]. The basis sets for the valence states are linear
combinations of numerical atomic orbitals [42, 43]. We
use a double-zeta basis set for H, C, and Si, and add po-
larizations functions for Ge. The basis set for Fe consists
of two sets of valence s and d’s and one set of p’s. The
charge density is projected on a real-space grid with an
equivalent cutoff of 350 Ryd to calculate the exchange-
correlation and Hartree potentials.

C. Vibrational spectra

The defect configurations must be optimized with care
using a conjugate gradient algorithm. Our standard re-
quirement is that the maximum force component be 0.003
to 0.001 eV/Å. Supercell preparation relies on accurate
dynamical matrices (see below) and unphysical negative
frequencies come up when the geometries are insuffi-

Si192 supercell containing ~5.2% impurities 

How do the 
properties of the impurities 

affect the 
thermal conductivity of the system?



Vacancies

Thermal conductivity can be controlled via the impurities‘ mass!

28Si

56Si

APPLICATION TO IMPURITIES IN SI
T. M. Gibbons and S. K. Estreicher, Phys. Rev. Lett. 102, 255502 (2009).



APPLICATION TO IMPURITIES IN SI
T. M. Gibbons, By. Kang, S. K. Estreicher, and C. Carbogno, Phys. Rev. B 84, 035317 (2011).

Carbon

Iron

Germanium

Not all impurities are created equal!

12C

55Fe

74Ge



SiGe, Stillinger-Weber Potential,
Courtesy of Philip Howell, Siemens AG
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FINITE SIZE EFFECTS

Laser-flash approach exhibits strong finite-size artifacts 
in supercells typically accessible within DFT/AIMD.

0 0.02 0.04 0.06
1/Lz (unit cell)-1

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1/
κ 

(W
/m

K
)-1



0 0.1 0.2 0.3 0.4 0.5
1/Lz (unit cell)-1

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

5
5.5

6

1/
κ 

(W
/m

K
)-1

FINITE SIZE EFFECTS
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approximation allows to use rather small thermal gradients.

unphysically large ∇T ≫ 109K/m

0 0.02 0.04 0.06
1/Lz (unit cell)-1

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1/
κ 

(W
/m

K
)-1



FIRST-PRINCIPLES APPROACHES 
Order of 

interaction
Validity & 

Applicability
Finite Size 

Effects
Disorder

Boltzmann-
Transport Eq.

~�(r3) low T Minute Parameter

Non-Equilib. 
MD

Full all T Huge as in 
supercell

Laser-flash 
MD

Full low T Medium-
Large

as in 
supercell

Green-Kubo 
MD

Laser-flash MD yields accurate qualitative results 
at low temperatures within moderate computational costs. 

Quantitative predictions require finite size corrections, though.



FLUCTUATION-DISSIPATION 
THEOREM

The fluctuations of the forces in thermodynamic equilibrium is 
related to the generalized resistance in non-equilibrium 

for linear dissipative systems.
H. B. Callen, and T. A. Welton, Phys. Rev. 83, 34 (1951).

Brownian Motion:
A. Einstein,  Ann. Phys. 322, 549 (1905).

The erratic motion of the particles
is closely related to

frictional force under perturbation.

Random walk in 2D



GREEN-KUBO METHOD
R. Kubo, M. Yokota, and S. Nakajima, J. Phys. Soc. Japan 12,1203 (1957).

The thermal conductivity is 
related to the autocorrelation 

function of the heat flux
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Simulations of the thermodynamic equilibrium
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THE ATOMISTIC HEAT FLUX
E. Helfand, Phys. Rev. 119, 1 (1960).

J(t) =
d

dt

 
X

i

ri(t)"i(t)

!
ri · · · Position of atom i

"i · · · Energy of atom i

Energy contribution εi of the individual atoms required!

⇒ Green-Kubo Method hitherto only 
used with classical potentials!



THE AB INITIO HEAT FLUX

J(t) =
d

dt

Z
r · "(r, t) dr "(r, t) · · · Energy density

Energy Density in Density Functional Theory:
B. Delley et al., Phys. Rev. B 27, 2132 (1983).

N. Chetty, and R. M. Martin, Phys. Rev. B 45, 6074 (1992).
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ASSESSING THE THERMAL CONDUCTIVITY

 =
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Fourier Trans.
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Finite Size Artifacts

Finite Size Artifacts 
artificially reduce the 
thermal conductivity 
at low frequencies!

J. L. Feldman et al., 
Phys. Rev. B 48, 12589 (1993).



PERIODIC BOUNDARY CONDITIONS
J J



PERIODIC BOUNDARY CONDITIONS
J J

J(t) =
d

dt

Z
r · "(r, t) dr

Small heat flux through boundaries 
leads to huge change in energy barycenter.
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CORRECTING FOR FINITE SIZE EFFECTS
J. L. Feldman et al., Phys. Rev. B 48,12589 (1993).
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n
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� art
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Finite Size κFS(!) is 
superposition of 

bulk conductivity κ(!) 
and finite size 

effects ΘFS(!)!

Finite Size 
corrected κ(!)!
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Finite Size 
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“fitting uncertainty”.
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dt
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Z
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Helfands’ Heat Flux Hardys’ Heat Flux

ELIMINATING THE FINITE SIZE ARTIFACTS
R. J. Hardy,  Phys. Rev. 132,168 (1963).

σ(r) ... Stress density
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σ(r) ... Stress density

Formulas for analytical stress
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YTTRIA-STABILIZED ZIRCONIA
Yttria-stabilized Zirconia coatings play a 

crucial role in high-temperature applications.

CFM 56-7 airplane engine

Super
alloy

Bond
coat

Yttria-
stabilized 
Zirconia

Gas
phase

T

1200°C

Temperature profile

~400 µm

700°C
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APPLICATION TO ZIRCONIA

Experiment

Classical MD

2x2x2 Supercell, > 30ps AIMD / data point

Experiment:
  J.-F. Bisson et al., J. Am. Cer. Soc. 83, 1993 (2000).
  G. E. Youngblood et al., J. Am. Cer. Soc. 71, 255 (1988).
  S. Raghavan et al., Scripta Materialia 39, 1119 (1998).

Classical MD:
  P. K. Schelling, and S. R. Phillpot, 
    J. Am. Cer. Soc. 84, 2997 (2001).

DFT-LDA-V(0K)
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APPLICATION TO ZIRCONIA

Experiment

Classical MD

DFT-LDA-V(T)

2x2x2 Supercell, > 30ps AIMD / data point

Experiment:
  J.-F. Bisson et al., J. Am. Cer. Soc. 83, 1993 (2000).
  G. E. Youngblood et al., J. Am. Cer. Soc. 71, 255 (1988).
  S. Raghavan et al., Scripta Materialia 39, 1119 (1998).

Classical MD:
  P. K. Schelling, and S. R. Phillpot, 
    J. Am. Cer. Soc. 84, 2997 (2001).

DFT-LDA-V(0K)



FIRST-PRINCIPLES APPROACHES 
Order of 

interaction
Validity & 

Applicability
Finite Size 

Effects
Disorder

Boltzmann-
Transport Eq.

~�(r3) low T Minute Parameter

Non-Equilib. 
MD

Full all T Huge as in 
supercell

Laser-flash 
MD

Full low T Medium-
Large

as in 
supercell

Green-Kubo 
MD

Full all T Small as in 
supercell

Ab initio Green-Kubo approach allows the accurate and 
predictive computation of lattice thermal conductivities κ 

at arbitrarily high temperatures!



III. CHARGE TRANSPORT
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ELECTRONS IN A PERIODIC POTENTIAL

The Bloch Theorem:
F. Bloch, Z. Physik 52, 555 (1929).

 nk(r) = unk(r) · eikr
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The Bloch Theorem:
F. Bloch, Z. Physik 52, 555 (1929).

 nk(r) = unk(r) · eikr

ELECTRONS IN A PERIODIC POTENTIAL

Fermi-Dirac Statistics:
E. Fermi, Z. Physik 36, 902 (1926).

P. Dirac, Proc. R. Soc. A 112, 661 (1926).
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ELECTRONS IN A PERIODIC POTENTIAL

Each electron (n,k) has a 
constant avg. velocity vn(k).
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n-type SC p-type SC metal

f(")

T ≫ 0K

t = t0 t = t0 t = t0

Jnk
q = �e vn(k)

In typical metals with ve > vh, 
electrons are the majority charge carriers.
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Je = �e ve(ke) Jh = +e vh(kh)

INSTANTANEOUS NON-EQUILIBRIUM



BOLTZMANN TRANSPORT EQUATION
N. W Ashcroft and N. D. Mermin,  “Solid State Physics” (1976).
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N. W Ashcroft and N. D. Mermin,  “Solid State Physics” (1976).
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SINGLE RELAXATION TIME APPROXIMATION
N. W Ashcroft and N. D. Mermin,  “Solid State Physics” (1976).
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SINGLE RELAXATION TIME APPROXIMATION

T. Thonhauser, T. J. Scheidemantel, and J. O. Sofo, 
Appl. Phys. Lett. 85, 588 (2004).

T. J. Scheidemantel, et al.  
Phys. Rev. B 68, 125210 (2003)

Bi• Accurate band structure

• “Reasonable” 
relaxation time

• Lattice thermal 
conductivity requires 
separate calculation

Transport 
Coefficients



SINGLE RELAXATION TIME APPROXIMATION
N. W Ashcroft and N. D. Mermin,  “Solid State Physics” (1976).

The conductivity is intrinsically related to the effective mass:
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The AC conductivity does not depend on 
the relaxation time τ for ωτ ≫ 1
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OPTICAL CONDUCTIVITY
N. W Ashcroft and N. D. Mermin,  “Solid State Physics” (1976).
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Using perturbation theory, we can thus compute 
the AC (optical) conductivity 

(in the independent particle approximation).

Γ X-20
-15
-10

-5
0
5

10
15

ε 
− 
ε F (e

V
)

0 2 4 6 8 10 12 14 16 18 20
h_ ω (eV)

0

2000

4000

6000

8000

10000
σ

 (1
/Ω

cm
)

ficticious sc-Aluminum along X direction



PROBLEMS OF THE BTE/SRTA

(a) Rigid band approximation:

The BTE/SRTA relies on a rigid 
(or perturbative) definition of 
the band structure.

Band gap renormalization in diamond
F. Giustino, S. G. Louie, and M. L. Cohen, 

Phys. Rev. Lett. 105, 265501 (2010).

Computational assessment of τ 
still topic of research.

P. Boulet, et al., Comp. Mater Sci 50, 847 (2011).

(b) Nature of the scattering:

The main complexity of the 
conductivity is still hidden in the 
relaxation time τ

Parametrical studies of τ 
do not allow predictions.
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Kubo’s Linear Response:

GREENWOOD-KUBO FORMALISM
D. A. Greenwood, Proc. Phys. Soc. 71, 585 (1958).
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B. Holst, M. French, and R. Redmer, Phys. Rev. B 83, 235120 (2011).



For ω ≠ 0, the electrical conductivity can be computed 
from the thermodynamic average <>T :

GREENWOOD-KUBO FORMALISM
D. A. Greenwood, Proc. Phys. Soc. 71, 585 (1958).

(a) Thermodynamic average of the band structure is sampled
⇒ no rigid band approximation

(b) Full adiabatic electron-phonon coupling is accounted for if 
the thermodynamic average is perfomed via ab initio MD

⇒ no perturbative approximation
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GREENWOOD-KUBO FORMALISM
D. A. Greenwood, Proc. Phys. Soc. 71, 585 (1958).
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Compare: Optical conductivity in SRT approximation

For ω ≠ 0, the electrical conductivity can be computed 
from the thermodynamic average <>T :
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GREENWOOD-KUBO FORMALISM
D. A. Greenwood, Proc. Phys. Soc. 71, 585 (1958).
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GREENWOOD-KUBO FORMALISM
D. A. Greenwood, Proc. Phys. Soc. 71, 585 (1958).
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Crystal Momentum Conservation:
Non-vertical transitions require phonons



GREENWOOD-KUBO FORMALISM
D. A. Greenwood, Proc. Phys. Soc. 71, 585 (1958).
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Brillouin zone folding:
Larger supercells allow for direct transitions 
that are however suppressed by symmetry.



GREENWOOD-KUBO FORMALISM
D. A. Greenwood, Proc. Phys. Soc. 71, 585 (1958).
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Thermal Motion of the nuclei:
Phonons momentarily break the symmetry and 

thus allow the direct transitions to become active.
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FIG. 1. (Color online) Electrical conductivity in dense hydrogen
for different temperatures from the region of the liquid-liquid phase
transition up to the dense plasma. At low densities the values increase
with temperature and decrease with temperature at high densities.

In general, the conductivity rises in the whole range studied
here with increasing density. On the one hand, this is the
result of pressure ionization which increases the amount of
conducting electrons, and on the other hand, even in the case
of a fully ionized system, a rising density of electrons results
in a further increase of the conductivity.

At T = 1000 K the liquid-liquid phase transition which
was previously reported for dense hydrogen22,23 can be
identified by the steep increase of the conductivity over several
orders of magnitude in a small density interval, (0.7 − 0.9)
g/cm3. At temperatures higher than 1500 K the transition
is continuous and the increase spreads to a larger range
in density. At densities below this transition the electrical
conductivity increases with temperature which is caused by
thermal ionization of neutral particles. The additional free
charges contribute to the conductivity.

At densities above this transition the dependence on
temperature is inverted: The electrical conductivity decreases
with temperature, which is typical for metals. Increasing
temperature broadens the Fermi function and therefore allows
additional electron scattering processes which reduce their
mobility. As a result, the conductivity is lower with increasing
temperature.

This behavior is also illustrated in Fig. 2, which shows
the electrical conductivity along isochores for different tem-
peratures. The conductivity decreases for temperatures above
2000 K along the isochores for densities higher than 0.9 g/cm3,
which are characteristic of the metallic phase. This indicates
that most of the system is ionized and thus acts metal-like.
Looking at lower densities the conductivity rises along the
whole temperature range, which is due to thermal ionization.
The isochores clearly show the general behavior of a rising
conductivity with increasing density.

Experiments in copper plasmas69 have indicated that the
electrical conductivity becomes a function of only the coupling
parameter ! for values of ! ! 10. The plasma parameter ! is
defined by

! = e2

4πε0kBT

(
4πne

3

) 1
3

, (20)

FIG. 2. (Color online) Electrical conductivity for different densi-
ties versus temperature.

where ne is the number density of free electrons. Although
such a behavior could not be confirmed later,70 a simple
functional form of the electrical conductivity at high values
of ! is still under discussion. To investigate whether such a
simple scaling is valid in dense liquid hydrogen, the results
for the electrical conductivity shown in Figs. 1 and 2 are
plotted against ! in Fig. 3. Only for temperatures higher than
10 000 K is the system strongly ionized. At lower temperatures
the occurrence of partial ionization prevents a proper calcula-
tion of ! within FT-DFT-MD, because the method does not
distinguish between bound and free electrons. Therefore, we
do not plot results for lower temperatures in Fig. 3.

The isotherms appear to be almost parallel in this loga-
rithmic plot and are clearly separated. Even at the highest
available values for ! " 60 the isotherms do not tend to
merge. We conclude that it is not possible to derive a simple
temperature-independent relation for the conductivity that
depends solely on the parameter ! as it was proposed earlier
for other metallic liquids.

FIG. 3. (Color online) Electrical conductivity as function of the
coupling parameter ! for different temperatures. The plotted data
cover a density range of (0.05–20) g/cm3.
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FIG. 4. (Color online) Thermal conductivity versus density for
different temperatures. The values increase with temperature.

B. Thermal conductivity

The isotherms of the thermal conductivity are plotted
in Fig. 4. They show a similar behavior as the electrical
conductivity and indicate a sharp nonmetal-to-metal transition
at a temperature below 1500 K. At this transition the thermal
conductivity increases over several orders of magnitude in a
narrow density range at about 0.9 g/cm3. The increase in the
thermal conductivity is due to the growing number of delocal-
ized electrons which are produced along the phase transition.
Above the critical temperature this transition becomes broader
and is caused by a combination of pressure and temperature
ionization.

In contrast to the behavior of the electrical conductivity,
the thermal conductivity does not decrease with temperature
in the metallic phase. The isotherms increase systematically
with temperature for all densities.

This is also shown along the isochores of the thermal
conductivity that are plotted in Fig. 5. These curves depict
likewise that the thermal conductivity rises invariably with
increasing density and temperature.

FIG. 5. (Color online) Thermal conductivity versus temperature
for different densities.

C. Thermopower

The thermopower α characterizes the generation of an
electric field as a response to a temperature gradient. For
most systems this electric field has a direction opposite to the
temperature gradient, which results in a negative thermopower.
The thermopower is most sensitive to changes in the electronic
structure since it can be expressed as the derivative of the
logarithm of the electronic conductivity with respect to the
energy at the Fermi surface.71 Such a relation, which is also
known as Mott formula, follows from the Kubo-Greenwood
equation (19) in the degenerate domain under strong scattering
conditions.

Interestingly, large positive values for the thermopower
were measured in fluid mercury72,73 near the liquid-vapor criti-
cal point, which is located at Tc = 1751 K and "c = 5.8 g/cm3.
In this region, isotherms of the electrical conductivity near Tc

show a strong increase with the density, which is steepest just at
the critical density "c. This behavior was assumed to be related
to fluctuations in the electron density, which are pronounced
near the critical point due to critical fluctuations. In particular,
a zero of the thermopower was observed exactly at the critical
density. The interesting question arises as to whether a zero of
the thermopower is a precursor of a first-order phase transition
in dense liquids which undergo a nonmetal-to-metal transition.
Wide regions with a positive thermopower have been predicted
for dense hydrogen by a simple chemical model34 but were not
confirmed in an advanced chemical approach16 by ab initio
simulations or by experiments yet.

In Fig. 6 isotherms of the thermopower α are plotted as
function of the density. The symbols represent the results
from the simulations and the error bars show the statistical
uncertainties. As guide to the eye, polynomial functions were
fitted to the numerical results. The thermopower is mostly
negative and reaches a value of about zero at high densities. At
lower densities the thermopower decreases. The low density
limit of α = −60.60 µV/K is known from the Spitzer theory
(see, e.g., Ref. 16). With higher temperatures the negative
values become systematically larger. We expect that these
values become smaller again at low densities to reach the
Spitzer limit. The thermopower shows positive mean values
below 20 000 K and between 0.2 g/cm3 and 0.5 g/cm3. These

FIG. 6. (Color online) Thermopower versus density for different
temperatures.
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Non-metal to metal transition in dense liquid hydrogen
B. Holst, M. French, and R. Redmer, Phys. Rev. B 83, 235120 (2011).

Also see Poster 10:
D. Cebulla, M. French, and R. Redmer, 

“Ab initio simulations of MgO under extreme conditions”
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LDA-InP: Model for a direct band gap semiconductor
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InP: Model for a direct band gap semiconductor
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LDA-Mg2Si: Model for an indirect band gap semiconductor

GREENWOOD-KUBO FORMALISM
D. A. Greenwood, Proc. Phys. Soc. 71, 585 (1958).

K. Rasim, B. Bieniek, C. Carbogno, and Matthias Scheffler (in preparation).
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CONCLUSION II
Boltzmann Transport Theory:

 Rapid one-shot band structure calculation
 Rigid band structure
 Scattering typically enters as a parameter

Greenwood-Kubo-Theory:
Transport coefficients extracted from the 
thermodynamic average of the optical conductivity
Thermodynamic band structure changes 
are inherently accounted for
First-principles treatment of 
adiabatic electron-phonon scattering



CONCLUSION II
Boltzmann Transport Theory:

Greenwood-Kubo-Theory:

 Rapid one-shot band structure calculation
 Rigid band structure
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Transport coefficients extracted from the 
thermodynamic average of the optical conductivity
Thermodynamic band structure changes 
inherently accounted for
First-principles treatment of 
adiabatic electron-phonon scattering

• Quality of the electronic structure:
Transport in semiconductors extremely sensitive to band gap
    ⇨ see Patrick Rinke’s and  Sergey Levchenko’s talks

• High-temperature limit:
Newtonian dynamics not correct at low temperatures.
    ⇨ see Mariana Rossi’s talk

• Electron-electron scattering neglected:
Can be accounted for by using TDDFT for the ACF.
    ⇨ see Heiko Appel’s and Stefano Baroni’s  talks

• “Band conductivity”:
Different conductivities require 
a different definition of the flux
    ⇨ e.g. Ionic conductivity               

M. French, S. Hamel, and R. Redmer, Phys. Rev. Lett. 107, 185901 (2011).
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THANK YOU!

Karsten Rasim


