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Introduction

The thermal conductivity κ(T, p) and the electrical conductivity σ(T, p) are macroscopic proper-
ties of bulk materials that characterize how effectively charge and heat are transported through
the bulk under specific thermodynamic conditions, e.g., as a function of temperature and pressure.
If, for instance, a temperature gradient ∇T is applied across a material, a heat current jh will
naturally develop to contrast the temperature gradient and to re-establish equilibrium. Similarly,
an applied voltage/electric field, i.e., a gradient in the electric potential ∇U = −E, results in a
charge current jc. The thermal and electrical conductivity are the proportionality constants1 that
characterize the relation between the gradients ∇T viz. ∇U and the respective currents jh viz. jc

in Fourier’s and Ohm’s law:

jh = −κ(T, p)∇T = − [κel(T, p) + κnu(T, p)]∇T , (1)

jc = −σ(T, p)∇U = − [σel(T, p) + σnu(T, p)]∇U . (2)

Both the thermal and the electrical conductivity contain contributions that stem from the elec-
tronic and nuclear degrees of freedom. In this tutorial, we will focus on the electronic contribu-
tions to the conductivities κel(T, p) and σel(T, p), which are the dominant contribution in metals.
Still, we have to take the thermal nuclear motion into account, since the scattering of the elec-
trons from the moving nuclei is the dominant scattering mechanism that limits the electronic
contribution to the conductivities in metals.

For this purpose, we will first discuss the nuclear dynamics in solids, i.e., under periodic bound-
ary conditions. In particular, Sec. A and exercise 1-3 will introduce you to the harmonic ap-
proximation and the concept of phonons, i.e., the quasi-particles describing the nuclear motion
in the harmonic approximation. In the second part B, we will then discuss the electrical conduc-
tivity σel(T, p) and learn how to compute it within the Greenwood-Kubo framework in exercise 4
and 5.

Both Sec. A and B feature short introductions that summarize the physical concepts and
formulas required for a successful understanding of the respective exercises.

1 Please note that in the general case the thermal and electrical conductivities are tensors that are not necessarily
isotropic.
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A: Harmonic vibrations in solids

To determine the vibrations in a solid, we approximate the potential energy surface for the nuclei
by performing a Taylor expansion of the total energy E around the equilibrium positions R0:
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The linear term vanishes, since no forces F = −∇E are acting on the system in equilibrium R0.

Assessing the Hessian ΦIJ = ∂2E
∂RI ∂RJ

involves some additional complications: In contrast to
the forces F, which only depend on the density, the Hessian ΦIJ also depends on its derivative
with respect to the nuclear coordinates, i.e., on its response to nuclear displacements. One can
either use Density Functional Perturbation Theory (DFPT) [1] to compute the response or one
can circumvent this problem by performing the second order derivative numerically by finite
differences
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as we will do in this tutorial. The definition in Eq. (4) is helpful to realize that the Hessian
describes a coupling between different atoms, i.e., how the force acting on an atom RJ changes
if we displace atom RI , as you have already learned in tutorial 1. However, an additional
complexity arises in the case of periodic boundary conditions: Since the atoms RI and RJ are
not necessarily in the same unit cell, the Hessian is in principle a matrix of infinite size. In
non-ionic crystals, however, the interaction between two atoms I and J quickly decays with their
distance RIJ , so that we can compute the Hessian from finite supercells, the size convergence of
which must be accurately inspected (cf. Exercise 2).

Once the real-space representation of the Hessian is computed, we can determine the Dynamical
matrix

DIJ(q) =
∑
RIJ

ei(q·RIJ )
√
MIMJ

ΦIJ , (5)

i.e., the mass-scaled Fourier transform of the Hessian. In reciprocal space [2], this Dynamical
matrix determines the equation of motion for such a periodic array of harmonic atoms for each
reciprocal vector q:

D(q) [ν(q)] = ω2(q) [ν(q)] . (6)

The eigenvalues ω2(q) (and eigenvectors ν(q)) of the dynamical matrix D(q) completely describe
the dynamics of the system (in the harmonic approximation), which is nothing else than a
superposition of harmonic oscillators, one for each mode, i.e., for each eigenvalue ωs.

The respective density of states

g(ω) =
∑

s

∫
dq

(2π)3 δ(ω − ω(q)) =
∑

s

∫
ω(q)=ω

dS

(2π)3
1

|∇ω(q)| (7)

is a very useful quantity, since it allows to determine the associated thermodynamic poten-
tial2, i.e., the (harmonic) Helmholtz Free Energy

Fha(T, V ) =
∫
dω g(ω)

(
h̄ω

2 + kB T ln
(

1− e
(
− h̄ω

kB T

)))
. (8)

2 Given that the Bose-Einstein distribution is used for the derivation of the harmonic free energy in this case, we
get the correct quantum-mechanical result including Zero-point effects by this means.
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To compute these quantities, we will employ the program package phonopy [3] and its FHI-
aims interface phonopy-FHI-aims. Please note that phonopy makes extensive use of symmetry
analysis [4], which allows to reduce numerical noise and to speed up the calculations considerably.

Exercise 1: Performing a phonopy-FHI-aims calculation

� Set up the control.in file for a phonon calculation in a 2× 2× 2 supercell.

� Learn how to perform phonopy-FHI-aims / FHI-aims phonon calculations.

[Estimated total CPU time: < 3 min]

In directory exercise_1, you will find the geometry for the primitive aluminum fcc unit cell
(geometry.in) and the control file. In addition to the usual control tags, which you are certainly
comfortable with by now, control.in contains a series of tags that are related to the phonon
calculation (and thus start with phonon):

� Supercell:
The tag phonon supercell (x, y, z) allows to specify the supercell size that shall be used
for the calculation. Please note that phonopy-FHI-aims generates these supercells on its
own and spares you the trouble to generate such geometries by hand. Still, it is your
responsibility to adapt the number of k-points (tag k_grid) to match the enlarged su-
percell.

� Displacement ε:
The tag phonon displacement ε allows to specify the displacement ε used for the finite
difference in Eq. (4): On the one hand, too large values of ε make the numerical derivative
inaccurate; on the other hand, too small values of ε can introduce severe numerical noise3.
The default value of 0.01 Å typically works well for solids.

� Band structure and density of states:
The tags phonon band and phonon dos allow to compute vibrational band structures and
vibrational densities of states. These tags use the same syntax that you have learned in
tutorial 2 for electronic band structures and electronic densities of states.

� Output of the Hessian:
The tag phonon Hessian TDI tells phonopy-FHI-aims to write the determined Hessian ΦIJ

to a file called phonopy-FHI-aims-force_constants.dat.

Now, let’s perform the harmonic phonon calculation:

(A) Adapt your supercell size and k-point grid:
To perform a calculation in a 2 × 2 × 2 supercell, we have to specify the supercell size in

file control.in. For this purpose, change into directory exercise_1 and make sure that your
control.in file contains the tag:

phonon supercell 2 2 2

For a 2× 2× 2 supercell, only half the k-points are needed in each direction to achieve the exact
same reciprocal space sampling as in the unit cell (16×16×16 k-points). For this purpose, make
sure that your control.in file contains the tag:

3 The numerical noise can be reduced and virtually eliminated at a given ε by choosing tighter convergence criteria
for the forces: the smaller the value of ε, however, the tighter (and the more expensive) the required convergence
criteria.
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k_grid 8 8 8

(B) Run phonopy-FHI-aims to construct the supercell:
Run phonopy-FHI-aims by typing

phonopy-FHI-aims

in the terminal (Make sure to be in the correct directory, i.e., exercise_1). This will create a
new subdirectory called

phonopy-FHI-aims-displacement-01

that contains the necessary files (control.in & geometry.in) to perform a force calculation
in the specified supercell. Change into the directory phonopy-FHI-aims-displacement-01 and
counter-check

(a) that the k-point grid is set to 8× 8× 8 and
(b) that the file geometry.in contains a 2× 2× 2 supercell.

Can you find the finite displacement in the geometry?

In this step, phonopy-FHI-aims has analyzed your system and generated all geometries R0
I + ε

that serve as a basis for the computation of the Hessian ΦIJ via Eq. (4). Please note that a
supercell containing NA atoms (= 8 in your case) in principle requires 3NA different displace-
ments and derivatives for the computation of the Hessian with the dimension 9N2

A. Due to the
high-symmetry of fcc aluminum, phonopy-FHI-aims was able to reduce the number of required
displacements to one. In systems with lower symmetries, this is no longer the case and more
than one displacement and subdirectory will be generated.

(C) Run FHI-aims to calculate the forces:
Now, make sure to have changed into the directory phonopy-FHI-aims-displacement-01 and

run FHI-aims in the usual fashion, but redirect the output to:

mpirun -np 4 aims.x > phonopy-FHI-aims-displacement-01.out

In this step, we are calculating the ab initio forces FJ(R0
I +ε) that are required for the numerical

derivative in Eq. (4).

(D) Run phonopy-FHI-aims again to evaluate the calculation:
Change into the parent directory (exercise_1) and run phonopy-FHI-aims again by typing

phonopy-FHI-aims

in the terminal. This will generate the band structure (phonopy-FHI-aims-band_structure.dat)
and the density of states (phonopy-FHI-aims-dos.dat). For your convenience, plots in the pdf
format of the respective data are generated automatically as well (phonopy-FHI-aims-dos.pdf
and phonopy-FHI-aims-band_structure.pdf).

Now, let’s analyze the result: In the directory exercise_1 you will also find an xmgrace file
containing the experimental vibrational band structure [5]. Open it by typing

xmgrace Al_band_structure_exp.agr

and add your computed band structure to the plot via the drop-down menus (Data→Import→ASCII).
Make sure to choose Load as NXY before clicking on the file phonopy-FHI-aims-band_structure.dat.
Does the data match? Can you spot differences?

Eventually, you can have a look at the file phonopy-FHI-aims-force_constants.dat, in which
phonopy-FHI-aims has saved the computed Hessian in ASCII format. We will use this file again
in exercise 3.
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Exercise 2: Converging the supercell size in phonon calculations

� Perform phonon calculations in different supercells and inspect their conver-
gence with respect to the supercell size.

� Learn how to calculate vibrational free energies and heat capacities.

[Estimated total CPU time: < 15 min]

Exercise 2.a:

In the directory exercise_2/exercise_2_a, you will find a new set of input files geometry.in

and control.in. The file geometry.in has not changed, but the file control.in differs from
the one in exercise 1 in two lines:

k_grid 12 12 12

phonon supercell -1 1 1 1 -1 1 1 1 -1

Can you guess what kind of supercell is specified in the last line? Tip: The solution becomes
easier if you write the supercell definition as−1 1 1

1 −1 1
1 1 −1


and if you remember that the unit cell vectors of the fcc structure are: 0 a/2 a/2

a/2 0 a/2
a/2 a/2 0


Now start the calculations as done in exercise 1. There is no need to change the input files

this time, though. Just execute

phonopy-FHI-aims

change into the newly created directory

phonopy-FHI-aims-displacement-01

execute FHI-aims

mpirun -np 4 aims.x > phonopy-FHI-aims-displacement-01.out

and eventually get back to the parent directory exercise_2/exercise_2_a and execute

phonopy-FHI-aims

again. What kind of supercell did phonopy-FHI-aims generate in the directory

phonopy-FHI-aims-displacement-01 ?

Can you understand the reason? Why did we choose a different k-point grid this time and what
is the rationale behind it? Now, compare the computed band structure to your previous result
and to the experimental measurement: What has changed and most importantly, why?
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Exercise 2.b:

In the directory exercise_2/exercise_2_b, you will find again a new set of input files geometry.in
and control.in. This time, control.in contains three differing/new lines:

k_grid 6 6 6

phonon supercell -2 2 2 2 -2 2 2 2 -2

phonon free_energy 0 1000 1000 80

You should now know what the first two lines imply; we will explain the third one below. But
first, let’s start the calculations: Again, there is no need to change the input files, just execute

phonopy-FHI-aims

change into the newly created directory

phonopy-FHI-aims-displacement-01

execute FHI-aims

mpirun -np 4 aims.x > phonopy-FHI-aims-displacement-01.out

and eventually get back to the parent directory exercise_2/exercise_2_b and execute

phonopy-FHI-aims

again. First, compare the computed band structure to your previous results and to the experi-
mental measurement: What has changed and most importantly, why? To inspect convergence,
it is often useful to look at the respective densities of states g(ω) defined in Eq. (7). Compare
the three different densities of states that you have calculated by plotting them with xmgrace.

Eventually, we come back to the tag

phonon free_energy 0 1000 1000 80

which tells phonopy-FHI-aims to compute the (harmonic) Helmholtz Free Energy Eq. (8) for
temperatures between 0 and 1000K in steps of 1K by using a 80 × 80 × 80 q-point mesh in
reciprocal space. As a result, phonopy-FHI-aims has now produced two additional files: phonopy-
FHI-aims-free_energy.dat and phonopy-FHI-aims-free_energy.pdf. Plot the Free energy
(second column of phonopy-FHI-aims-free_energy.dat) and the specific heat (fourth column)

cV = T

(
∂S

∂T

)
V

= −T
(
∂2Fha(T, V )

∂T 2

)
V

(9)

as function of the temperature (first column). Hint: You can tell xmgrace which column to
plot by choosing Load as Block data in the Read sets dialogue (Data→Import→ASCII). Can
you understand the behavior of the free energy and of the specific heat? What happens at low
temperatures, what happens at high temperatures?

Exercise 3: MD in the harmonic potential

In the last exercise of this section, we will now use the Hessian computed in exercise 1 to perform
MD calculations in the harmonic potential

E = 1
2
∑
IJ

ΦIJ∆RI∆RJ = 1
2
∑
IJ

∂2E

∂RI∂RJ

∣∣∣∣
R0

(RI −R0
I )((RJ −R0

J) . (10)
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Given that the Hessian is known, the evaluation of the harmonic potential is orders of magnitude
faster than a full-fledged DFT calculation and thus allows to compute MD trajectories with a
length of several picoseconds in few minutes. However, using the harmonic potential can be also
a severe approximation, especially at larger temperatures, at which anharmonic effects become
important. We will discuss the importance of such anharmonic effects in more detail in exercise 5,
for which the harmonic trajectories computed in the following will serve as a basis.

� Set up the control.in file to produce a trajectory in the NVT ensemble.

� Run the harmonic MD calculation.

[Estimated total CPU time: < 3 min]

We have already prepared the necessary input files control.in and geometry.in in direc-
tory exercise_3. You should be comfortable with all the MD related tags already from tu-
torial III:

MD_MB_init 300.0

MD_time_step 0.001

MD_schedule

MD_segment 5.0 NVT_parrinello 300.0 0.050 # Equilibration

harmonic_potential_only phonopy-FHI-aims-force_constants.dat

MD_segment 20.0 NVT_parrinello 300.0 0.050 # Sample phase space

harmonic_potential_only phonopy-FHI-aims-force_constants.dat

In this particular control.in, we set up the calculation at 300 K using a Maxwell-Boltzmann
distribution (tag MD_MB_in), and then first perform 5 ps of MD to equilibrate the system and
then perform additional 20 ps of MD for data production. One femtosecond has been chosen as
time step for the MD (tag MD_time_step). To perform the MD in the harmonic potential, we
use the additional tag:

harmonic_potential_only filename

The file filename must contain the Hessian ΦIJ for the system in the format used by phonopy-
FHI-aims. Since you have calculated the Hessian already in exercise 1, you can just copy the
respective file to the actual directory by typing:

cp ../exercise_1/phonopy-FHI-aims-force_constants.dat .

Please remember to adapt your control.in (at three positions!) to run the simulation at 300 K
and then start the calculation with the usual:

mpirun -np 4 aims.x > aims.out

Finally we ask you to execute a script that will generate a trajectory file (called aims.out.geo)
which we will use in exercise 5.b to calculate the electronic conductivity:

TrajectoryGeneration.sh aims.out
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B: Electronic transport coefficients within the
Kubo-Greenwood framework

To compute the electrical conductivity, we have to define the charge flux jc = −ejp firs, which
is directly related to the probability flux jp. Starting from the quantum-mechanical continuity
equation for the probability flux jp

∇ · jp + ∂|Ψ|2

∂t
= 0 , (11)

one easily sees that the quantum-mechanical fluxes are closely related to the velocity of the
electrons viz. their momentum operator p̂:

jp = h̄

2mei
[Ψ∗(∇Ψ)− (∇Ψ∗)Ψ] = 1

2me
(Ψ∗p̂Ψ−Ψp̂Ψ∗) . (12)

For crystalline solids with a well defined translational periodicity, the electronic states can be
expressed as Bloch waves

|nk〉 = Ψnk(r) = unk(r) · eikr , (13)

in which the Bloch coefficients unk(r) exhibit the same periodicity as the underlying crystal
lattice. For such Bloch states (and only for such Bloch states!) it can be shown quite generally [2]
that the average fluxes associated with each state can be expressed as

jp = 1
h̄

∂εn(k)
∂k and jc = − e

h̄

∂εn(k)
∂k , (14)

whereby εn(k) denotes the energy eigenvalue of the respective state. Quite surprisingly, the
average flux of each state is constant. Since the Bloch states are eigenfunctions of the periodic
Hamiltonian, the individual electrons can travel through such a bulk freely – thus leading to
an infinite conductivity. This is obviously no longer the case if the periodicity is broken or
disturbed, for instance due to the electron-electron interaction (electron-electron scattering), be-
cause of defects and impurities in the bulk (defect scattering) or due to the thermal motion of
the nuclei (electron-phonon scattering) discussed in Sec. A.

Kubo’s quantum-statistical linear response theory [6] allows to account for such scattering
effects and to compute the electronic contributions to the transport coefficients from first princi-
ples. In this framework, the frequency dependent electrical conductivity can be calculated from
the thermodynamic average 〈〉T of the current-current auto-correlation function

σ(ω) = 1
V

〈
lim
ε→0

∫ ∞
0

dt ei(ω+iε)t

(kBT )−1∫
0

dτ Tr [ρ̂0 jc(t− ih̄τ) · jc(t)]
〉

T

. (15)

Please note that the quantum statistics for the electrons is taken into account in the trace over
the statistical operator of the equilibrium ρ̂0 [6], i.e., the equilibrium density matrix. By using the
Heisenberg picture to describe the time dependence of the current [7], one can further simplify
this equation to

σ(ω) = 〈σOC(ω)〉T

= 2πe2h̄2

m2
eωV

〈 ∑
n,m6=k

∑
k

wk [f(εn)− f(εm)] |〈nk| ∇ |mk〉|2 δ (εn − εm − h̄ω)
〉

T

, (16)
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whereby we have already replaced the reciprocal space integral dk by a sum over discrete k-
points (and integration weights wk). In this form, the electrical conductivity is expressed as the
thermodynamic average of the optical conductivity, a quantity that shall be discussed in more
detail in exercise 4. In a second step, i.e., in exercise 5 we will then perform the thermodynamic
average on the basis of the trajectories generated in exercise 3 and thus compute the electrical
conductivity of aluminum as a function of temperature.

For the actual calculation of such transport coefficients, the formalism chosen for the ther-
modynamic average plays a pivotal role, since it determines which scattering mechanisms are
actually accounted for. To investigate the electron-electron scattering, one could, for instance,
perform a time-dependent DFT (TDDFT) calculation with clamped nuclei. In our case, we
will solely account for the electron-phonon scattering and will thus perform the thermodynamic
average on the basis of MD runs in the electronic ground state. As already mentioned in the
introduction, this is also the dominant scattering mechanism in typical metals [2].

WARNING:
In the following exercises, the computational settings, in particular the reciprocal

space grid (tag k_grid) and the 2× 2× 2 fcc-supercell, have been chosen to allow a
rapid computation of the exercises in the limited time and within the CPU resources
available during the tutorial session. For this exact reason, the calculations performed

below will not yield any trustworthy quantitative results, but only give an idea of
the qualitative trends, as discussed during the exercises.

Exercise 4: Optical conductivity of Al in its primitive cell

� Calculate the optical conductivity spectrum of unperturbed Al.

In this exercise, we will calculate and analyze the optical-conductivity spectrum σOC(ω) (16)
of fcc Aluminum in its equilibrium primitive unit-cell.

The two usual files control.in and geometry.in are contained in the folder ./exercise_4.
Enter this directory and open the control.in-file:

In its upper part, you will find the already well known keywords that take care of the overall
electronic structure calculation, such as the exchange-correlation potential (xc pw-lda), the
SCF-convergence and mixing criteria. The k_grid is set to contain 20× 20× 20 k-points, which
is not sufficient to guarantee converged optical properties for a primitive 1-atom cell, yet already
yields a rough idea of the optical-conductivity. The atomic species defaults governing the basis
set and the integration grid can be found at the bottom. The light-defaults have been chosen for
this exercise.

In the middle part, you find the settings that control the actual task of exercise 4: the Kubo-
Greenwood conductivity calculation. The already given keyword compute_kubo_greenwood has
to be followed by a sequence of parameters which govern this specific task. The sequence of the
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parameters is:

GaussSmooth, T_FD, min_eps, max_eps, min_omega, max_omega, N_omega, Components

and they are described in the following:

� GaussSmooth is the smearing factor which is applied to the spectra to smoothen the result-
ing curves. You have already encountered the very similar concept for the visualization of
the density of states in tutorial 2. In our case, we will use a relatively large smearing of
0.1 eV that yields a quite smooth spectrum in spite of the too coarse k-point grid.

� T_FD is the (electronic) temperature that enters the Fermi-Dirac occupation numbers used
in Eq. (16). For the upcoming calculation, in which we will investigate the optical con-
ductivity σOC(ω) at large frequencies ω, this temperature has little influence. Conversely,
this temperature is of great importance when investigating the ω → 0 limit of the optical
conductivity, as will be done in exercise 5. In such cases, the chosen electronic temperature
should obviously be equal to the nuclear temperature of the corresponding MD-trajectory.
In our case, we will set the (electronic) temperature to (300 K).

� min_eps and max_eps brackets the electronic energy interval within which electronic tran-
sitions are considered in the evaluation of Eq. (16). The scale is the absolute electronic
energy in eV used for the eigenvalue output in FHI-aims. Since we know that the Fermi-
level εF in our aluminum calculations is around −6 eV, we only consider transitions to
levels in the interval [εF − 5 eV, εF + 5 eV].

� min_omega and min_omega (in eV) brackets the ω-interval for which the optical conductivity
is computed, whereby the integer number N_omega specifies the resolution, i.e., the number
of ω-values that shall be used in the respective interval. In our case, we will investigate the
optical conductivity from 0 to 2 eV on 1000 points.

� Components chooses which tensor component of the electrical conductivity tensor is to be
computed. Both on- and off-diagonal elements are available. For symmetric systems such
as cubic Al we are interested in the average of the three diagonal elements σxx, σyy and
σzz which is triggered by the a a statement.

Accordingly, please make sure that your control.in-file now contains the following line:

compute_kubo_greenwood 0.1 0.025 -11 -1 0.0 2.0 1000 a a

� Make sure you added the compute_kubo_greenwood key-word with its parame-
ters

� Run the calculation by starting FHI-aims from within the exercise 4 folder .

[Estimated total CPU time: < 2 min]

For a quick comparison with a k-point converged result, you will find a corresponding dataset
OptCond-converged.dat in the exercise folder. You can now visualize it together with your
results, e.g., with gnuplot. Type gnuplot followed by4:

4 “u 1:3” means “use column 1 and 3”, the “w lines” option draws a line between the data points and the “title”
option takes care of creating the legend.
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plot "./dielectric_sparse_matrix_a_a_-5.8067.out" u 1:3 w lines title "My calc."

replot "./OptCond-converged.dat" u 1:3 w lines title "Converged calc."

The x-axis of the appearing spectra is the ω-axis (in eV) the y-axis is σ(ω) in (Ωcm)−1.

You will notice the qualitatively similar character of the two spectra, in spite of the fact that
we have used a not-yet-converged k-point grid. The higher converged version has been calculated
as an average of 4 spectra with shifted 100x100x100 k-point meshes (therefore including a total
of 4 mio. k-points).

To convince you of the unconverged character of the tutorial settings, just visualize the provided
spectrum for a 22x22x22 k-point mesh (file OptCond-22x22x22.dat) by re-plotting the 1st and
3rd column. 5 For such a 22x22x22 k-point mesh, the resulting optical conductivity deviates
significantly from the converged result. What could be the reason for this behavior?

Exercise 5: Electronic conductivity of Al supercells

� 5.a: Calculate 16 optical conductivity spectra for configurations taken from the
molecular dynamics run at one temperature computed in Ex. 3.

� 5.b: Determine the DC-conductivity by analysing a large number of provided
optical conductivities.

� Learn how the combination of MD and the Kubo-Greenwood approach yields
the correct temperature behavior of the electronic conductivity.

In exercise 5, we will now eventually compute the electrical conductivity of aluminum by using
the Greenwood-Kubo formalism introduced with Eq. (16). Again, the central quantity in this ex-
ercise will be the optical conductivity: In this case, however, we will compute the thermodynamic
average of the optical conductivity in vibrationally perturbed supercells and apply an extrapola-
tion scheme to arrive at the direct-current conductivity. To perform the actual thermodynamic
average, we will use the harmonic trajectories that you have calculated in exercise 3.

Exercise 5.a: Preparation of submission scripts

The first working directory for exercise 5 is named ./exercise_5_a. You should now copy the
harmonic-molecular-dynamics trajectory file aims.out.geo from exercise 3 into it!

In order to provide a decent sampling over a large amount of MD-configurations, each work-
station will compute only some (in this case 16) individual snapshots.

5 Alternatively, feel free to re-compute the spectrum for another k-point setting on your own!
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� Take a look a at the trajectory file aims.out.geo and the submission script
01_GreenwKubo_Calc_Series.sh. This time there is no need whatsoever
to adapt the provided files!

� The upper part of the script contains an explicit list of indices of the MD-
snapshots you are going to run. Here they are arbitrarily chosen to be in the
range from 5000 to 20000 in an interval of 1000 steps (femto seconds).

� This time, the submission process is largely automated: the control.in files
are generated based on the template that is also included in the folder. More-
over, the submission script reads relevant information out of the trajectory file
(e.g. the temperature of your MD-simulation) and creates a working directory
for every snapshot.

� Run the script by typing: ./01_GreenwKubo_Calc_Series.sh <name of the

trajectory file>

� The 16 calculations will now start to run, properly distributed among the 4 pro-
cessors of your workstations.

[Estimated total CPU time: < 20 min]

Remember: In this exercise, too, the computational parameters have been chosen to allow a
rapid computation within the tutorial’s time scale, but do not yield quantitatively correct results.

Exercise 5.a: A first look at the results

When your batch of snapshots is finished, your working directory should contain a folder named
aims.out.geo.snapshots. In this folder, you will find the 16 actual calculations that you just
ran.

In a first step, we will only average over these 16 calculations to get an idea of the character
of the results: To do so, you have to use the provided script 02_Averages.sh. Again, there is
no need to modify this script. You have to run it with the whole set of aims.out output-files as
parameters by typing:

./02_Averages.sh ./aims.out.geo.snapshots/aims.out.geo.snap*/aims.out

On your screen, you should see the progression of this quick averaging procedure.

Two new files will have been created in the working directory: exercise_5_a_average_full.dat
as well as exercise_5_a_average_trusted_region.dat that contain the simple averages over
your spectra6.

The columns 1 and 2 of the file exercise_5_a_average_full.dat correspond to the ω axis
(in eV) and to σ(ω) in its usual SI-unit (Ω · cm)−1. You should have a look at them now (for
example with gnuplot)

You should see a (still quite noisy) spectrum of the optical conductivity averaged over the 16
calculations you performed. For comparison, you can visualize this averaged spectrum together

6 The second file ending with “...trusted region” will only serve in exercise 5 b
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with a couple of individual spectra that are located in the respective snapshot-folders: For
example, being still in gnuplot, type:

replot "./aims.out.geo.snapshots/aims.out.geo.snap-6000 /

dielectric_sparse_matrix_a_a_<E-Fermi>.dat" u 1:3 w lines

to see the corresponding single spectrum of the snapshot with index 6000. Mind that for the
individual spectra (unlike the averaged ones), the optical conductivity is the 3rd column - there-
fore u 1:3.

These first spectra should look slightly different from one participant to the other, as your
snapshots come from your own harmonic molecular dynamics trajectories which you created in-
dependently from one another in exercise 3. In comparison to the result of exercise 4 (optical
conductivity spectrum of the unperturbed primitive unit cell), we can already spot a significant
difference: the large intensity towards low frequencies. This frequency region will be of great use
in the following. In short, the height of this low-frequency peak is equivalent to the direct-current
electronic conductivity, as we will learn in exercise 5.b.

Bonus

If your time allows, feel free to generate a second harmonic trajectory along the lines of
exercise 3 for a significantly higher temperature (e.g. 1000K) and to re-calculate 16 new snapshots
along the lines of exercise 5.a. Be sure to carry out these calculations in new folders to avoid
overwriting your previous results. The comparison of the two sets of 16 spectra allows you to get
a first idea of the effect of temperature on the electronic conductivity of aluminum.

Exercise 5.b: Thermodynamic average of larger datasets

In order to more quantitatively evaluate the data, we need to increase the number of available
individual snapshot-calculations with which the thermodynamic averaging is going to be per-
formed. Therefore, we have supplied a large set of snapshot-calculations (960 in total) that were
prepared beforehand. The goal is that every participant has a complete dataset for each
of the 4 temperatures.

The directory ./exercise_5_b contains four sub-directories corresponding to the tempera-
tures 300K, 650K, 1000K and 1350K. In them you will find already prepared averaged spectra
named <Temperature>K_average_full.dat. They were obtained in the exact same manner as
the 16-average spectrum you calculated in exercise 5.a. As mentioned in the previous “First look
at the results”-section, the first column corresponds to ω, the second one to σ(ω). You can now
visualize the temperature behavior of the four well-averaged spectra right away.

We can state a quite regular trend of the spectra with increasing temperature: the most pro-
nounced changes are related to the low-frequency so called Drude-peak region. The height of
this peak (essentially corresponding to the DC-conductivity as we shall learn) decreases with
temperature which is the physically correct qualitative behavior as more and more thermally
disordered structures will scatter electrons more and more effectively.

Optionally: If you like, you also can access the raw-datasets yourself by copying the folder
reference/exercise_5/exercise_5_b from the ictp.it server 7 to your local home directory.

7 /afs/ictp.it/public/shared/smr2475/tutorials/tutorial4
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You will have to unzip the files Datasets.tar.gz with the command tar -xvf Datasets.tar.gz

for each temperature. This will create 240 individual snapshot-folder for which you can perform
the averageing yourself (script: 02_Averages.sh) as in exercise 5.a., or you can take a look at a
couple of single spectra.

Exercise 5.b: Obtaining the direct-current conductivity σDC

Now, we are going to turn to the question how to eventually obtain numbers for the property that
interested us in the first place: the direct-current conductivity σDC . This quantity is essentially
contained in the low frequency region of the optical conductivity spectrum. In sharp contrast to
the primitive cell calculation (exercise 4), we observe a high activity in this low frequency region.

To quantify the DC-conductivity, we resort to a fitting procedure, which is based on the
classical Drude-theory of frequency dependent conductivity. It provides a functional form of the
optical conductivity σ(ω) for low frequencies and reads:

σ = σDC

1 + ω2τ2 (17)

The desired parameter here of course is σDC , τ can be interpreted as an averaged relaxation
time. It is very important to note however, that there is no loss of ”first-principles” character by
fitting to a classically motivated expression like this, because we do not assume at any point to
find a Drude-peak. Rather it is a genuine outcome of the calculation.

In order to perform the fit, we have to take a more detailed look at the different averaged spec-
tra, one temperature at a time. For this purpose, the average-file ending with “...trusted region”
will be used:
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1. Change into the directory 300K, 650K, 1000K or 1350K

2. You will find the averaged file exercise_5_b_average_trusted_region.dat

as well as fitting.grace. This latter file contains the information needed by
XMGRACE to perform the fitting to equation (17).

3. Now invoke XMGRACE by typing: xmgrace -param fitting.grace

exercise_5_b_average_trusted_region.dat

4. XMGRACE should now be open and you should see the optical conductivity spec-
trum.

5. In the menu Data you will find an entry called Non-linear curve fitting...

- click on that and the fitting interface will appear.

6. To the left hand side you have to choose the only available dataset by clicking
on it. You will also notice that the field called Formula already contains the
Drude peak equation.

7. Increase the number of iterations to about 50 in the corresponding field and
click on Apply until the residual value doesn’t change anymore and then on
Accept.

8. Now a console window pops up containing the fitted parameters. You might
have deduced that our parameter of interest is a0 which is the value for σDC . It
should lie in a region between 100,000 to 2,500,000 (Ω · cm)−1.

9. Repeat the above for the other three temperatures and write down the conduc-
tivity values associated with the four temperatures.

10. Put those values in the last-but-one column of the provided file
Results-Calculations.dat. Also add the corresponding reciprocal values (i.e.
the resistivities) to the last column of the same file. The values already con-
tained in the file are conductivities and resistivities for later comparisons.

In the last part of the tutorial, we are now going to have a look at the temperature behavior
of the just obtained results for aluminum and compare them to a converged computation and to
experimental results.

Discussion of the results

As it was stated earlier, the choice of drastically underconverged settings (supercell-size and k-
point mesh) does not yield accurate quantitative results. Still, the qualitative behavior, i.e., the
linear resistivity-temperature relation typical for metals, can already be found in these simple
and rapid calculations.

We will use the two files Results-Calculations.dat and Results-Experiment.dat in the
exercise_5_b folder. The first row is the temperature in Kelvin and the following ones are the
conductivities and resistivities of the experiment or of other calculations:

In addition to your own results, we provided you with the outcome of a much heavier calcu-
lation, which uses a supercell of 108 atoms and a large number of k-points (>1000). Also, we
provide the result of an ”underconverged” calculation (8 atoms, 8 k-points, as the one that you
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have just carried out) that is based on a full first principles molecular-dynamics run that includes
anharmonicity.
For a quick interpretation it is more useful to visualize the resistivities, since they (should) ex-
hibit an easy-to-spot linear behavior.

When using gnuplot to compare the data in Results-Calculations.dat, plot the 1st col-
umn (the temperature) against the 3rd, 5th and 7th to compare the resistivities of the ”con-
verged” calculation, the ab initio molecular dynamics based underconverged calculation and
your harmonic-molecular-dynamics based underconverged calculation. The 1st and 3rd columns
of the Results-Experiment.dat-file contain the experimental values.

Thus, the resistivities of the three calculations give a qualitatively correct physical behavior
in being linear and decreasing with decreasing temperature. Surprisingly indeed, both the un-
derconverged tutorial case (harmonic MD and ab initio MD) as well as the highly converged
calculation with 108 atoms and 1000 k-points are not so very different from the experiment as
one could have expected from the weak parameter set of the tutorial calculations. The reason
for that is a (non-systematic) error cancellation for this particular choice of eight k-points for the
eight-atom supercell. Similar results have already been found in exercise 4, in which a particular
low-parameter set (in this case a coarse k-point mesh) coincidentally resulted in an acceptable
spectrum.
Moreover, the comparison between the two graphs of the ab initio MD values and the values
based on the harmonic MD (as performed in this tutorial) are interesting. They point towards
an underestimation of the resistivity for the harmonic trajectories. Obviously, anharmonic effects
which are contained in the ab initio MD lead to a stronger electron-phonon scattering, which
suppresses the conductivity.
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