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Static and dynamic properties

Physical observables are associated to static and dynamic correlation
functions, such as:

<n(r)n(r')> <n(r,t)n(r',t ')>

Here | will focus mostly on static properties

Computer simulations such as MD (MC) allow us to compute correlation
functions. In these simulations the nuclei are treated as classical particles:
is this adequate?

In presence of light atoms (such as H) quantum effects are not negligible
even at room temperature and above



Do nuclei really behave classically?

Table 148 Some physical properties of H,O, D;0 and T,O (at 25°C unless otherwise stated)®

Pl'OpCl‘ty H20 Dzo T20
Molecular weight 18.0151 20.0276 220315
MP/°C 0.00 3.81 448
BP/r°C 100.00 101.42 101.51
Temperature of maximum density/°C 3.98 11.23 134
Maximum density/gcm™ 1.0000 1.1059 1.2150
Density(25°)/g cm— 0.997 01 1.1044 1.2138
Vapour pressure/mmHg 23.75 2051 ~19.8
Viscosity/centipoise 0.8903 1.107 —
Dielectric constant & 78.39 78.06 -
Electrical conductivity(20°CYohm™"! cm™" 5.7 x 1078 — —
Tonization constant [H*][OH!)/mol? 12 1.008 x 10~ 1.95 x 1013 ~6 x 1016
Ionic dissociation constant K = 1.821 x 10716 354 x 1077 ~1.1 x 107"

[H*][OH™}/[H,0)/mol 1!

Heat of ionization/kJ mol™! 56.27 60.33 -
AH/KImol™! —285.85 —294.6 —
AG; kJ mol™ —-237.19 -243.5 —

(@) Heavy water (p. 39) is now manufactured on the multikilotonne scale for use both as a coolant and neutron-moderator in
nuclear reactors: its absorption cross-section for neutrons is much less than for normal water: oy 332, op 0.46 mb (1 millibarn
= 10" cm?)

Isotopic effects on thermodynamic equilibrium properties would not occur in
classical water



Why does QM lead to mass dependence

Configurations are weighted by a Boltzmann factor
exp(—E/ k,T)

E include kinetic (depending on mass and momentum) and

potential (depending on position) contributions.

In classical mechanics kinetic and potential contributions to the
Boltzmann weight factorize, leading to a partition function that
is the product of an ideal and an excess (configurational) part.

In quantum mechanics kinetic and potential contributions do

not factorize (uncertainty principle).
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Protons in water and ice: their momentum
distribution deviates substantially from the
classical Maxwell-Boltzmann distribution
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Path integral simulations: J. Morrone, RC, PRL 2008

Experiment: deep inelastic neutron scattering (DINS), G.
Reiter et al., Braz. J. Phys 2004



Quantum statistical averages

/ = Tr[e‘ﬁH} <A> = Z_lTr[Ae_ﬁH}

A and H are quantum-mechanical operators

(A)=Y —(,

V4

p(x’,x)=(x'|e?"|x)  p=eP" isthe density operator

A

y,) (A)=Z" dedx’<x| Al x)p(x’,x)

Can we compute the averages without dealing with operators’!



Feynman path integral formulation of quantum
statistical mechanics

B\ B, B, B,
eﬁHE(e P j =elt e? .e
By

’ . , _EH ——H
p(x ,x)=hrnp_mJ‘a’xl...cbcp_1 (x'le * |xP_1><xP_1|e d |xP_2>...<x1|e P x)

~

Xy X; 3 Xy yeeesXp_y 5 X constitutes a path  x(t)  where the label T € (0,[3)

By By
The product (x’|e ¥ |x, ,)..{x|e © |x) takesa value W[x(1)]
%4 [x(T)] 1s a functional of the path x(7T)

p(x’,x)= J O|x(t)]W|x(t)]  asum (integral) over open paths
x(0)=x;x(B)=x’

px,x)= j O|x(t)|W|[x(7)]  asum (integral) over close paths
*(0)=x(B)=x



Computing statistical averages

Let's consider an observable A diagonal in the coordinate representation
and consider discretized paths (x,x,,...,x). Then:
(A)= Z_ljdx1 dx,...dx,  dx,A(x,) )W (x,,X,,....Xp)  (Xp =X)

—®(x,....xp)

If W is positive definite: W (x,,...,x,)=e where @ plays the role of potential energy
Then (A) is like a classical configuration average
Since all points in a close path are topologically equivalent we can write:

(A)= Z‘ljdxl...dxp [% D A(xl.)]W(xl,...,xP)

i=1,P

1
E,=— 2 A(x,) is the estimator of A Z™'W is the weight of the configuration

i=1,P

All this is correct provided W can be assimilated to a classical Boltzmann weight



Evaluating W

A= g H=T+V =" +0(A%)

(ol e iy = (x| e + o)
. v
(ule 5y = [apts || p)(pl) =[x p)(pl e
R S A A _%A _ M _M(x —x )?
=7 dpe e Y exp Y

(M " | (1) = x(1,,))
W‘(zmhz =P %Erf 24 V(x(fi))A)]

M P2 )
= (27-L-Ah2 exp __q)(-xla-"axp)]

1 M
Notice: — >
2 h

(xl. — xi_l) 1s a harmonic interaction between neighboring points (beads) in a path

The spring constant 1S k =
p g hZA

When M — o0 or B — 0 or 7i — 0, k — oo and one recovers the classical limit



Sampling the paths

jdxl dx E, (X,,...,x, ) T

(A) J.dxA(x) x|e ﬁH| Xx)=

Importance sampling can be achieved either by MC or by MD

In the MD case, one introduces (fictitious) sampling masses M. :

o
MX, = —g— with 2 =— explomng ergodicity (k,T =1)
xi
Efficacious sampling is also achieved by Langevin dynamics (LD):
O
X, = —3—+5F (OF(1)OF(t'))=206(t—1")
X

Here ¢ is the sampling time



Many distinguishable particles (Boltzmannions)

Consider 2 particle for example

2

Py
H = +V(x, ,x
ijzM (%%,

2 2
_(p_1+p_2 A

(i P,
2M 2M e—V(xpxz)A 2M 2M =V (x;.%5)A

1 2\ _ /1.2 1.2
xn—lxn—1>_<xnxn € xn—l'xn—1>e

1
<xnxn e

=<X,1, e_(;;]A xi_1><x§ e_(;l\%/le x2_1>€_V(XI’XZ)A
(M ~ M e 2
_( 2mAR® )exp[ 1_1,22;;_1,10 2h°A (xi x’i‘l) An_zl’:PV(x; s X )}

The required amount of information is linear in N (no. of particles) and also

linear in P : it is a classical simulation of N ring polymers (with P beads each)



Some (important) formal matter

z=Tr[e™]= | olx®)lexp{-Dx(0)T}
x(0)=x(B)

®=lim, ) . =

n=1

P (M ()C(Tn)_x(f'l—l))2 +V(X(T ))A]

hp

One can associate a time to A: 0T = hA = ? and convert T to time units

lim, x(T+071)— x(7) — (1)

oT

Bi
D= % J dt {%MX(T)z + V(x(T))} = %SE [X(T)] S 18 the Euclidean action
0

S
/= J D[ x(T)]exp {—M} h sets the scale for the action S,
h
x(0)=x(Bh)

Further reading: D.M. Ceperley, Rev Mod Phys 67, 279 (1995);
D. Landau and K. Binder, A guide to MC methods in statistical physics



Path integral simulations

1 .
Pi(l‘,r’) E— / drl “e dri_] drl.+1 ce s dr“! <R le—ﬁ”‘ RI>

’ 1 1 Bk 4 mR2(r) VIR(T)
pi(r,r') = = @R(T)C_rfo T T—+V(R(7))
Z R(0)=R,R(B8kh)=R’
“= / DR(r)e * Jo " dr P4V (R(T)
R(0)=R.R(Bh)=R |
R‘=(rl-.--'vri—lereri-}-le'"9rt\!)_~
R'= (r1,...,rio1, v, rig1,...,Ti)

Feynman paths: closed and open
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Quantal protons in water and ice
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How does the potential that the proton experiences look like?

Can the potential of mean force be reduced to a 1D potential?
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H.J. Bakker and H.K. Nienhuys, Science
(2002)




In the cases considered so far, proton motion along a bond (H
stretching) reduces to an effective single particle quantum problem, in

spite of the many-body nature of the problem.

More interesting situations occur when the protons are allowed to
tunnel



Phase Diagram
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Tunneling can drive phase transitions

Ice VIl
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Figure 2 Proton density in ice under pressure. As
the oxygen atoms are forced together, the
potential energy changes from a double toa
single well; but a new simulation shows that a
form of ice with the proton midway between the
oxygens occurs even before that happens.

ice VIII -> ice VII: antiferroelectric to disordered proton sublattice

Cartoon from J. Texeira, Nature
N&V commenting

Benoit, Marx, and Parrinello,
Nature 1998

Picture is suggestive but rooted
in Mean Field Theory

Another transition driven by quantum fluctuations occurs in KDP: ferroelectric to disordered



Reduced longitudinal model

".

p(r,r’) ~ p(;'.;l )p(b,b’)

L.Lin, J.A.Morrone, RC, JSP (2011)



Entangled protons

p=) |6(i)P(i)(o(i)|

=05l von Neumann entanglement entropy

S = —Tr[plog p|

S is essentially 0 in ice Th and VIII

Eigenvalue #1

S = 0.60 in 1ce VII and S = 0.20 in 1ce X

What is the origin of the entanglement? Why does it occur in ice VII and X?



Spectrum of the longitudinal density matrix
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Entanglement is mostly due to correlations



Simulation versus Mean Field
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The distribution of local charge fluctuations in a 3-
state (spin 1) model with N,C, and F states

MFA would need to a ionization catastrophe that
would severely violate local charge neutrality

Ring tunneling does occur but is not the only process as some ionized configurations exist

Role of: small cell size, T of the simulation, chosen lattice parameter (applied pressure)
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Tunneling in KDP

KDP Momentum Distribution Along Bond
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Is there a node in the proton momentum distribution
of KDP in the paraeletric phase?
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Remarks

ZPE and tunneling (Boltzmannions)

Faster convergence with the number of beads (P): GLE thermostats
(M.Ceriotti, G.Bussi, M. Parrinello, PRL 2009, M. Ceriotti, D. Manolopoulos,
M. Parrinello, JCP 2011)

Quantum statistics: Bosons and Fermions
Dynamic properties: harmonic approximation, semiclassical approaches

(Centroid MD, Ring Polymer MD); analytic continuation from imaginary to
real time correlation functions
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