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Practical Session V - Theoretical Spectroscopy and Electronic
Excitations

This tutorial is divided into two parts. In the first part we will learn about charged electronic excitations.
The second part is devoted to the description of neutral electronic excitations.

Part I: Charged electronic excitations

In the first part of this tutorial we will assess the suitability of density-functional theory (DFT), Hartree-
Fock (HF) and many-body perturbation theory (MBPT) in the GW approach for the calculation of
electronic excitations. In this tutorial, most of the calculation will be performed on the ethylene molecule
C2H4 (and optionally H2O), with the purpose of comparing the performance of different theoretical ap-
proaches with experimental photoemission spectra (illustrated in Fig. 1 for C2H4). Hence, we invite you
to organise the results of each exercise in a text file, or in the table reported at the end of this document.

Figure 1: Photo-emission spectrum of ethylene adapted from Ref. [9].
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A list of experimental ionization energies for C2H4 and H2O can be found for instance in reference [9] and
[1], respectively.

Exercise 1: (In)adequacy of DFT eigenvalues for the description of
charged electronic excitations

[Total time for this exercise: 10 minutes. Total CPU time: < 1 minute.]

In this first exercise, you will perform a Kohn-Sham DFT calculation with the PBE exchange-correlation
functional and Tier 2 basis set (tight settings) for ethylene C2H4. The quantities of interest in this case
are the Kohn-Sham eigenvalues. You can proceed as follows:

• Create the directory ∼/tutorial5/exercise1

• Generate the geometry file for ethylene from the experimental data available at
http://cccbdb.nist.gov/ according to the following steps: on the home page of the CCCBDB
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database select “Experimental data” from the left column. Follow the link for “Summary of geometry
data for one molecule” and provide the molecule name to access the geometry information. Copy
the geometry specification to the geometry.in file and modify them to comply with the FHI-aims
format. As in previous tutorials, the geometry data should be specified in the following format:

atom <X> <Y> <Z> <Element>
atom <X> <Y> <Z> <Element>
...

• Following the template for the control.in file available at
$HandsOnDFT/tutorials/tutorial5/reference/PartI/exercise_1_DFT_eigenvalues/C2H4, run
a spin-unpolarized DFT calculation using the PBE exchange correlation functional (flag: xc pbe).

• Compare the first four KS eigenvalues – corresponding to the highest occupied molecular orbital
(HOMO), HOMO-1, HOMO-2, and HOMO-3 – with the first three experimental ionization energies
given in Ref. [2].

Optional: H2O Repeat the calculation for the water molecule H2O, using the experimental geometry
available at http://cccbdb.nist.gov/.

Exercise 2: Electron removal energies from Hartree-Fock.

[Total time for this exercise: 10 minutes. Total CPU time: < 1 minute.]

Modify the input files of exercise 1 to set up a Hartree-Fock calculation by using the flag

xc hf

in the control.in file and compare the Hartree-Fock eigenvalues with the experimental ionization energies
and with PBE. Note that already for a small molecules such as C2H4, the different treatment of exchange
and correlation (the latter is absent in HF) may lead to differences in the energy ordering of the orbitals
in DFT and HF.

Exercise 3: Electron removal energies from delta-SCF

[Total time for this exercise: 10 minutes. Total CPU time: < 1 minute.]

In this exercise, the ionization energies (I) of C2H4 will be evaluated with the delta-self-consistent-field
(∆-SCF) approach [2]. Following the definition of the ionization potential,

I = EPBE
tot (N − 1)− EPBE

tot (N) , (1)

the total energy difference between the neutral (EPBE
tot (N) ) and positively (EPBE

tot (N − 1)) charged species
is computed from two separate DFT PBE (or HF) total energy calculations where N is number of electrons
of the neutral molecule. Analogously, one can use the ∆-SCF method to evaluate the electron affinity (A)
as:

A = EPBE
tot (N)− EPBE

tot (N + 1) . (2)
To evaluate Eq. (1), EPBE

tot (N) can be extracted from the output file of Exercise 1. In addition we need to
compute EPBE

tot (N − 1), which requires a second DFT calculation. You can proceed as follows:

• Create the directory ∼/tutorial5/exercise3 and copy the input files from Exercise 1.

• Modify the control.in file and set the flag for performing a spin-polarized calculation. Specify the
initial spin of the system and the charge of the molecule:
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xc pbe
spin collinear
default_initial_moment 1
charge +1

Compute the ionization energy and the electron affinity of C2H4 using Eq. (1).

• How do these values compare to the bare PBE eigenvalue and to experiment?

• What is the origin of the difference between the Hartree-Fock eigenvalue and the ∆-SCF value for
the ionization energy?

Exercise 4: perturbative G0W0 and quasi-particle corrections

An improved description of charged electronic excitations is obtained by the perturbative inclusion of
many-body effects through the self-energy Σ. In the GW approximation [2] the self-energy is calculated
as:

ΣGW (r, r′, ω) = i

2π

∫
dω′G(r, r′, ω′)W (r, r′, ω′ + ω) , (3)

where G(r, r′, ω) is the one-particle Green’s function and W (r, r′, ω) is the screened Coulomb interaction
(see e.g. Refs. [3,4] for details). The GW self-energy can be used to perturbatively correct the DFT or
HF eigenvalues by means of the linearized quasi-particle equation:

εQP
i = εKS

i −
〈
ψKS
i

∣∣ V̂ KS
xc − Σ̂GWc (εQP

i )− Σ̂x
∣∣ψKS
i

〉
, (4)

where Σx is the exact-exchange operator, and ΣGWc is the correlation part of the GW self-energy. V KS
xc

is the exchange-correlation potential of the preliminary calculation, εKS
i and ψKS

i are the corresponding
eigenvalues and eigenvectors, respectively. This approximation is known as G0W0 or one-shot GW , because
the self-energy is calculated only once, whereas a more rigorous approach would require a fully self-
consistent evaluation of Σ. Since the quasi-particle energies in Eq. (4) are evaluated perturbatively on top
of a preliminary single-particle calculation (generally DFT or Hartree-Fock), the G0W0 approach depends
on the initial reference calculation. In the following we refer to PBE and Hartree-Fock based G0W0 as
G0W0@PBE and G0W0@HF respectively to distinguish between the different starting points.

Exercise 4.1: G0W0@PBE quasiparticle energies

[Total time for this exercise: 10 minutes. Total CPU time: < 1 minute. ]

The purpose of this exercise is to perform a G0W0 calculation for the quasi-particle energies of ethylene.

For this exercise, proceed along the following steps:

• Create the directory ∼/tutorial5/exercise4 ;

• Copy input files from Exercise 1;

• Modify the control.in file including the following flags:

xc pbe
qpe_calc gw

In the species settings at the end of the control.in file modify the following flags (for all elements!):

cut_pot 6.0 2.0 1.0
basis_dep_cutoff 0
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Figure 2: Sample output of G0W0 quasiparticle calculation in FHI-aims for the hydrogen molecule H2. The different
colors relate terms in the output file to the corresponding quantities in the linearized quasi-particle
equation (4).

State index

Occupation number

compute EPBE
tot (N − 1), which requires an additional DFT calculation. You can proceed according to the

following guidelines:

• Create the directory ∼/tutorial5/exercise3 and copy the input files from Exercise 1.

• Modify the control.in file and set the flag for performing a spin-polarized calculation. Specify the
initial spin of the calculation and the charge of the molecule:

xc pbe
spin collinear
default_initial_moment 1
charge +1

Compute the ionization energy and the electron affinity of N2 using Eq.1.

• How does this values compare to the bare PBE eigenvalue and to experiments?

• What is the origin of the difference between the Hartree-Fock eigenvalue and ∆-SCF value for the
ionization energy?

Exercise 4: perturbative G0W0 and the quasi-particle correction

An improved description of charged electronic excitations is obtained by perturbative inclusion of many-
body effects through the many-body self-energy Σ. In the GW approximation [2] the self-energy is calcu-
lated as:

ΣGW (r, r�, ω) = i

2π

�
dω�G(r, r�, ω�)W (r, r�, ω� + ω), (1)

where G(r, r�, ω) is the one-particle Green’s function and W (r, r�, ω) is the screened Coulomb interaction
(see e.g. Refs. [3,4] for details). The GW self-energy can be used to perturbatively correct the DFT or
HF eigenvalues by means of the linearized quasi-particle equation:

�QP
i = �KS

i −
�
ψKS
i

�� V̂ KS
xc − Σ̂GW

c (�QP
i ) − Σ̂x

��ψKS
i

�
, (2)

where Σx is the exact-exchange operator, and ΣGW
c is the correlation part of the GW self-energy. V KS

xc
is the exchange-correlation potential of the preliminary calculation, �KS

i and ψKS
i are the corresponding

eigenvalues and eigenvectors, respectively. This approximation is known as G0W0 or one-shot GW , because
the self-energy is calculated only once, whereas a more rigorous approach would require a fully self-
consistent evaluation of Σ. Since the quasi-particle energies in Eq.(2) are evaluated perturbatively on top
of a preliminary single-particle calculation (generally DFT or Hartree-Fock),the G0W0 approach depends
on the initial reference calculation. In the following we refer to PBE and Hartree-Fock based G0W0 as
G0W0@PBE and G0W0@HF respectively to distinguish between the different starting points. In numerical
implementations, the treatment of the full frequency dependence of the self-energy Σ(r, r�, ω) is faced by
introducing an additional discrete grid for the frequency ω.

Exercise 4.1: G0W0 @PBE quasiparticle energies

[Total time for this exercise: 10 minutes. Total CPU time: < 1 minute. ]

The purpose of this exercise is to perform a G0W0 calculation for the quasi-particle energies of the nitrogen
dimer.

For this exercise, proceed according to the following steps:

• Create the directory ∼/tutorial5/exercise4/N2 ;
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In addition to the output of the DFT PBE calculation, the output file will contain a table – similar to that
in Fig.2 – with the quasi-particle corrections to the single-particle eigenvalues. Extract the quasi-particle
energies for the HOMO, HOMO-1, HOMO-2, and HOMO-3 levels and compare them with previous results.

Exercise 4.2: G0W0 basis set convergence

[Total time for this exercise: 15 minutes. Total CPU time: ∼ 6 minutes.]

Plot the convergence of the first G0W0@PBE quasi-particle energy (i.e. the G0W0@PBE HOMO level) for
ethylene using the Tier 1, Tier 2, and Tier 3 basis sets. Calculations with the Tier 3 basis set will require
the following additional settings in the control.in file to overcome ill-conditioning of the overlap matrix
between basis functions due to the large basis set:

basis_threshold 1.e-4
override_illconditioning .true.

• How does the convergence of the ionization energy in G0W0@PBE compare to that of the PBE
eigenvalue?

• What is the origin of the qualitative differences between the convergence behavior in PBE and
G0W0@PBE?

• Optional: plot the convergence of the first ionization energy of C2H4 for cup_pot= 1.0, 2.0, . . . , 6.0
with a Tier 2 basis set1.

Exercise 4.3: G0W0@HF and G0W0@PBE0: Dependence on the starting point

[Total time for this exercise: 10 minutes. Total CPU time: < 1 minute. ]

The purpose of this exercise is to illustrate the dependence of G0W0 calculations on the starting point.
Following the steps given in the previous part of this exercise, perform a G0W0 calculation using the
Hartree-Fock and the PBE0 starting point (i.e. set xc hf and xc pbe0 respectively in the control.in
file), and compare the HOMO, HOMO-1, HOMO-2, and HOMO-3 quasi-particle energy of the C2H4 dimer
with G0W0@PBE.

(Optional) Exercise 4.4: visualization

• Extract the G0W0 quasi-particle energies from the generated output files and copy them into the files
QPE_HF.dat and QPE_PBE.dat (as a single column of data). The files QPE_HF.dat and QPE_PBE.dat
should contain a single column of numbers. Now run the script create_spectrum.py (available in
the directory $HandsOnDFT/tutorials/tutorial5/script/) in your working directory using the
following command:

python create_spectrum.py QPE_HF.dat > spectrum_HF.dat
python create_spectrum.py QPE_PBE.dat > spectrum_PBE.dat

The file spectrum_HF.dat and spectrum_PBE.dat will now contain a spectrum in which the quasi-
particle energies were broadened by 0.05 eV to facilitate the comparison with experimental data.

• Visualize (e.g. with xmgrace) the two files generated in the previous step of the exercise together with
the photo-emission spectroscopy data provided in the file photo-emission_spectrum_C2H4.dat lo-
cated in the directory $HandsOnDFT/tutorials/tutorial5/reference/PartI/reference_data/.

1 Note, that in FHI-aims the default settings for basis sets and integration grids are tuned to optimize the performance
of LDA and GGA density functional calculations. Calculations beyond plain DFT, may require the adjustment of such
settings.
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Figure 3: Example of the spectral function calculated from a self-consistent GW Green’s function for the Benzene
molecule. Since the Green’s function has poles at the addition/removal energies of electrons, the position
of each peak in the spectral function can be associated with these addition and removal energies.

• How large is the deviation from the experimental HOMO level? How large is the starting point
dependence for lower lying quasi-particle energies (e.g. for the HOMO-3 level)?

Exercise 5: Self-consistent GW

In this exercise, you will perform a fully self-consistent GW calculation. Differently from G0W0, the
Green’s function is calculated by solving the Dyson’s equation self-consistently. The Dyson equation
relates the input Green’s function G0 to the GW Green’s function G via the self-energy Σ

G(1, 2) = G0(1, 2) +
∫
d34G0(1, 3)[vH(3)δ(3, 4) + Σ(3, 4)]G(4, 2) , (5)

or in inverted form

G−1(1, 2) = G−1
0 (1, 2)− vH(1)δ(1, 2)− Σ(1, 2) , (6)

where we used the shortened notation 1 ≡ {r1, t1, σ1} – see e.g. ref.[4] for an introduction. vH is the
Hartree potential. We refer to [7] for details of the scGW implementation in FHI-aims.

Exercise 5.1: Spectral function from the self-consistent Green’s function

[Total time for this exercise: 15 minutes. Total CPU time: ∼ 3 minutes.]

To perform a self-consistent GW calculation for C2H4, create a new directory and copy the input files
from Exercise 1. Modify the first part of the control.in file:

xc pbe
sc_self_energy scgw
spin none

and choose Tier 1 settings at the bottom of the control.in file.

After running FHI-aims, the file spectrum_sc.dat will be created 2 in addition to the usual output files.
2 Note, that the choice of a spin polarized calculation will produce a spin-resolved spectral function –identical for closed
shell systems, such as C2H4 and H2O – named spectrum_sc_up.dat and spectrum_sc_do.dat for each component of the
spin moment.
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Figure 4: The Naphthalene molecule.

The file spectrum_sc.dat contains the spectral function calculated from the self-consistent GW Green’s
function

A(ω) = − 1
π

∫
lim

r′→r
ImG(r, r′, ω)dr (7)

whereG has been determined self-consistently from Eq. (5). Figure 3 reports an example of a self-consistent
GW spectral function for benzene. You can visualize the spectral function using xmgrace, gnuplot or any
other available plotting tool3. The first three ionization energies of C2H4 must be extracted directly from
the spectral function (like in experiment) by reading of the peak positions.

Optional

• Visualization: Using the data collected in the previous exercises for the three highest occupied states
(HOMO, HOMO-1, HOMO-2, and HOMO-3) of C2H4, visualize in a plot the deviation from the
experimental ionization energy for DFT, delta-SCF, Hartree-Fock, G0W0@PBE and self-consistent
GW .

• Independence on the starting point at self-consistency: in a different folder, perform a second self-
consistent GW calculation for C2H4 choosing Hartree-Fock as starting point of the calculation and
compare the spectral functions obtained in the previous exercise, in which a PBE starting point was
used.

Bonus exercise 1: GW and the self-interaction error

(Semi-)local functionals, such as LDA or PBE, suffer from the self-interaction error – the incomplete
removal of the interaction of an electron with itself introduced in the Hartree term. The self-interaction
error is particularly large for localized states, but plays a minor role for delocalized states. Molecules that
have both localized and delocalized states that are close in energy (as for instance aromatic molecules), are
particularly problematic for LDA and PBE. In such systems, the self-interaction error affects the localized
and delocalized states differently, potentially leading to a wrong energetic ordering of the single particle
orbitals. In this exercise we illustrate how G0W0 establishes the correct energetic ordering by means of a
proper treatment of exact exchange in the GW self-energy in Eq. (3).

Perform a G0W0 calculation based on an LDA calculation for the naphthalene
molecule (C10H8) using the geometry.in and control.in available in the directory
$HandsOnDFT/tutorials/tutorial5/reference/PartI/bonus_exercise_Naphthalene/.

3 The gnuplot script $HandsOnDFT/tutorials/tutorial5/reference/PartI/exercise_5_scGW/C2H4/plot.plt (run the com-
mand gnuplot plot.plt after copying the script in your working directory) automatically generates a plot of the spectral
function.
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• Compare the energetic ordering of DFT orbitals and the G0W0 quasi-particle energies of naphthalene.

• Plot the orbitals 27 and 28 using the following settings in the control.in file:

output cube eigenstate 27
output cube eigenstate 28

then run the script
$HandsOnDFT/tutorials/tutorial5/reference/PartI/bonus_exercise_Naphthalene/plot-eigenstate.sh
in your working directory to produce png images of the Kohn-Sham eigenstates.

• How many orbitals are energetically swapped in G0W0@LDA compared to LDA?

• Which orbital is more localized: number 27 or number 28?

• Is the different localization of orbitals 27 and 28 consistent with the removal of the self-interaction
error and the new energetic ordering?

Bonus exercise 2: GW total energy from the Galitskii-Migdal formula

As shown in exercise 5, the single-particle Green’s function allows one to determine the energy of single-
particle excitations. However, the Green’s function may also yield information about the ground state of
a system, as it allows to derive, for instance, the total energy and the electron density. To illustrate this
aspect, the purpose of this exercise is to calculate the potential energy curve of the hydrogen molecule
H2 using the Galitskii-Migdal formula in the GW approximation. The Galitskii-Migdal total energy is an
explicit functional of the single-particle Green’s function that can be expressed as:

EGM = −i
∫
dω

2π Tr {[ω + h0]G(ω)}+ Eion, (8)

To evaluate the potential energy curve of H2 you may proceed according to the following steps:

1. Copy the control.in from the directory
$HandsOnDFT/tutorials/tutorial5/reference/PartI/bonus_exercise_GW_total_energy/GM in
your working directory. Run self-consistent GW calculations for several values of the bond length of
H2 (set xc hf in the control.in). A suggested set of bond lengths is

d = {0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.3, 1.6, 1.9, 2.5, 3.0}. (9)

We suggest to generate a script for running the calculations. This is a template (available in the
directory
$HandsOnDFT/tutorials/tutorial5/reference/PartI/bonus_exercise_GW_total_energy/GM) for
a bash script that could be of aid for speeding up the calculations:

#!/bin/bash
for dist in <set_of_distances> ; do

echo Running distance $dist
echo atom 0.00 0.00 0.00 H > geometry.in [13:32]
echo atom 0.00 0.00 $dist H >> geometry.in
mpirun -np 4 aims.x \

> H2_dist$dist.out
done

2. Visualize the self-consistent GW and the G0W0 total energy (evaluated using the Galitskii-Migdal
formula) as function of the bond length. The script
$HandsOnDFT/tutorials/tutorial5/reference/PartI/bonus_exercise_GW_total_energy/GM/read_etot.sh
can be used to extract the total energy from the output file of a sc-GW calculation.

3. Compare the results with the exact data obtained by full configuration-interaction (full-CI) calcula-
tions. The full-CI curve is available in the file
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$HandsOnDFT/tutorials/tutorial5/reference/PartI/reference_data/H2_full-CI.ascii.
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Part II - Neutral electronic excitations

In the previous exercises we have seen how the Kohn-Sham eigenvalues can be used as starting point for
the calculation of charged electronic excitations, i.e. excitations where electrons are removed from the
system or added to the system. In this part of the tutorial we focus on neutral electronic excitations which
arise when the system is perturbed by e.g. external electromagnetic fields. As the name of the excitations
already indicates, we refer to neutral electronic excitations when the particle number of the considered
system remains constant during the excitation. This includes processes as e.g. exciton formation in solar
cells, absorption of photons in photosynthesis and the vision process in the eye.
The tutorial consists of two parts: The first part gives a brief introduction to the computation of neutral
excitation energies in the TDDFT/Casida approach. We investigate vertical Franck-Condon transitions
in the C2H4 molecule at the equilibrium geometry and compute excited Born-Oppenheimer surfaces along
the twisting angle of the molecule. The second part introduces several real-time evolution algorithms
which allow to propagate electronic or nuclear wave packets in real-time. The purpose of the second part
is to familiarize you with wavepacket propagations in real-time and to compare the stability and efficiency
of different propagation algorithms. To that end we employ a few Matlab/Octave4 scripts which easily
allow to investigate the structure of the propagation algorithms. Once we are familiar with real-time
propagations we employ the ground and excited state potential energy surfaces of the first part to study
the non-adiabatic nuclear wave packet evolution on the lowest two coupled Born-Oppenheimer surfaces of
C2H4.

Neutral excitations in TDDFT - Casida equation

For this tutorial we consider the Casida equation [9] which allows to compute neutral excitation energies
as eigenvalues of an algebraic eigenvalue problem

ŴFq = Ω2
q Fq. (10)

Here, Ωq denote the excitation energies of the system, the eigenvectors Fq contain information about the
oscillator strength of the considered optical transition and the matrix W is given in terms of Kohn-Sham
eigenvalue differences and matrix elements of Kohn-Sham orbitals

Wqq′ = δqq′(εa − εi)2 + 2
√

(εa − εi)Kqq′(Ωq)
√

(εa′ − εi′), q = (a, i). (11)

The composite indices q, q′ denote pairs (a, i), (b, j) of occupied i, j and virtual a, b orbitals and the matrix
Kqq′ contains matrix elements of the Hartree-exchange correlation kernel fHXC(r, r′, ω) of TDDFT

Kai,bj(ω) =
∫ ∫

ψa(r)ψ∗i (r)fHXC(r, r′, ω)ψb(r′)ψ∗j (r′)d3r d3r′. (12)

In the present tutorial we use the adiabatic LDA kernel fALDA
HXC , which takes the form

fALDA
XC [n0](r, t, r′, t′) = δ(t− t′)δ(r− r′) d

2

dρ2
(
ρehom

xc (ρ)
)
|ρ=n0(r). (13)

Here, ehom
xc (ρ) denotes the exchange-correlation energy density of the uniform electron gas.

4Matlab is a powerful commerical package tailored for numerical computations. The package uses a own scripting language
which has similarities to Fortran and C. GNU Octave is a open source implementation that can be used to execute Matlab
codes
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Exercise 6: Vertical Frank-Condon transitions

[Total time for this exercise: 10 minutes. Total CPU time: < 1 minute.]

In this exercise, we consider vertical Frank-Condon excitations for the ethylene molecule C2H4 at the
equilibrium geometry. You can take the following steps

• Create a directory ∼/tutorial5/exercise6

• Copy your geometry.in and control.in file from $HandsOnDFT/tutorials/tutorial5/reference/PartI/exercise1

• In order to prepare a Casida calculation with FHI-aims, you have to add the following lines to the
control.in file

neutral_excitation tddft
tddft_kernel libxc
tddft_x XC_LDA_X
tddft_c XC_LDA_C_PW
excited_states 20
excited_mode singlet
empty_states 10000

The first keyword neutral_excitation tddft activates the TDDFT/Casida module in FHI-aims.
With the next three keywords tddft_kernel, tddft_x, tddft_c you select the adiabatic LDA
kernel from the libxc library, cf. Ref. [10]. With the keyword excited_states you can specify how
many excited states FHI-aims should include in the output and with excited_mode singlet you can
select only singlet excitations. Finally, the keyword empty_states specifies how many unoccpuied
states FHI-aims should use in order to build the Casida matrix. To include all states this variable is
typically set to a very large number.

• Once you prepared the input run FHI-aims

In the output of FHI-aims you can see the lowest neutral singlet excitation energies of the molecule

| Writing Singlet excitation energies (TDDFT)
| 1. Singlet: 6.9424 eV [ 0.2551 Ha] - Oscillator Strength: 0.0991
| Transition Moments X: -0.3855 Y: 0.0000 Z: 0.0000
|
| 2. Singlet: 7.4981 eV [ 0.2756 Ha] - Oscillator Strength: 0.0000
| Transition Moments X: 0.0000 Y: 0.0000 Z: 0.0000
|
| 3. Singlet: 7.5002 eV [ 0.2756 Ha] - Oscillator Strength: 0.0000
| Transition Moments X: 0.0000 Y: 0.0000 Z: 0.0000
|
| 4. Singlet: 7.6926 eV [ 0.2827 Ha] - Oscillator Strength: 0.3463
| Transition Moments X: 0.0000 Y: 0.0000 Z: 0.7207
...

All computed excitations are also written to an extra file TDDFT_LR_Spectrum_Singlet.dat

$ head -n 5 TDDFT_LR_Spectrum_Singlet.dat
6.94239384535589 0.09906927964673
7.49811392742994 0.00000000000000
7.50015774774922 0.00000000000000
7.69255706787699 0.34625377115159
7.74808638563561 0.00000000000000
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This file can be used to plot a stick representation for the optical absorption spectrum of the molecule:

$ gnuplot
gnuplot> p [0:15] ’TDDFT_LR_Spectrum_Singlet.dat’ w i

Note, that we restrict ourselves here to the lowest 15eV of the spectrum, since in general the Casida
approach combined with PBE as ground-state functional and adiabatic LDA for the exchange correlation
kernel performs best for low lying excitations.

Alternatively one can also broaden the stick spectrum. The FHI-aims package contains the utitlity
casida_broadener which can be used for this task. The utility requires an input file with name
casida_parameters.dat. The parameter file contrains a single line with numerical parameters. A typical
file has the form

> cat casida_parameters.dat
0.1 1.0 0.2 0.0 0 1 200 800

From left to right the parameters have the following meaning: 1) Lorentz width, 2) Lorentz weigth, 3)
Gauss width, 4) Gauss weight 5) temperature shift in percent, 6) intensity rescaling, 7) lower 8) upper
limit of spectrum in nanometers.

Create a casida_parameters.dat file with the above content and run the utitlity casida_broadener. As
output of the utility you will find the files Broadened_Spectrum_eV.dat and Broadened_Spectrum_nm.dat
which contain boradened spectra.

Optional: H2O Repeat the calculation for the water molecule H2O, using the experimental geometry
available at http://cccbdb.nist.gov/.

Exercise 7: Ground and excited state Born-Oppenheimer surfaces for C2H4

[Total time for this exercise: 15 minutes. Total CPU time: < 14 minutes.]

In this excercise we compute the ground and a few low-lying excited Born-Oppenheimer surfaces of C2H4
for different twisted geometries.

In order to generate geometries for different twisting angles and to run FHI-aims for these geometries, we
have prepared a script that you can utilize for this task. Copy the script to your working directory

$ cp -a $HandsOnDFT/tutorials/tutorial5/reference/PartII/\
exercise_7_excited_state_BO_surfaces/run-aims.sh .

and run the script. As output you will get a file c2h4_bo_surfaces.dat which contains the ground state
and the lowest seven excited state surfaces. Plot the excited surfaces together with the ground state surface
(columns 1 versus 2 gives the ground state surface, 1 versus 3 the first excited state surface, 1 versus 4 the
second excited state surface and so on).

Comparison of algorithms for real-time evolution of wavepackets

[Total time for this exercise: 50 minutes. Total CPU time: ∼ 30 minutes.]

The time evolution of a quantum mechanical state vector |Ψ(t)〉 can be expressed in terms of the time-
ordered evolution operator

Û(t+ ∆t, t) = T̂ exp
(
−i
∫ t+∆t

t

Ĥ(τ)dτ
)
, (14)

13

http://cccbdb.nist.gov/


where Ĥ(t) denotes the (possibly) time-dependent Hamiltonian of the system. With help of Û(t + ∆t, t)
the state |Ψ(t)〉 can be propagated forward in time according to

|Ψ(t+ ∆t)〉 = Û(t+ ∆t, t)|Ψ(t)〉. (15)

Practical propagation schemes are therefore concerned with approximate representations of Û(t + ∆t, t),
or to be more precise, with approximate ways to compute the action of Û(t+∆t, t) on a state vector (with
or without explicitly constructing the operator Û(t+ ∆t, t)).

Magnus expansion

The first complication that arises in approximating Û(t + ∆t, t) is the time-ordering operator T̂ in Eq.
(14). The Magnus series [11,12] provides an exact expression for the time-evolution operator Eq. (14) as
a time-unordered exponential of so called Magnus operators Ωj in the form

Û(t+ ∆t, t) = exp
(

Ω̂
)

= exp
(

Ω̂1 + Ω̂2 + Ω̂3 + · · ·
)
, Ω̂ =

∞∑

j=1
Ω̂j , (16)

where the Ω̂j are given in terms of time-integrals over nested commutators of the Hamiltonian at different
points in time

Ω̂1 =− i
∫ t+∆t

t

Ĥ(τ)dτ

Ω̂2 =
∫ t+∆t

t

∫ τ1

t

[Ĥ(τ1), Ĥ(τ2)]dτ2dτ1

...

(17)

The time-integrals can be evaluated numerically with e.g., a Gauss-Legendre quadrature. In the simplest
case, which is accurate up to second order in the time-step ∆t, one arrives at the exponential midpoint
rule

Û (2)(t+ ∆t, t) = exp
(

Ω̂1

)
+O(∆t3)

Ω̂1 = −iĤ(t+ ∆t/2)∆t+O(∆t3).
(18)

Higher order truncations of the Magnus series can easily be taken into account but require the computation
of additional commutators of the Hamiltonian at different points in time. For example, the fourth order
Magnus propagator takes the form

Û (4)(t+ ∆t, t) = exp
(

Ω̂1 + Ω2

)
+O(∆t5)

Ω̂1 = −i(Ĥ(τ1) + Ĥ(τ2))∆t
2 +O(∆t5).

Ω̂2 = −i[Ĥ(τ1), Ĥ(τ2)]
√

3∆t2
12 +O(∆t5).

τ1,2 = t+ (1
2 ±
√

3
6 )∆t

(19)

Exponential of a matrix

When a discretized representation of the state vectors and the Hamiltonian is introduced (e.g. basis set, or
finite difference approximation) the propagation step, Eq. (15) in combination with the Magnus expansion,
Eq. (16), amounts to compute the action of a matrix exponential on a vector. In the following we discuss
different ways to compute this operation.
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• Taylor expansion. The simplest approach is to perform a Taylor expansion of the exponential

exp(Ω̂) = 1 + Ω̂ + Ω̂2/2 + Ω̂3/6 + Ω̂4/24 +O(Ω̂5). (20)

Acting with this approximation on a state vector involves only matrix vector products which can be
computed efficiently. From a stability analysis, it turns out that an expansion up to fourth order
gives the best compromise of computational cost and stability.

• Matrix diagonalization. If we have all eigenvalues of the matrix representation of Ω̂ at hand, we can
simply take the exponential of the eigenvalues and transform back to the original non-diagonal frame
of the matrix. This approach gives the most accurate way to compute the matrix exponential. The
price to pay is the large computational cost for the dense matrix diagonalization and the required
matrix-matrix products.

• Padé approximation. The lowest order approximation of the exponential by rational functions takes
the form

exp(Ω̂) ≈ 1 + Ω̂/2
1− Ω̂/2

. (21)

This leaves us with an operator (or in discretized form with a matrix) in the denominator. However,
since we are only interested in the action of the approximated exponential on a state vector this can
be written as

(1− Ω̂/2)|Ψ(t+ ∆t)〉 = (1 + Ω̂/2)|Ψ(t)〉. (22)

For a given point in time t, we can explicitly construct the right hand side of Eq. (22). The state
vector at time t+ ∆t can then be found by solving a linear system of equations. This scheme is also
known as Crank Nicholson or Cayley approximation.

Standard ODE solver

In case we only consider a discretization of the state vectors and the Hamiltonian, we can regard the
time-dependent Schrödinger equation as set of coupled first order ordinary differential equations in time

d

dt
Ψp(t) =

∑

q

−iHp,q(t)Ψq(t). (23)

For each given index p this corresponds to one ordinary differential equation (ODE) which is coupled to
the other ODEs through the matrix elements Hp,q(t) of the Hamiltonian. In this form standard ODE
solver can be employed. Particularly simple ODE time-stepping schemes are Runge-Kutta methods. A
frequently employed discretization is the Runge-Kutta method of fourth order

y′ = f(t, y), y(t0) = y0 (24)
k1 = hf(tn, yn) (25)

k2 = hf(tn + 1
2h, yn + 1

2k1) (26)

k3 = hf(tn + 1
2h, yn + 1

2k2) (27)

k4 = hf(tn + h, yn + k3) (28)

yn+1 = yn + 1
6[k1 + 2k2 + 2k3 + k4] (29)

tn+1 = tn + h (30)
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which in terms of our TDSE notation can be written as

Φ(1)
p =

∑

q

−i∆tHp,q(tn)Ψ(n)
q (31)

Φ(2)
p =

∑

q

−i∆tHp,q(tn + 1
2∆t)[Ψ(n)

q + 1
2Φ(1)

q ] (32)

Φ(3)
p =

∑

q

−i∆tHp,q(tn + 1
2∆t)[Ψ(n)

q + 1
2Φ(2)

q ] (33)

Φ(4)
p =

∑

q

−i∆tHp,q(tn + ∆t)[Ψ(n)
q + Φ(3)

q ] (34)

Ψ(n+1)
p = Ψ(n)

p + 1
6[Φ(1)

p + 2Φ(2)
p + 2Φ(3)

p + Φ(4)
p ] (35)

tn+1 = tn + ∆t (36)

Although such a Runge-Kutta algorithm is easy to implement it does not numerically exhibit the time-
reversal symmetry which is a property of the exact solution of the TDSE (provided magnetic fields are
absent).

Autocorrelation function

One possibility to compute the spectrum of the Hamiltonian Ĥ via real-time propagation relies on the
autocorrelation function of the propagated state vector. The free time-evolution (without external field)
of a state vector is given as

|Ψ(t)〉 =
∑

q

aq|Ψq〉 exp(−iEqt), (37)

where |Ψq〉 and Eq are the solutions of the static Schrödinger equation

Ĥ|Ψq〉 = Eq|Ψq〉 (38)

and aq are time-independent expansion coefficients. Next, let us consider the time-dependent correlation
function

P (t) = 〈Ψ(t = 0)|Ψ(t)〉. (39)

Using Eq. (37) this can be written as

P (t) =
∑

q

|aq|2 exp(−iEqt). (40)

By computing the Fourier Transform of the correlation function P (t), we arrive at a spectrum which has
peaks at the eigenenergies of the system

P (E) =
∑

q

|aq|2δ(E − Eq). (41)

The peaks in the spectrum appear infinitely sharp since we assumed a infinite-length time-record of the
autocorrelation function P (t). If only a finite-length time-record is available, then a broadening of the
peaks occurs. This broadening is solely due to the finite propagation time and should not be confused
with the natural line width of electronic levels.

Exercise 8: comparison of different real-time propagation algorithms

In this exercise we compare the efficiency and accuracy of the different propagation schemes that have
been introduced in the previous section.

In the folder
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$HandsOnDFT/tutorials/tutorial5/reference/PartII/exercise_8_propagation_algorithms

you can find a few Matlab/Octave 5 scripts which contain a simple implementation of the discussed
algorithms. Copy these files to your current working directory

$ cp -a $HandsOnDFT/tutorials/tutorial5/reference/PartII/exercise_8_propagation_algorithms/*.m .
$ ls -1 *.m
autocorrelation_spectrum.m
double_well_hamiltonian.m
matrix_exponential_taylor.m
oscillator_hamiltonian.m
propagation_algorithms.m
real_space_grid.m
td_hamiltonian.m

For simplicity, the implementation of our example is using a one-dimensional finite-difference representation
of Hamiltonians and state vectors. The main program is contained in the file propagation_algorithms.m.
The files double_well_hamiltonian.m and oscillator_hamiltonian.m contain different definitions of
the system Hamiltonian (asymmetric double well and harmonic oscillator), the file real_space_grid.m
contains the definition of the employed real-space grid and td_hamiltonian.m allows to construct explic-
itly time-dependent Hamiltonians. Take a look at all files to familiarize yourself with the propagation
algorithms.

To start the program you have to execute

$ octave propagation_algorithms.m

or alternatively you can use the octave shell

$ octave
octave:1> propagation_algorithms

The numerical settings can be adapted by editing the script propagation_algorithms.m. In the file you
can find the parameters for the grid spacing, number of time steps, etc.

max_time_steps = 4096; % maximum number of time steps
dt = 0.024; % time step
nx = 100; % number of grid points
dx = 0.16; % grid spacing

You can switch between different propagation schemes by adjusting the flags for the propagators

% propagation algorithms
rti_cn = true; % Crank-Nicholson/Cayley propagator
rti_rk4 = false; % Runge-Kutta 4th order
rti_taylor = false; % Taylor expansion of exponential
rti_expm = false; % Exact matrix expoential
rti_etrs = false; % Enforced time-reversal symmetric propagator
rti_magnus2 = false; % Second order Magnus expansion with exact matrix expoential
rti_magnus2_taylor = false; % Second order Magnus expansion with Taylor expansion of exponential

5 Matlab is a powerful numerical computing environment. The package allows for easy matrix and vector manipulations
and provides extensive plotting routines for numerical data. GNU Octave is an open source implementation of the Matlab
computing environment and programming language.
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Only one rti_* variable should be set to true for a given run.

In the following steps we compare two different propagation schemes (Crank-Nicholson/Cayley and Runge-
Kutta 4th order). The initial Hamiltonian corresponds to a finite-difference discretization of a one-
dimensional harmonic oscillator.

1. Run the script propagation_algorithms.m with the default parameters. Once the run finished,
inspect the generated PNG files by typing in the shell

$ qiv *.png

Press the space bar to switch to the next image. You will see among others the spectrum, Eq. (41),
of the autocorrelation function, Eq. (39), the lowest four eigenstates of the Hamiltonian plotted
together with the potential, also the sparsity pattern of the Hamiltonian matrix (zero elements are
white, non-zero elements are blue) and the sparsity pattern of the exponential of the Hamiltonian.

2. Compute the autocorrelation function for a different initial condition. For example, change the
parameter xmin in line 106 of the file propagation_algorithms.m from 1.0 to a value of 4.0. How
many spectral lines can be resolved in both cases? What is causing the difference?

3. Following the formulas of Eqs. (31) - (36), try to add the fourth-order Runge-Kutta time-stepping
to the provided file propagation_algorithms.m. As a hint you can find Eq. (31) and Eq. (32) as
example in the script

rk1 = -sqrt(-1) * dt * Hm_t * (psi);
rk2 = -sqrt(-1) * dt * Hm_t_dt2 * (psi + rk1/2);

% >>>>>>>> Add missing lines
% rk3 =
% rk4 =
% <<<<<<<< Add missing lines

psi = psi + (rk1 + 2*rk2 + 2*rk3 + rk4)/6;

Run the Runge-Kutta time-stepping by adjusting the corresponding flags:

% propagation algorithms
rti_cn = false; % Crank-Nicholson/Cayley propagator
rti_rk4 = true; % Runge-Kutta 4th order

Can you still reproduce the same spectrum for the autocorrelation function? Which algorithm runs
faster, Runge-Kutta, or Crank-Nicholson/Cayley? Is the norm of the wavefunction still preserved
when you increase the time-step for Runge-Kutta from dt = 0.027 to dt = 0.028? What can you
say about the stability of the Runge-Kutta and Crank-Nicholson/Cayley schemes for larger time
steps with dt > 0.027?

4. By changing the parameters dt for the time-step and nx for the grid-spacing, try to investigate for
the Crank-Nicholson/Cayley and the Runge-Kutta propagation scheme the following questions:

• Which method allows for the largest time step?

• Which method allows for the fastest time stepping?

• How is the grid spacing related to the time step?

The stability of a given propagator can be monitored by plotting the energy and norm of the state
as function of time. If the norm is not approximately unity (e.g. starts to blow up and eventually
shows NaN (not a number)), the numerical propagation is not usable anymore.

5. Optional: If time permits also compare to other propagation schemes, e.g. the exact matrix expo-
nential (Option rti_expm).

6. Enable the frame output by setting

td_frame_output = true; % output frames for wave packet movie
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If this is enabled, the script propagation_algorithms.m also generates a movie of the computed
wavepacket propagation. Also set

tdmod = 8;
xmin = 1.0;

and run the script. You can display the time-evolving wavefunction by typing in the shell e.g.

$ mplayer wave_packet.avi

Modify the initial condition of the time-propagation by changing the center and the "squeezing"
parameter of the Gaussian initial state.

% initial state ((shifted and squeezed) Gaussian at minimum of potential)
% coherent state (xmin != 0.0, squeeze = 1.0)
% squeezed state (xmin != 0.0, squeeze != 1.0)
xmin = 0.5;
squeeze = 2.0;
psi = sqrt(dx)*(mass*(omega/squeeze) / pi)^(1/4)*exp(-0.5*mass*(omega/squeeze)*(x+xmin).^2);

How does the observed wave-packet propagation compare to a classical oscillator?

7. Switch to a Hamiltonian for an asymmetric double well by commenting the line containing
oscillator_hamiltonian and uncommenting the line containing double_well_hamiltonian

[Hm, vpot] = double_well_hamiltonian(nx, dx, x, B, w0, beta);
%[Hm, vpot] = oscillator_hamiltonian(nx, dx, x, mass, omega);

Run the script and inspect again the spectrum of the autocorrelation function and the movie of the
wavepacket propagation.

Exercise 9: Wavepacket dynamics on coupled Born-Oppenheimer surfaces

In the last excercise of the tutorial we propagate nuclear wavepackets on coupled Born-Oppenheimer
surfaces. To that end we use the ground and first-excited state potential energy surfaces from the
TDDFT/Casida runs in exercise 7 and combine this with the propagation algorithms that we introduced
in exercise 8.
To start the excercise, create a new folder and copy the script

$HandsOnDFT/tutorials/tutorial5/reference/PartII/\
exercise_9_PES_propagation/PES_propagation.m

to your working directory. Also copy the file c2h4_bo_surfaces.dat with the Born-Oppenheimer surfaces
from exercise 7 to your current folder. You can then launch the wavepacket propagation by typing in the
shell

$ octave
octave:1> PES_propagation

In total the script will perform 3000 time steps. As output the script generates snapshots of the moving
wavepacket at different points in time. From these snapshots you can generate a movie of the time
propagation by executing

$ ffmpeg -sameq -y -r 20 -i frame%05d.png bo_surfaces_propagation.mp4

Finally, in order to watch the movie you can use
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$ mplayer bo_surfaces_propagation.mp4

The initial state for the dynamics is the ground-state wavefunction of the ground-state surface, but placed
in the energy landscape of the first excited-state surface. This corresponds to a vertical Franck-Condon
transition. As you can see in the dynamics, the wavepacket starts to split and also coupling between the
ground-state and first-excited state surfaces is visible.
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Ionization energies of C2H4 and H2O

C2H4 Experiment DFT (PBE) Hartree-Fock ∆-SCF G0W0@PBE G0W0@HF scGW

HOMO 10.68 eV

HOMO-1 12.8 eV ***

HOMO-2 14.8 eV ***

HOMO-3 16.0 eV ***

Optional:

H2O Experiment DFT (PBE) Hartree-Fock ∆-SCF G0W0@PBE G0W0@HF scGW

HOMO 12.615 eV

HOMO-1 14.729 eV ***

HOMO-2 18.550 eV ***
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