Coarse-graining space and time:
kinetic Monte Carlo simulations
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How to harness the power of DFT to solve real-world problems, e.g
in materials science, chemical engineering,.. ?

Reliability < Relevance
numerical accuracy length and time scales
(e.g. of energy barriers) quality of statistics

coarse-graining in space: symbolic dynamics ('sites’ instead of ‘coordinates’)
coarse-graining in time: event-driven, variable-time step simulations
Non-equilibrium physics and chemistry of materials

Examples:

heterogeneous catalysis (fluctuations in a reactive environment)
epitaxial growth of semiconductors (metastable nanostructured materials)




Example: car exhaust catalyst
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Example: Time and length scales in epitaxy
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Methods of Statistical
Physics
(equilibrium)

Discrete models in Statistical Physics

* Ising model (magnetism)
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A discrete model for epitaxy:
solid-on-solid (SOS) model

+ Atoms are symbolized by little cubes placed on a lattice.
* The growth surface has no voids, no “overhangs”.
+Atoms move by discrete hops with rate I'= exp(—E/KT).

+ The binding energy is determined by the # of neighbors n
E=Ey+nkEg

kink site
o/

Stochastic sampling

g [ 4Ydp (_H (a, p))
Calculating the partition function N!(2mh)3N P kgT

in many-particles systems requires evaluation of high-dimensional integrals.
Choosing the sampling points in an (almost) random way is a good strategy,
in particular in high dimensions !

Even better: importance sampling -- density of sampling points proportional to
local value of the integrand

Idea: create a stochastic process that achieves
importance sampling.

Application: Metropolis algorithm (this afternoon)

n/4=0.78..=20/25=0.8




Metropolis Sampling

Solution: Importance Sampling with w(q) = exP(_V(;/)/ (ksT))

Generate random support points, distributed according to w(q) ,
i.e., out of total K points, ki =Kw(q) in the unit volume around g

1 K
The expectation value of an observable is calculated as (4) ~ % Z; kid(a;)

The Metropolis algorithm generates, starting from qo , successively
a sequence of K configurations q;, distributed according to w(q).

Even so we don’t know Z’, this is possible, because it is just the
correct relative probabilities that matter:

Viq; —Vi(a;
accept new config. qi+1, if exp (—M> > rnd

kT
else reject. rnd € [0,1]
This assures that %ﬁ;;) = exp (—W)

Metropolis algorithm

|conﬁg. is modified = test conﬁgl

—l—ﬂj

7 draw random x €[0, 1]

i — i+| (_- exp( —(Ecest — Ei)/ksT) > x
\ 4
After “warm up” (i >1000), add the value ﬂ
of observable A in config. i+
to the cumulated average
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From MC to kMC:
the N-fold way
(non-equilibrium)

Classification of spins according to their
neighborhood
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The N-fold way algorithm in MC

* processes are chosen with a _A_ 1
probability proportional to
their rates >
* no discarded attempts pointer steered by
(in contrast to Metropolis) random number
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Simulations of non-equilibrium
processes: kinetic MC

+ While being aware of all processes possible at an instant of time, we need
a way of (randomly) selecting one process with the appropriate relative
probability.

+ Aninternal clock keeps track of the advancement of physical time.

- If the processes are clearly separated in time, i.e. processes are uncorrelated on the
time scale during which the processes takes place, the waiting time for each
individual process has Poissonian distribution.

(K. A. Fichthorn and W.H. Weinberg, J. Chem. Phys. 95, 1090 (1991) )

+ We need to update the list of all possible processes according to the new
situation after the move.
Specific algorithms:
* process-type list algorithm
* binary-tree algorithm
* time-ordered-list algorithm




Application to a lattice-gas model

* example: lattice L,x L,

. by first select on '
cle —

+ the coirect solution: cumulated partial rates
r = er' , normalized to the total rate R=r,

i=1

* selection process: draw a random number p and
compare it to all the »,/R sequentially; as soon as p
exceeds r,/R, execute process k

* problem: we need to compare p to many
(in the worst case all) of the r,/R

* note: Selecting a process with the right probability
requires that we can enumerate all N processes.

Process-type-listAaIgorithm

—+-1
— —
pointer steered by ~r—
random number
|| |
idea: 0

for p process types, we need to compare only to the p numbers N® 1® | k=1,p,
rather then to all r,/R (which are much more numerous)




flow chart for a kMC algorithm

determine all possible

processes for a given
configuration of your
system and build a list

calculate total rate R= %, N® T

A 4
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P+, Py, P3 random numbers e [0,1]

v

A
delete now obsolete
processes from the
process list

find class # k such that

k k-1
SNOTD> p,R > NOTD
j=0 =0

A

< update clock
t—t—In(p;)/R

execute process number
int(p, N®) from class #k

From molecular
dynamics to kinetic
Monte Carlo




From molecular dynamics to kinetic
Monte Carlo

~

rate theory | —> lattice approximation

Conceptually, the system must be divided into the motion along the
reaction coordinate and a “heat bath”.

Transition State Theory (1-dim)

+ Kramer's rate theory

_ ﬂ« o E 5 1/2
Fw(znp( 4T)j ﬂ=(% +w:j -
v friction due to coupling to the heat bath

* high-friction limit

0,0 E
")
* ‘medium’ friction — transition state theory

- “’oexp(_ E%T) P. Hnggi, P. Talkner & M. Borkovec,
2m Rev. Mod. Phys. 62, 251 (1990)




Rates from first-principles calculations

0 = W(f,i) = [0 exp( — (EM—E)/kT)

5ev] 351

transition state

initial state final state

From the PES to rate constants T
(multi-dimensional)

u | ‘ idea:
' ) associate minima with the
"A : : A nodes, hops with the

\.Ginterconnects ina network

hopping rates derived from the
PES

E(x;,y;) = min E(x;, y;, 7, C,)
Zi’ C(x

(harmonic &
I'=kT/h ZTS/Zi = classical :HN v ki /1 N V K.TS CXp(—AE/kT)

approximation)
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Surface diffusion on GaAs(001): mapping
of PES to network graph

PES from DFT calculations — — network of hops

110 barriers minima

distance along [010] (nm)

Surface diffusion in lattice-kMC
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M. Rosini, M.C. Righi, R. Magri, P. Kratzer, Phys. Rev.B 79, 075302 (2009)
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Temperature-accelerated dynamics (TAD)

Event is observed at Ty, but its
rate is extrapolated to T,,,, (using
the TST rate law). it 3
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M.R. Sgrensen and A.F. Voter, J. Chem. Phys. 112, 9599 (2000) T

Applications to real-world
problems
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Catalysis: Challenges for scale-bridging simulations

Surface chemistry: -
adsorption, diffusion,
reaction, desorption

Accurate (first-principles) energetics
of individual elementary processes

Self-consistent coupling to reactive
flow field and appropriate
heat balance

Thermal
I: 3diatio,,
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Quantitative transient and
“ steady-state surface kinetics

Energetics of elementary processes
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Density-Functional Theory
V.. = GGA (PBE...)

K. Reuter and M. Scheffler, Phys. Rev. B 68, 045407 (2003)
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Building a first-principles kinetic Monte Carlo model

CO oxidation @ RuO,(110)
1

Ru

26 elementary processes (site-specific):

- 0, adsorption/desorption (dissociative/associative)
,4 - CO adsorption/desorption (unimolecular)
- 0 and CO diffusion

- CO + Oreaction
K. Reuter, Oil&Gas Sci. Technol. 61, 471 (2006)

K. Reuter and M. Scheffler, Phys. Rev. B 73, 045433 (2006)

Site occupation number (%)

Surface coverage in the reactive environment

T=0600K t= 5 msce
CO oxidation at RuO,(110)

Fevetiaed T=600 K pq (atm)
HEEnEER R
[Bessssisaseissatastatsstsess 105 1010 105 1 10%
HEERERE R 108
e br cus
E;.::i i..“‘..i!l”.l...l.l.. CO /CO

P(O,) =1 atm p(CO) =20 atm

0.0 0.2 04 0.6 0.8 1.0 K. Reuter, D. Frenkel and M. Scheffler,
Time (s) Phys. Rev. Lett. 93, 116105 (2004)
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Steady state, and parameter-free
transient turnover frequencies

COCYS coverage (ML)
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K. Reuter and M. Scheffler,
Phys. Rev. B 73, 045433 (2006)

M. Rieger, J. Rogal, and K. Reuter,
Phys. Rev. Lett. 100, 016105 (2008)

Macro-scale: Heat and mass transfer

Computational
Fluid Dynamics:
Stationary stagnation
point flow

A
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S. Matera and K. Reuter, Phys. Rev. B 82, 085446 (2010)

Chemical source terms
from 1p-kMC
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Isothermal limit:

Mass transfer limitations

inl Tinl inl -
u b ’ I?O2 pCO T::
e 5
Y|\ : =
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S. Matera and K. Reuter, Catal. Lett. 133, 156 (2009) Pg‘(l) (atm)

Example II: MBE growth of IlI-V
semiconductors
As, flux Ga flux
e Sl e 5) aIsOTDiON O Ga
Processes: GaAs substrate ?; diffusion of Ga

desorption of Ga

1) adsorption of As,
2) dissociation of As,
3) diffusion of As

4) desorption of As,

8) island nucleation
9) growth

What is the_interplay of these processes for
a given temperature and flux ?
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Kinetic Monte Carlo simulations of GaAs epitaxy

+ 32 microscopically

_ o o5 [ As, desorption
different Ga diffusion EEm— 4 1000
processes, and As, i ten?“;‘:’;:’ure _
adsorption/desorption 2 e T ik 800 =
are included explicitly S i %
* computational 215 1 600 g
challenge: widely .g [ g-
different time scales o - i 2
(10-"? sec to 10 sec) S " foa aitusion 400 g
* simulation cell 05 F 1 200 5
160 x 320 sites I
(64 nm x 128 nm) oL 1

kinetics of island nucleation and growth

s!de _Ga
view As
*o—°g° *o°g°
top P P e e
. Q
view *og° *og°
P, ¢ e e
Q

1/60 of the full simulation cell
As, pressure = 0.85 x 108 bar
Ga deposition rate = 0.1 ML/s
T=700K
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island density

150 . .
— T=500K
T=550K
T=700K
— T=800K
@ 100 | T=880K
T
c
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o D2 D4 we 08 4 62 deposition rate
time (sec) 0.1 ML Ga per second, IV
ratio 1:1000, T=700K

scaling with temperature ?

880K 800K 700K 600K 500K
2x1 04 T T T T T
5 O KMC simulation -
4~ 10 ‘conventional’
E nucleation theory
:._?« Nis - n (R/D) i*/(i*+2)
g 2 _ | |
3 o N, island density
T P | D diffusion constant
- ,/ ] R deposition flux
- S M numerical const.
.7 nucleation theory i*=1 i*  critical nucleus
3 | pe?l i , | . I , |
10 1.2 1.4 16 1.8 2
1000/T (K™)
simulation: P. Kratzer and M. Scheffler , experiment: G.R. Bell etal.,
Phys. Rev. Lett. 88, 036102 (2002) Surf. Sci. 423, L280 (1999)
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Current work: GaAs nanowire growth

+ unidirectional growth of hexagonal GaAs along (0001) direction
+ Audroplet acts as catalyst

molecular
beams
Asy
) Gz
e Ga assisting
Au mediatin Q7 : e
dlssomatlong - ’; | eagn - dissociation
A » »
s I X T XX

atomic, As&Gal ¥ ¥ ‘ - GaAsunit  (0001)

r' rt LRttt to o

i!’!’!’!’ﬁ"

GaAs Nanowire | [
- F »

Ga

atomic
atomic Ga

P.K., S. Sakong & V. Pankoke, NanoLett. 12, 943 (2011)
V. Pankoke, S. Sakong & P.K., Phys. Rev. B 86, 085425 (2012)

Summary: Bridging the time-scale gap

. computational effort
+ molecular dynamics

(Car-Parrinello method)
+ accelerated molecular dynamics MD | acc
- using a boost potential (Voter, Fichthorn,...) MD

- temperature-accelerated MD
(Montalenti et al. PRL 87, 126101 (2001) ) kMC

* kinetic Monte Carlo with transition state ‘on the fly’

~

search on the fly (avoids both lattice -
R . lattice

approximation and pre-defined rate KMC

table)

* lattice kinetic Monte Carlo, N -fold way
(Voter PRB 34, 6819 (1986) ) ... more and more schematic,
risk of oversimplification
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“Keep things as simple as possible, but
not more simple ..”

Thank you for your

attention !
Summary: arXiv:0904.2556
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