Speculations on Accessing

the Non-Degenerate Normal

Neutrino Mass Hierarchy

with $ov \beta \beta$

Steve Biller, Oxford University

Note on Sensitivity Scaling $T_{1/2} \sim m^2 \qquad m \sim \sqrt{\frac{1}{T_{1/2}}} \sim \sqrt{\frac{1}{\sqrt{B}/5}}$ Gaussian limit 5 ~ Misotope Tlive B~T_live m~7 In the non-Gaussian limit (B<1): limit but otherwise: Killers \mathcal{M} If B is ~independent of Misotope: limit but otherwise:

Standard Approach:

On a small scale, all isotopes have roughly the same intrinsic rate predictions. So, just try different isotopes and various approaches to see how far each technique can be pushed and worry about scaling things up later.

Alternative Approach:

On a large scale, all isotopes are NOT the same owing to backgrounds, cost, logistics of implementation etc. So, define the practical requirements for a normal hierarchy scale first and use that to identify which isotopes and techniques to pursue.

My Rules for the Game:

 Sensitivity should be at least that needed to achieve a 90% CL at 2.5 meV with 5 years of data using average matrix element values.

• Must observe candidate events at a reasonable rate, greater than I per year.

• Must be "practical": logistically feasible and having an estimated cost of less than one billion US dollars.

• Must be based on modest extrapolations from current techniques and costs (minimal dependence on miracles).

Isotope

	Q	percent	element	$G^{0\nu}$	$M^{0\nu}$	$T_{1/2}^{0\nu}$ for	tons of	equivalent	annual world	natural	enriched	$0\nu/2\nu$
Isotope	(MeV)	natural	cost [5]	$(10^{-14}/yr)$	(avg)	2.5meV	isotope for	natural	production [5]	elem. cost	at \$20/g	rate [2][8]
1 (abund.	(\$/kg)	[6]	[7]	$(10^{29} \mathrm{yrs})$	1 ev/yr	tons	(tons/yr)	(\$M)	(\$M)	(10^{-8})
⁴⁸ Ca	4.27	0.19	0.16	6.06	1.6	2.70	31.1	16380	2.4×10^{8}	2.6	622	0.016
⁷⁶ Ge	2.04	7.8	1650	0.57	4.8	3.18	58.2	746	118	1221	1164	0.55
⁸² Se	3.00	9.2	174	2.48	4.0	1.05	20.8	225	2000	39	416	0.092
⁹⁶ Zr	3.35	2.8	36	5.02	3.0	0.93	21.4	763	1.4×10^{6}	27	427	0.025
¹⁰⁰ Mo	3.04	9.6	35	3.89	4.6	0.51	12.2	127	2.5×10^{5}	4.4	244	0.014
¹¹⁰ Pd	2.00	11.8	23000	1.18	6.0	0.98	26.0	221	207	5078	521	0.16
¹¹⁶ Cd	2.81	7.6	2.8	4.08	3.6	0.79	22.1	290	2.2×10^{4}	0.81	441	0.035
¹²⁴ Sn	2.29	5.6	30	2.21	3.7	1.38	41.2	736	2.5×10^{5}	22	825	0.072
¹³⁰ Te	2.53	34.5	360	3.47	4.0	0.75	23.6	68	$\sim \! 150$	24	471	0.92
¹³⁶ Xe	2.46	8.9	1000	3.56	2.9	1.40	45.7	513	50	513	914	1.51
¹⁵⁰ Nd	3.37	5.6	42	15.4	2.7	0.37	13.4	240	$\sim 10^4$	11	269	0.024

Detector Technology

Solid State (CUORE, GERDA, Majorana, COBRA...)

Current background target ~0.01 counts/kg/keV/yr and ~5keV resolution (CUORE), corresponding to ~10⁴ counts/yr in ROI for 100 tonnes. The means by which to reduce this by 3-4 orders of magnitude is unclear. Cost of technology dominates and more or less scales with isotope mass. The means by which to tackle practical and logistical issues of scaling the technology by ~3 orders of magnitude is also unclear.

Thin Film Tracking (SuperNEMO)

Scale of the technology is large and proportional to the surface area of the film, rendering it impractical for 100 tonne quantities of isotope.

TPC (EXO, NEXT)

Cannot directly use Te as TPC medium and unclear how to do this even indirectly.

Liquid Scintillator (KamLAND-Zen, SNO+)

Practical in terms of construction and instrumentation, even for many kilotonne detector volumes (several percent or more loading levels). Cost of technology does not necessarily scale with isotope mass. Potential for low backgrounds from self-shielding, liquid purification and coincidence-tagging techniques. No inherent Te optical absorption lines. Highly flexible configuration.

Significance ~ $S/\sqrt{B_{\odot} + B_{2\nu}}$

Requirements to achieve 90% CL sensitivity at 2.5meV after 5 live years assuming dominant backgrounds are from solar neutrinos and $2\nu\beta\beta$

(S. Biller, PRD 87, 071301(R), 2013)

Detector Fiducial Volume in Kilotons

SNO+ with Tellurium

Potential for ¹³⁰Te as an ideal isotope for a LS-loaded 0vββ experiment

Biller and Chen (Autumn 2011) emphasized potential advantages of Te-loading and initiated development.

- 34% natural abundance;
- Internal U/Th can be actively suppressed (Bi-Po αs);
- External gammas can be attenuated ("fiducialisation");
- $2\nu\beta\beta$ rate is low (~100 times smaller than for ¹⁵⁰Nd);
- No inherent optical absorption lines;
- Relatively inexpensive (< a tenth the cost of ¹³⁶Xe).

Initial loading/purification studies by Yeh et al. during 2012.

Subsequently underwent thorough, independent internal review from Aug 2012 - Feb 2013. This resulted in the decision to pursue Te as a first priority, which has since been the focus of a full collaboration development effort.

Conventional Loading Method

(carboxylate-based organometallic complex)

<u>New loading technique (BNL):</u> Dissolve telluric acid in water (highly soluble), then combine a small fraction (few percent) of this mixture with LAB using a surfactant Clear and stable (>I yr explicitly demonstrated)

(M.Yeh et al., paper in preparation)

Spike tests show metal scavengers reduce U/Th by $\sim 4 \times 10^5$ with double pass (target is a reduction of $\sim 10^4$)

Higher U/Th than pure organic, but still low enough with SNO purification levels (10⁻¹⁴-10⁻¹⁵ g/g)

Isotope	$T_{1/2}$ [5]	Q-value [5]	R (ϕ from [6][7])	Events/yr in ROI
$(0 > 2 M_{\rm eV} T_{\rm er} > 20 days)$	[d]	[MeV]	$[\mu \mathrm{Bq/kg}]$	after 1 yr
$(Q > 2 \text{ Ivie v}, 1_{1/2} > 20 \text{ days})$	Contraction of the	306 XX	DANCE SCORE DEEDE	surface exposure
44 Sc (daughter of 44 Ti)	0.17 (2.16E+4)	3.65	1.19(0.052)	5.41
^{46}Sc	83.79	2.37	1.97	20.3
$^{60}\mathrm{Co}$ (direct and daughter of $^{60}\mathrm{Fe})$	1925.27 (5.48E+8)	2.82	0.81(0.367)	834
68 Ga (daughter of 68 Ge)	4.70E-2(271)	2.92	3.14(1.28)	344
²⁶ Al	2.62E + 8	4.00	0.67	2.20E-4
82 Rb (daughter of 82 Sr)	8.75E-4(25.35)	4.40	(2.44)	440
⁸⁸ Y (direct and daughter of ⁸⁸ Zr)	106.63 (83.4)	3.62	3.14 (8.11)	3.61E4
42 K (daughter of 42 Ar)	0.51 (12016.73)	3.53	1.33(0.24)	10.0
⁵⁶ Co	77.2	4.57	0.13	0.350
58 Co	70.9	2.31	1.29	0.252
110m Ag a	249.83	3.01	2.34	3.61E3
$^{110}\mathrm{Ag}$ (daughter of $^{110m}\mathrm{Ag}) ^{b}$	2.85E-4	2.89	(0.03)	48.6
106 Rh (daughter of 106 Ru)	3.47E-4 (371.8)	3.54	(0.06)	21.8
$^{126m}\mathrm{Sb}$ (direct and daughter of $^{126}\mathrm{Sn})$ c	0.01 (8.40E7)	3.69	71.42 (7.87)	8.63
$^{126}\mathrm{Sb}$ (direct and daughter of $^{126m}\mathrm{Sb})$ d	12.35(0.01)	3.67	$89.65 (^{126m}Sb)$	1.29E4
²² Na	950.6	2.84	1.01	1.01E3
84 Rb e	32.8	2.69	1.29	24.2
90 Y (daughter of 90 Sr)	2.67(10519.2)	2.28	2.69(0.165)	7.90E-3
$^{102}\mathrm{Rh}$ (direct and daughter of $^{102m}\mathrm{Rh})$ f	207.3	2.32	11.77 (0.03)	35.9
$^{102m}\mathrm{Rh}~^{g}$	1366.77	2.46	11.77	69.9
¹²⁴ Sb	60.2	2.90	182.0	1.62E5

ACTIVIA code, cross sections from Silberberg et al. and TENDL-2009 database, flux parameterisations from Armstrong and Gehrels. Variations from using YIELDX code, TENDL-2012 database, and fluxes from Ziegler change estimated rates by up to a factor of two. Consistency also checked against CUORE beam activation study (Wang et al.) and KamLAND induced backgrounds.

(V. Lozza, paper in preparation)

Requires a reduction factor of >10⁴ for these isotopes, which is also comparable to the reduction required for U/Th in "raw" Te material (ICP-MS: 2-3x10⁻¹¹ g/g)

Outline of Te Purification Strategy

(paper in preparation)

(Stage I) 2 Surface passes:

- Dissolve Te(OH)₆ in water
- Recrystalise using nitric acid
- Rinse with ethanol

>10⁴ reduction

>10² reduction

Allow up to 5 hr re-exposure to finish & transport UG

(Stage 2) 2 Underground passes:

- Dissolve in warm water (80°C)
- Cool to Recrystalise thermally

(~50% Te "loss" recovered by recycling to surface system)

	Element Reduction		Assay				
	Factor		Technique				
	Stage 1 Te purification, single-pass spike test						
	Co 1555 ± 326		XRF				
	Sb >243 $ $		XRF				
	Sn > 167		\mathbf{XRF}				
	Fe > 100		\mathbf{XRF}				
	Na	> 346	\mathbf{XRF}				
	Sc	> 165	XRF				
	Ge	> 333	XRF				
	Y	> 278	XRF				
	Zr $ $ > 278 $ $		XRF				
	Ag > 278		\mathbf{XRF}				
	$ Pb-212 299\pm 22 $		$\beta - \alpha$ counting				
	Bi-212 348 ± 81		$\beta - \alpha \ { m counting}$				
	Ra-224	$397\pm~20$	$\beta - \alpha$ counting				
	Th-228 390±19		$\beta - \alpha$ counting				
	Stage 1 Te purification, double-pass spike test						
	Co 3.7×10^5		XRF				
	Pb-212 $> 10^4$		$\beta - \alpha$ counting				
	Bi-212 > 10^4		$\beta - \alpha$ counting				
	Ra-224 $> 10^4$		$\beta - \alpha$ counting				
	Th-228 $ $ > 10 ⁴ $ $		$\beta - \alpha$ counting				
	Stage 2 (UG) Te purification, single-pass spike test						
	Co	12	XRF				
	Ag > 20		XRF				
Zr 17			XRF				

acid-induced recrystalisation + ethanol wash

thermal recrystalisation

Spike Tests (Ongoing)

Isotope	Events/yr in ROI	After stage 1	After stage 2 (UG)
$(0 > 2 \text{ MeV } T_{1/2} > 20 \text{ days})$	after 1 yr	purification plus	purification plus
(Q = 2 interv, 1)/2 = 20 days)	surface exposure	5h re-exposure	6 months "cool-down"
⁴⁴ Sc (daughter of ⁴⁴ Ti)	5.41	1.80	1.89E-5
^{46}Sc	20.3	0.04	9.30E-5
60 Co (direct and daughter of 60 Fe)	834	0.511	4.79E-3
68 Ga (daughter of 68 Ge)	344	0.703	2.03E-3
²⁶ Al	2.20E-4	2.63E-7	2.63E-9
82 Rb (daughter of 82 Sr)	440	2.56	1.74E-4
⁸⁸ Y (direct and daughter of ⁸⁸ Zr)	3.61 E4	37.9	0.213
42 K (daughter of 42 Ar)	10.0	0.90	7.72E-5
$^{56}\mathrm{Co}$	0.350	6.83E-4	1.33E-6
$^{58}\mathrm{Co}$	0.252	5.29E-4	8.88E-7
110m Ag a	3.61E3	3.60	0.022
110 Ag (daughter of 110m Ag) ^b	48.6	0.05	2.93E-4
106 Rh (daughter of 106 Ru)	21.8	0.022	1.58E-4
$^{126m}\mathrm{Sb}$ (direct and daughter of $^{126}\mathrm{Sn})$ c	8.63	8.58	4.34E-7
$^{126}\mathrm{Sb}$ (direct and daughter of $^{126m}\mathrm{Sb})$ d	1.29E4	154	5.44E-5
22 Na	1.01E3	0.711	6.22E-3
⁸⁴ Rb ^e	24.2	0.11	2.31E-5
90 Y (daughter of 90 Sr)	7.90E-3	2.77E-4	1.80E-8
$^{102}\mathrm{Rh}$ (direct and daughter of $^{102m}\mathrm{Rh})$ f	35.9	0.044	2.39E-4
$^{102m}\mathrm{Rh}~^{g}$	69.9	0.060	5.45E-4
^{124}Sb	1.62 E5	417	0.509

Basic Detector Parameters for Phase I Demonstrator

- Light Level: ~200-300 pe/MeV, depending on final optics and choice of secondary shifter. Assume 200 pe/MeV for this talk.
- Loading Level: 0.3-0.5% (0.8-1.3 tonnes ¹³⁰Te), depending on final Te system resources. Assume 0.3% for this talk.
- Fiducial Volume: 20-30%, depending on light level, loading fraction and final backgrounds.
 Assume 20% for this talk (R=3.5m, ~10 times current K-Z fiducial volume)

Expected Average Spectra of Contributing Backgrounds for Two Live Years of Data

Pushing Beyond SNO+

Te Solubility (telluric acid in water)

PMT performance at higher temperatures

(Hamamatsu PMT Handbook, 2007)

Heating to higher temperatures would be nice, but probably requires some new technologies [high temp PMTs (SbNa2K) have lower QE] Loading:

Use more soluble Te compounds? Alternative loading method (maybe use organotelluric compounds)?

Scale light yield from SNO+ and assume a factor of ~2 light loss at higher loading

(SNO PMTs: only ~13-15% peak efficiency (25% QE, 55% collec. eff.), ~45% photocathode coverage)

Potential SNO+	Boost from QE x Coverage					
Light Yield (pe/MeV)	3 (1.7×1.7)	4 (2x2)				
at 0.3% loading						
Likely 300	450	600				
Possibly 500 (not currently, but pure LAB+PPO yields ~550)	750	1000				
• • •						
	1.1.1					
	Likely	Possibly				

Light Yield Estimate at Higher Loading

Detector Scale:

Absorption Length of Medium:

Spherical Volume (d= Λ , ρ =1):

However, light detection requirements favour multiple, small detectors... if finances allow.

Detector Fiducial Volume in Kilotons

Detector Fiducial Volume in Kilotons

Conclusions:

• A practical normal hierarchy $0V\beta\beta$ experiment is **not** out of reach ("modest extrapolation"). With targeted R&D, construction for this could potentially even start within the next decade.

- Te-loaded liquid scintillator almost certainly offers the best (probably only) chance to achieve this.
- Current efforts from SNO+ look encouraging (if preliminary) and will provide an important test-bed for gaining a better understanding of the actual issues.
- There is still a lot to explore in the general development of this technology, which constitutes a worthy investment for the future programme.