keV scale sterile neutrino Dark Matter – theories and implications for experiment

F. Bezrukov

University of Connecticut & RIKEN-BNL Research Center USA

From Majorana to LHC:
Workshop on the Origin of Neutrino Mass
October 02–05, 2013
Trieste, Italy

Outline

Outline

- SM, Cosmology and sterile neutrinos
 - SM problems in particle physics and cosmology
 - Minimal extensions
 - Summary of important constraints on DM
- 2 Scenario I ν MSM just three sterile neutrinos
 - Generic description
 - DM constraints
 - Leptogenesys for baryogenesys and DM generation
- 3 Scenario II vMSM + DM generation
 - Adding the inflaton
 - DM production in inflaton decays
 - Bounds on the model
- Scenario III Left-Right symmetric models
 - Not so minimal model
 - Low scale window

Standard Model – describes nearly everything

Describes

- all laboratory experiments

 electromagnetism,
 nuclear processes, etc.
- all processes in the evolution of the Universe after the Big Bang Nucleosynthesis (T < 1 MeV, t > 1 sec)

Experimental problems:

- Laboratory
 - ? Neutrino oscillations
- Cosmology
 - ? Baryon asymmetry of the Universe
 - ? Dark Matter

? Inflation

? Dark Energy

- Minimal number of new particles
- No new scales before inflation/gravity

Great:

- Avoids (or reformulates) the hierarchy problem (in scale invariant formulations)
- Simple
- Predictive

One should agree to:

Some (technical) fine-tuning

- vMSM − 2 sterile neutrino for leptogenesys, 1 for DM [Asaka, Shaposhnikov'05]
- vMSM + external DM generation mechanism [Shaposhnikov, Tkachev'06, FB, Gorbunov'10]
- "sterile" neutrinos are charged under larger gauge group (Left-Right symmetric model)

[FB, Hettmansperger, Lindner'10, Nemevsek, Senjanovic, Zhang'12]

Notes:

- something more is needed for inflation. Can be guite minimal eg. R² inflation, Higgs inflation, light inflaton
- Other minimal models are possible, say with scalar DM

Sterile neutrino role

Three sterile neutrinos present in all of the models

- N_1 light unstable long-lived Dark Matter (\sim keV scale)
- N_{2,3} heavier
 - responsible for leptogenesys
 - responsible for active neutrino masses
 - responsible for (assist in) DM production

Summary of sterile neutrino Dark Matter constraints

Dark Matter

 Decay constraints – small enough radiative decay width (X-ray observations)

always there

- Structure formation constraints
 - Heavy enough to form existing structures out of fermions always there
 - Cold enough to leave observed small scale structure intact depends in generation mechanism (spectrum)
- Production of proper DM abundance depends on generation mechanism

Scenario I - vMSM

Just three sterile neutrinos

Model action

$$\begin{split} \mathcal{L}_{vMSM} &= \mathcal{L}_{SM} + i \overline{N} \partial \!\!\!/ N - \overline{L}_L F N \tilde{\Phi} - \overline{N} F^\dagger L_L \tilde{\Phi}^\dagger \\ &\quad - \frac{1}{2} (\overline{N^c} M_M N + \overline{N} M_M^\dagger N^c). \end{split}$$

vMSM description – neutrino masses

- $M_1 \sim 1-50 \,\mathrm{keV} \mathrm{Dark} \,\mathrm{Matter}$
- $M_{2,3} \sim$ several GeV Leptogenesys

$$M_I \gg M^D = F\langle \Phi \rangle$$
 – "see-saw" formula is working:

Light neutrino masses

$$M^{V} = -(M^{D})^{T} \frac{1}{M_{I}} M^{D}$$

$$\theta_{\alpha l} = \frac{(M^D)^{\dagger}_{\alpha l}}{M_l} \ll 1$$

DM properties – Radiative decay

Leads to constraints from the X-ray observations

Main decay channel

- $\tau > \tau_{\text{Universe}} \text{easy!}$
- not visible, really...

Second decay channel: $N_1 \rightarrow \nu \gamma$

$$N_1 \xrightarrow{\theta_1} V$$
 V
 V
 V

$$N_1 \xrightarrow{\theta_1} V_{\gamma} V_{\gamma}$$

$$\Gamma \simeq 5.5 imes 10^{-27} \left(rac{ heta_1^2}{10^{-5}}
ight) \left(rac{ extit{M}_1}{1 ext{keV}}
ight)^5 ext{s}^{-1}$$

- Monochromatic: $E_{\gamma} = M_1/2$
- We should see an X-ray (~ keV) line coming from everywhere in the sky

Bounds for the N_1 – DM sterile neutrino

Universal constraint for all models

Bounds for the N_1 – DM sterile neutrino

Universal constraints for all models

DM generation in the early Universe

- Because of small mixing angle (X-ray constraints!) never enters thermal equilibrium
 - Good does not overclose the Universe
 - Bad abundance depends on initial conditions (or is it actually good?)

DM generation in the early Universe

Produced in $\bar{I} \rightarrow vN_1$, $q\bar{q} \rightarrow vN_1$, etc.

Production is proportional to the effective active-sterile mixing angle

$$egin{aligned} heta_{M}^{2}(T) &\simeq rac{ heta_{1}^{2}}{\left(1 + rac{2p}{M_{1}^{2}}ig(b(p,T) \pm c(T)ig)
ight)^{2} + heta_{1}^{2}} \,. \ \ b(p,T) &= rac{16G_{F}^{2}}{\pi a_{W}}p(2 + \cos^{2} heta_{W})rac{7\pi^{2}T^{4}}{360} \ \ c(T) &= 3\sqrt{2}G_{F}\Big(1 + \sin^{2} heta_{W}\Big)(n_{V_{e}} - n_{ar{V}_{e}}) \end{aligned}$$

 $(\theta_1 - \text{vacuum mixing angle of } N_1 \text{ and active } v)$

Production can be

Non-resonant (b dominates) or Resonant ($c \sim b$)

DM generation – NR production

- N₁ never enter thermal equilibrium
- Momentum distribution is not thermal

$$f_{N_1}(p) = \frac{\chi}{\mathrm{e}^{p/T_v} + 1}$$

with $\chi \propto \theta_1^2$

This is much hotter, than the "Thermal Relic" with

$$f_{TR}(p) = \frac{1}{e^{p/T_{TR}} + 1}$$

Bounds for the N_1 – DM sterile neutrino

Nearly universal constraints

DM generation – NR production

- N₁ never enter thermal equilibrium
- Momentum distribution is not thermal

$$f_{N_1}(p) = \frac{\chi}{\mathrm{e}^{p/T_v} + 1}$$

with $\chi \propto \theta_1^2$

• This is much hotter, than the "Thermal Relic" with

$$f_{TR}(p) = \frac{1}{e^{p/T_{TR}} + 1}$$

of low temperature $T_{TR} < T_{v}$ (c.f. M.Viel's talk on Wednesday)

 The Lyman-α constraint is quite strong $m_{NRP \ min} \propto (m_{TR \ min})^{4/3}$

Bounds for the N_1 – DM sterile neutrino

Nonresonant production is completely excluded

Resonant production – can provide much colder DM

And much more of it

Bounds for the N_1 – DM sterile neutrino

Only for "pure vMSM" – production with lepton asymmetries

Canetti, Drewes, Shaposhnikov'13

vMSM experimental consequences (DM)

Active neutrino masses

• X-rays require very small N_1 mixing angle θ_1 , so $m_1 < 10^{-5} \text{eV}$

Neutrinoless double beta decay

- Additional contributions are negligible
 - N₁ X-ray constraints
 - N_{2,3} mass > 100 MeV
- Mass spectrum strongly hierarchical – X-ray constraints

$$m_{0\nu\beta\beta} < 50 imes 10^{-3} \text{ eV}$$

Low T and low M leptogenesys

CP violation present in Yukawa matrices F non-equilibrium process are for sterile neutrino N_l

- production
- freeze-out
- decay

Note – for $M_I/T \ll 1$ the asymmetries can be generated in active and sterile sectors with opposite signs

$$\begin{split} i\frac{d\rho_N}{dT} &= [H,\rho_N] - \frac{i}{2}\{\Gamma_N,\rho_N - \rho^{eq}\} + \frac{i}{2}\mu_a\tilde{\Gamma}_N^\alpha\,, \\ i\frac{d\rho_{\bar{N}}}{dT} &= [H^*,\rho_{\bar{N}}] - \frac{i}{2}\{\Gamma_N^*,\rho_{\bar{N}} - \rho^{eq}\} - \frac{i}{2}\mu_a\tilde{\Gamma}_N^{a*}\,, \\ i\frac{d\mu_a}{dT} &= -i\Gamma_L^a\mu_a + i\text{tr}\left[\tilde{\Gamma}_L^a(\rho_N - \rho^{eq})\right] \\ &\qquad -i\text{tr}\left[\tilde{\Gamma}_L^{a*}(\rho_{\bar{N}} - \rho^{eq})\right]. \end{split}$$

Thermal history of the Universe

↑ T 200 GeV	T _{EW}	zero abundance of $N_{1,2,3}$ thermal production of $N_{2,3}$ \Rightarrow lepton asymmetry generated $\mu_{\alpha} \sim 10^{-10}$ Electroweak Symmetry Breaking \Rightarrow lepton asymmetry converted to baryon asymmetry $\Delta_{B} \sim 0.86 \times 10^{-10}$
	T_+	N _{2,3} reach equilibrium ⇒ lepton asymmetry washed out
few GeV	T *	N _{2,3} freeze out ⇒ lepton asymmetry generated
	T_d	N _{2,3} decay ⇒ lepton asymmetry generated
100 MeV	T_{DM}	$\mu_{lpha} \gtrsim 8 imes 10^{-6}$ resonant N_1 Dark Matter production

Bounds for the $N_{2,3}$ sterile neutrinos

$M_{1,2}$ very degenerate

$\Delta M \sim \delta m_{\rm active}$

[Canetti, Drewes, Shaposhnikov'13]

Scenario II – vMSM + DM generation

- vMSM part
 - N₁ Dark Matter
 - N_{2,3} leptogenesys (only)
- something else generates proper N₁ DM abundance

• Reheating after inflation via $XX \rightarrow HH$ (Standard Model) and $X \rightarrow NN$ (Dark Matter)

DM production now happens from inflaton decays

- At reheating inflaton decays both into SM and DM. providing *initial* abundance for N_1
- M_1 is determined from its decay width (assuming inflaton is the messenger of the scale invariance breaking, so f_1 determines both M_1 and inflaton decays to N_1)

$$extit{M}_1 \sim 13 \cdot \left(rac{ extit{m}_\chi}{300 \; ext{MeV}}
ight) \left(rac{ extit{S}}{4}
ight)^{1/3} \cdot \left(rac{ extit{0.9}}{ extit{f(m_{ ext{inflaton}})}}
ight)^{1/3} ext{keV}$$

where $m_{\rm inflaton} \simeq {\rm GeV}$

 Distribution is similar to that of the non-resonant production (just a bit cooler)

DM neutrino mass bound from Lyman-α

 $M_1 > 8 \text{keV}$

Bounds for the N_1 – DM sterile neutrino

Astrophysical constraints

vMSM with inflaton decay into DM

- Dark Matter N₁
 - θ_1 can be very small
 - stronger mass bounds from structure formation
- Leptogenesys by $N_{2,3}$ $\Delta M/M \sim 10^{-3}$
- Experimental searches
 - N_{2,3} production in hadron decays:
 - Missing energy in K decays
 - Peaks in Dalitz plot
 - N_{2,3} decays into SM
 - Beam target experiments

Situation 3 – a lot of new physics

Assumptions

- There are three right-handed neutrinos N_1 , N_2 , N_3
- At low energies they have Dirac and Majorana mass terms
- They are charged under some (non-SM) gauge group, with the (right) gauge boson mass M

Example –
$$SU(3) \times SU(2)_L \times SU(2)_R \times U(1)_{B-L}$$
 model

Thermal history

- DM Sterile neutrinos N₁ enter thermal equilibrium
- Their abundance later diluted S times by out of equilibrium decay of $N_{2,3}$
- Leptogenesys usual (resonant) in N_{2,3} decays.

Constraints summary

X/γ -ray

$$\theta_1^2 \lesssim 1.8 \times 10^{-5} \left(\frac{1 keV}{\textit{M}_1}\right)^5$$

$$\zeta^2 \lesssim 10^{-18} \dots (\text{keV}/M_1)^3$$

Ly-a bound

$$M_1 > 1.5 - 3.3 \text{keV}$$

$$egin{aligned} \Omega_{N_1} &= \Omega_{DM} ext{ if } \ \Gamma_2 &\simeq 0.50 imes 10^{-6} \ & ar{g}_*^{1/2} rac{M_2^2}{M_{Pl}} \left(rac{1 ext{keV}}{M_*}
ight)^2 \end{aligned}$$

BBN
$$au_2 > 0.1 \div 2 \, \text{sec}$$

$$M_2 > \\ \left(\frac{M_1}{1 \, \text{keV}}\right) (1.7 \div 10) \, \text{GeV}$$

The entropy is effectively generated if the right-handed gauge scale is

$$M > g_{*f}^{-1/8} \left(\frac{M_2}{1 \text{ GeV}} \right)^{3/4} (10 \div 16) \text{ TeV}$$

LR-symmetric low scale window

- Tuning of flavour structure can separate N₁ and N_{2,3} decoupling over QCD phase transition
- Allows for $M_{W_R} \gtrsim 4-5\,\mathrm{TeV}$
- $M_2 \approx m_\pi + m_\mu, \\ M_3 \approx m_\pi + m_e$

DM mass bounds (from observed DM structure)

Phase space distribution is now different, and corresponds to the *thermal relic case*

$$f(p) = \frac{1}{\exp\left(\frac{p}{T_v/S}\right) + 1}$$

So, N₁ are now cooled

Ly-a bound – structure formation

[Boyarsky, Lesgourgues, Ruchayskiy, Viel'09, Viel, Becker, Bolton, Haehnelt'13]

$$M_1 > 1.5 - 3.3 \text{ keV}$$

Astrophysical constraints

Sterile neutrino in beyond SM gauge multiplets

For entropy diluted sterile neutrinos

- Yukawa couplings for all three N₁ are very small
 - type I see-saw like mechanism is impossible
- Active neutrino masses are generated by some type II mechanism
- In the generic case:
 - N_{2,3} masses are high
 - W_R is heavy
 - $0 \nu \beta \beta$ standard
 - \bullet X-ray decay of N_1 DM can be arbitrary small
- Low scale case with special flavour structure
 - N_{2,3} masses are low (particle physics experiments?)
 - *W_R* is within collider reach
 - $0 \nu \beta \beta$ has new physics contributions
 - May have lower bound on X-ray N₁ decay
 - Baryogenesys?

Conclusions

- keV scale sterile neutrino dark matter has
 - universal constraints: X-rays, phase space density
 - model dependent ones: lower bounds on mixing angle, structure formation constraints on the mass

Important to analyze all the properties – decay, production, structure formation!

- Minimal extensions of the SM by right handed sterile neutrinos can be very promising, leading to experimental signatures
 - X-rays
 - rare processes, beam target experiments
 - neutrinoless double beta decay
- A bit more of new physics may be welcome (reduce some fine tunings)
- A lot more of new physics is more complicated
 - may provide some experimental consequences

Bounds for the N_1 – DM sterile neutrino

Only for "pure vMSM" – production with lepton asymmetries

[Canetti, Drewes, Shaposhnikov'13]

$0 v \beta \beta$ in vMSM in general

See saw and 0 v β β

See-saw constraint

$$\sum_{\text{active}} m_i \textit{U}_{ei}^2 + \sum_{\text{light}} \textit{M}_i \textit{U}_{el}^2 + \sum_{\text{heavy}} \textit{M}_i \textit{U}_{el}^2 = 0.$$

• Contributes to $0 \, v \beta \beta$ (light means $M_I < Q_{
m nuclear} \sim 100 \, {
m MeV})$

$$\sum_{\text{active}} m_i U_{ei}^2 + \sum_{\text{light}} M_l U_{el}^2$$

Neutrinoless double beta decay

- Both $M_{2,3} > 100 \,\mathrm{MeV}$ $m_{ee} < 50 \times 10^{-3} \,\mathrm{eV}$
- Both $M_{2,3} < 100 \, {\rm MeV}$ $m_{\rm ee} \sim 0$
- $\textit{M}_2 <$ 100 MeV, $\textit{M}_3 >$ 100 MeV $\textit{m}_{ee} \sim$?

But - definitely no leptogenesys

SM + Light Inflaton coupled in the Higgs sector only

$$\mathcal{L} = \begin{array}{c} \mathcal{L}_{SM} + & \alpha H^{\dagger} H \phi^{2} + \frac{\beta}{4} \phi^{4} + \frac{\xi \phi^{2}}{2} R \\ \text{Standard Model} & \text{Interaction} & \text{Inflationary sector} \end{array}$$

Inflaton mass depends on interaction strength: $m_\chi = m_h \, \sqrt{eta/2a}$

Specifically: the Higgs-inflaton scalar potential is

$$V(H,\phi) = \lambda \left(H^{\dagger}H - \frac{\alpha}{\lambda}\phi^2\right)^2 + \frac{\beta}{4}\phi^4 - \frac{1}{2}\mu^2\phi^2 + V_0$$

We assumed here, that the scale invariance is broken in the inflaton sector only

[Shaposhnikov, Tkachev'06, Anisimov, Bartocci, FB'09, FB, Gorbunov'11, FB, Gorbunov'13]

All constants of the model are bound from cosmology

CMB normalization sets $\beta(\xi)$

$$\beta = \frac{3\pi^2 \,\Delta_{\mathcal{R}}^2}{2} \frac{(1+6\xi)(1+6\xi+8(N+1)\xi)}{(1+8(N+1)\xi)(N+1)^3}$$

$a \lesssim \beta^2$ (mass lower bound)

Inflation is not spoiled by the radiative corrections

$$\begin{array}{ccc} X & H & X \\ X & H & X \end{array} \Rightarrow \begin{array}{c} X & X \\ X & X \end{array}$$

CMB tensor modes bound ξ

$$r = \frac{16(1+6\xi)}{(N+1)(1+8(N+1)\xi)} \lesssim 0.15$$

$a > 10^{-7}$ (mass upper bound)

Sufficient reheating

- After inflation: empty & cold
- Needed: hot, $T_r \gtrsim 150 \text{ GeV}$ (to get baryogenesis)

Experimental searches are possible

Behaves as light "Higgs" boson, suppressed by $\theta = \sqrt{2\beta}v/m_{\chi}$

- Created in meson decays
- Decays: KK, ππ, μμ, ee,
 ...
- Interacts with media: extremely weakly

Search (LHCb, Belle)

- Events with offset vertices in B decays
- Peaks in Daltiz plot of three body B decays

Backup slides

T. Asaka and M. Shaposhnikov Phys. Lett. **B620** (2005) 17-26, hep-ph/0505013.

M. Shaposhnikov and I. Tkachev Phys. Lett. B639 (2006) 414-417, hep-ph/0604236.

F. Bezrukov and D. Gorbunov JHEP 1005 (2010) 010. arXiv:0912.0390.

F. Bezrukov, H. Hettmansperger and M. Lindner Phys. Rev. D81 (2010) 085032, arXiv:0912,4415.

M. Nemevsek, G. Senjanovic and Y. Zhang JCAP 1207 (2012) 006, arXiv:1205.0844.

T. Asaka, S. Blanchet and M. Shaposhnikov Phys. Lett. B631 (2005) 151-156, hep-ph/0503065.

A. Boyarsky, O. Ruchayskiy and M. Shaposhnikov Ann. Rev. Nucl. Part. Sci. 59 (2009) 191–214, arXiv:0901.0011.

L. Canetti, M. Drewes and M. Shaposhnikov Phys. Rev. Lett. 110 (2013) 061801, arXiv:1204.3902.

F. Bezrukov *Phys. Rev.* **D72** (2005) 071303, hep-ph/0505247.

D. Gorbunov and M. Shaposhnikov JHEP 10 (2007) 015, arXiv:0705.1729.

A. Boyarsky, J. Lesgourgues, O. Ruchayskiy, and M. Viel JCAP 0905 (2009) 012, arXiv:0812.0010.

M. Viel, G. D. Becker, J. S. Bolton, and M. G. Haehnelt *Physical Review* D88 (2013), no. 4, 043502, arXiv:1306.2314.

A. Anisimov, Y. Bartocci and F. L. Bezrukov *Phys. Lett.* **B671** (2009) 211–215, arXiv:0809.1097.

F. Bezrukov and D. Gorbunov Phys. Lett. B713 (2011) 365, arXiv:1111.4397.

F. Bezrukov and D. Gorbunov arXiv:1303.4395.