Gauge Theories for Baryon and Lepton Numbers

Pavel Fileviez Perez

Particle and Astro-Particle Physics Division
Max-Planck Institute for Nuclear Physics (MPIK)
Heidelberg, Germany

From Majorana to the LHC: Workshop on the Origin of Neutrino Masses ICTP, Trieste, October 2-5, 2013

Collaborators:

2009 - M. B. Wise (Caltech, USA)
2013 - M. Duerr (MPIK, Germany)
2013 - M. Lindner (MPIK, Germany)

References:

P. F. P., M. B. Wise,

Phys. Rev. D 82, 011901 (2010); JHEP 08 (2011) 068
M. Duerr, P. F. P., M. B. Wise, Physical Review Letters 110,231801 (2013)
M. Duerr, P. F. P., M. Lindner, Phys. Rev. D 88, 051701(R) (2013)
M. Duerr, P. F. P., 1309.3970

The Desert Hypothesis in Particle Physics

Standard Model
GUTs, Strings ?
$\Lambda_{\text {Weak }} \sim 100 \mathrm{GeV}$

Can we break B and L at the TeV scale?

L
 O
 W
 S
 L
 E

Standard Model
$\Lambda_{\text {Weak }} \sim 100 \mathrm{GeV}$

GUTs, Strings ?
$\Lambda \sim 10^{15-19} \mathrm{GeV}$

Aim

Theory for Baryon and Lepton Numbers

P. Fileviez Perez

Outline

- Introduction
- Living without the Great Desert
- Left-Right Symmetry and Type III Seesaw
- Summary

Introduction

Experimental Results

- Proton Decay:

$$
\Delta B=1, \Delta L=\mathrm{odd}
$$

- Neutrino Oscillations:

$$
\Delta L_{e} \neq 0, \Delta L_{\mu} \neq 0, \Delta L_{\tau} \neq 0
$$

Cosmology

Baryon Asymmetry:
Baryon number Viotation

$$
\frac{n_{B}-n_{\bar{B}}}{n_{\gamma}} \sim 10^{-10}
$$

$$
\Delta B \neq 0
$$

Living without the Great Desert

Aim: Can we break B and L at the TeV scale?

L

Standard Model
$\Lambda_{\text {Weak }} \sim 100 \mathrm{GeV}$

B and Las Local Symmetries

A. Pais, 1973 (B as a Local Symmetry)
S. Rajpoot, 1987; Foot, Joshi, Lew, 1989

Carone, Murayama, 1995
Breaking Local Baryon and Lepton Numbers at the TeV Scale (NO Desert !!)
P. F. P., M.B. Wise, 2010
P. F. P., M. B. Wise, JHEP 1108(2011) 068
M. Duerr, P. F. P., M. B. Wise, arXiv:1304.0576 (Phys. Rev. Lett. 2013)
P. F. P., M. B. Wise, PRD82 (2010)011901; JHEP1108(2011)068

Breaking B and L at the TeV scale !

$$
G_{S M} \otimes U(1)_{B} \otimes U(1)_{L}
$$

where: $U(1)_{B}$ and $\mathrm{U}(1)_{\mathrm{L}} \quad$ can be broken at the TeV Scale!

$$
\begin{gathered}
Q_{L} \sim(3,2,1 / 6,1 / 3,0), u_{R} \sim(3,1,2 / 3,1 / 3,0), d_{R} \sim(3,1,-1 / 3,1 / 3,0) \\
\quad \ell_{L} \sim(1,2,-1 / 2,0,1), e_{R} \sim(1,1,-1,0,1), \nu_{R} \sim(1,1,0,0,1)
\end{gathered}
$$

How to define an anomaly free theory?

 Anomalies CancellationBaryonic Anomalies:

$$
\begin{array}{r}
\mathcal{A}_{1}\left(S U(3)^{2} \otimes U(1)_{B}\right), \\
\frac{\mathcal{A}_{2}\left(S U(2)^{2} \otimes U(1)_{B}\right)}{}, \\
\mathcal{A}_{3}\left(U(1)_{Y}^{2} \otimes U(1)_{B}\right), \\
\mathcal{A}_{5}\left(U(1)_{Y} \otimes U(1)_{B}^{2}\right), \\
\left(U(1)_{B}\right), \mathcal{A}_{6}\left(U(1)_{B}^{3}\right),
\end{array}
$$

Leptonic Anomalies: $\quad \mathcal{A}_{7}\left(S U(3)^{2} \otimes U(1)_{L}\right), \mathcal{A}_{8}\left(S U(2)^{2} \otimes U(1)_{L}\right)$,

$$
\begin{array}{r}
\mathcal{A}_{9}\left(U(1)_{Y}^{2} \otimes U(1)_{L}\right), \\
\mathcal{A}_{11}\left(U(1)_{L}\right), \mathcal{A}_{10}\left(U(1)_{Y} \otimes U(1)_{L}^{2}\right), \\
\left.\mathcal{A}_{12}(U)_{L}^{3}\right),
\end{array}
$$

Mixed:

$$
\begin{array}{r}
\mathcal{A}_{13}\left(U(1)_{B}^{2} \otimes U(1)_{L}\right), \mathcal{A}_{14}\left(U(1)_{L}^{2} \otimes U(1)_{B}\right), \\
\mathcal{A}_{15}\left(U(1)_{Y} \otimes U(1)_{L} \otimes U(1)_{B}\right),
\end{array}
$$

In the SM: $\quad \mathcal{A}_{2}=-\mathcal{A}_{3}=3 / 2 \quad \mathcal{A}_{8}=-\mathcal{A}_{9}=3 / 2$
P. F. P., M. B. Wise, PRD82 (2010)011901; JHEP1108(2011)068

Possible Solutions

- Sequential Family $(B=-1, L=-3)$
- Mirror Family ($B=1, L=3$)
- Vector-like Family with Seesaw

Now they are in disagreement with LHC Constraints !

What about Fermionic Leptoquarks?

M. Duerr, P. F. P., M. B. Wise, arXiv:1304.0576 (Phys. Rev. Lett. 2013)

One can define an anomaly free theory using the Fermionic Lepto-quarks:

$$
\begin{gathered}
\Psi_{L} \sim(1,2,-1 / 2,-3 / 2,-3 / 2), \Psi_{R} \sim(1,2,-1 / 2,3 / 2,3 / 2) \\
\eta_{L} \sim(1,1,-1,3 / 2,3 / 2), \eta_{R} \sim(1,1,-1,-3 / 2,-3 / 2) \\
\quad \chi_{L} \sim(1,1,0,3 / 2,3 / 2), \chi_{R} \sim(1,1,0,-3 / 2,-3 / 2)
\end{gathered}
$$

They can have vector-like masses and cancel all anomalies !
M. Duerr, P. F. P., M. B. Wise, arXiv:1304.0576 (Phys. Rev. Lett. 2013)

Interactions:

$$
\begin{aligned}
-\mathcal{L} & \supset h_{1} \bar{\Psi}_{L} H \eta_{R}+h_{2} \bar{\Psi}_{L} \tilde{H} \chi_{R}+h_{3} \bar{\Psi}_{R} H \eta_{L}+h_{4} \bar{\Psi}_{R} \tilde{H} \chi_{L} \\
& +\lambda_{1} \bar{\Psi}_{L} \Psi_{R} S_{B L}+\lambda_{2} \bar{\eta}_{R} \eta_{L} S_{B L}+\lambda_{3} \bar{\chi}_{R} \chi_{L} S_{B L} \\
& +\quad+a_{1} \chi_{L} \chi_{L} S_{B L}+a_{2} \chi_{R} \chi_{R} S_{B L}^{\dagger}+\text { h.c. } \\
- & \mathcal{L}_{\nu}=Y_{\nu} \bar{\ell}_{L} \tilde{H} \nu_{R}+\frac{\lambda_{R}}{2} \nu_{R} \nu_{R} S_{L}+\text { h.c. }
\end{aligned}
$$

Higgses:

$$
S_{B L} \sim(1,1,0,-3,-3), \quad S_{L} \sim(1,1,0,0,-2)
$$

M. Duerr, P. F. P., M. B. Wise, arXiv:1304.0576 (Phys. Rev. Lett. 2013)

Some Features:

Symmetry Breaking:

$$
S_{B L} \sim(1,1,0,-3,-3), \quad S_{L} \sim(1,1,0,0,-2)
$$

$$
\Delta B= \pm 3, \Delta L= \pm 2, \Delta L= \pm 3 \quad \text { NO Proton Decay! }
$$

NO DESERT!
Dark Matter: $\Psi_{L F}^{0}$ can be a cold dark matter candidate !

NO extra Flavour violation!

New Gauge Bosons: $\quad Z_{L}, Z_{B}$

Bounds on the Baryonic Breaking Scale !

Dobrescu, Yu, PRD 88, 035021 (2013)
An, Hou, Wang, DU 2 (2013) 50

May 13, 2013

(a) Z^{\prime} upper cross section limits.

M. Duerr, P. F. Po, arXiv: 1309.3970

Baryonic Dark Matter

$g_{B}, M_{Z_{B}}, M_{\chi} \& B$
Annihilation:
$\bar{\chi} \chi \rightarrow Z_{B} \rightarrow \bar{q} q$
Direct Detection:

$$
\chi N \rightarrow Z_{B} \rightarrow \chi N
$$

LHC Signatures:

$$
p p \rightarrow Z_{B} \rightarrow \bar{\chi} \chi, \bar{q} q, \bar{\chi} \chi j, . .
$$

Left-Right Symmetry and Type III Seesaw

Again: Can we break B and L at the TeV scale?

L O W S C A L E

Left-Right Symmetric Theory
GUTs, Strings ?
$\Lambda \sim 10^{15-19} \mathrm{GeV}$

Pati, Salam; Pati, Mohapatra; Senjanovic, Mohapatra

Left-Right Symmetry

$$
S U(3)_{C} \otimes S U(2)_{L} \otimes S U(2)_{R} \otimes U(1)_{B-L}
$$

- Connection between Neutrino Masses and the Scale of Parity Violation
- Minimal Model has Type I and Type II Seesaw Mechanisms
- Doorway to SO(10) Unification
- If the scale is low one has 'exotic' signals at the LHC

He, Rajpoot, 1990
M. Duerr, P. F. P., M. Lindner, 1306.0568 (PRD)

$$
S U(2)_{L} \otimes S U(2)_{R} \otimes U(1)_{B} \otimes U(1)_{L}
$$

SM Fermions:

$$
Q_{L} \sim(2,1,1 / 3,0), Q_{R} \sim(1,2,1 / 3,0), \ell_{L} \sim(2,1,0,1), \ell_{R} \sim(1,2,0,1)
$$

Anomalies:

$$
\begin{aligned}
& \mathcal{A}_{1}\left(S U(2)_{L}^{2} \otimes U(1)_{B}\right)=3 / 2, \\
& \mathcal{A}_{2}\left(S U(2)_{L}^{2} \otimes U(1)_{L}\right)=3 / 2, \\
& \mathcal{A}_{3}\left(S U(2)_{R}^{2} \otimes U(1)_{B}\right)=-3 / 2, \\
& \mathcal{A}_{4}\left(S U(2)_{R}^{2} \otimes U(1)_{L}\right)=-3 / 2 .
\end{aligned}
$$

The Simplest Solution is \qquad

Type III Seesaw Fields

$$
\begin{gathered}
\rho_{L} \sim(3,1,-3 / 4,-3 / 4), \& \rho_{R} \sim(1,3,-3 / 4,-3 / 4), \\
\rho_{L}=\frac{1}{2}\left(\begin{array}{cc}
\rho_{L}^{0} & \sqrt{2} \rho_{L}^{+} \\
\sqrt{2} \rho_{L}^{-} & -\rho_{L}^{0}
\end{array}\right) \text { and } \rho_{R}=\frac{1}{2}\left(\begin{array}{cc}
\rho_{R}^{0} & \sqrt{2} \rho_{R}^{+} \\
\sqrt{2} \rho_{R}^{-} & -\rho_{R}^{0}
\end{array}\right) .
\end{gathered}
$$

The theory is anomaly free!

Higgs Sector:

$$
\begin{gathered}
\Phi \quad \Phi \sim(2,2,0,0) \\
H_{L} \sim(2,1,3 / 4,-1 / 4), H_{R} \sim(1,2,3 / 4,-1 / 4) \\
S_{B L} \sim(1,1,3 / 2,3 / 2)
\end{gathered}
$$

Relevant Interactions for Neutrino Masses:

$$
\begin{aligned}
-\mathcal{L} & \supset \bar{\ell}_{L}\left(Y_{3} \Phi+Y_{4} \tilde{\Phi}\right) \ell_{R} \\
& +\lambda_{D}\left(\ell_{L}^{T} C i \sigma_{2} \rho_{L} H_{L}+\ell_{R}^{T} C i \sigma_{2} \rho_{R} H_{R}\right) \\
& +\lambda_{\rho} \operatorname{Tr}\left(\rho_{L}^{T} C \rho_{L}+\rho_{R}^{T} C \rho_{R}\right) S_{B L}+\text { h.c. },
\end{aligned}
$$

Type III Seesaw and
Left-Right Symmetry

Parity Violation !

$$
v_{L} \ll v_{R}
$$

$$
M_{\nu_{L}}^{I I I} \ll M_{\nu_{R}}^{I I I} .
$$

M. Duerr, P. F. P., M. Lindner, 1306.0568 (PRD)

FIG. 1: Type III seesaw for the left-handed neutrinos.

FIG. 2: Type III seesaw for the right-handed neutrinos.
M. Duerr, P. F. P., M. Lindner, 1306.0568 (PRD)

Neutrino Masses

$$
-\mathcal{L}_{\nu}=\tilde{M}_{\nu}^{D} \bar{\nu}_{L} \nu_{R}-\frac{1}{2} M_{\nu_{L}}^{I I I} \nu_{L}^{T} C \nu_{L}-\frac{1}{2} M_{R} \nu_{R}^{3 T} C \nu_{R}^{3}+\text { h.c. },
$$

$3+2$ System

$$
\begin{gathered}
-\mathcal{L}_{\nu}=-\frac{1}{2} M_{\nu_{L}}^{L L} \nu_{L}^{T} C \nu_{L}+\left(\tilde{M}_{\nu}^{D}\right)^{i \alpha} \bar{\nu}_{L}^{i} \nu_{R}^{\alpha}+\text { h.c. } \\
\mathcal{M}_{\nu}^{3+2}=\left(\begin{array}{ccccc}
0 & 0 & 0 & m_{D}^{1} & m_{D}^{2} \\
0 & m_{1} & 0 & m_{D}^{3} & m_{D}^{4} \\
0 & 0 & m_{2} & m_{D}^{5} & m_{D}^{6} \\
m_{D}^{1} & m_{D}^{3} & m_{D}^{5} & 0 & 0 \\
m_{D}^{2} & m_{D}^{4} & m_{D}^{6} & 0 & 0
\end{array}\right)
\end{gathered}
$$

Effect of higher-dimensional operators

$$
\begin{aligned}
& \mathcal{O}_{\nu_{L}}=c_{L} \ell_{L} \ell_{L} H_{L} H_{L} S_{B L}^{\dagger} / \Lambda^{2} \\
& \mathcal{O}_{\nu_{R}}=c_{R} \ell_{R} \ell_{R} H_{R} H_{R} S_{B L}^{\dagger} / \Lambda^{2}
\end{aligned}
$$

Example:

$$
\text { if } \mathrm{v}_{\mathrm{L}} \sim 1 \mathrm{GeV}, \text { and } \mathrm{v}_{\mathrm{BL}} \sim 10 \mathrm{TeV} \rightarrow \Lambda \gtrsim 3 \times 10^{3} \mathrm{TeV}
$$

Using $\mathrm{v}_{\mathrm{R}} \sim 1 \mathrm{TeV}$ and $\mathrm{v}_{\mathrm{BL}} \sim 10 \mathrm{TeV} \rightarrow \mathrm{M}_{\nu_{\mathrm{R}}}<1 \mathrm{MeV}$.

Summary

- The Desert Hypothesis plays a major role in our view of the relation between the physics at the low and high scales. However, this picture can be WRONG!
- One can define a consistent theory where B and L are local symmetries broken at the low scale in agreement with the experiments and there is no need to postulate the Great Desert. One has a simple theory for dark matter (and baryogenesis) which can be tested at LHC.
- Local B and L Symmetries together with Left-Right Symmetry requires Type III Seesaw. The Minimal Model predicts light sterile neutrinos at the renormalizable level.

THANK YOU !

This is my contribution to the GoranFest which took place in 2010!
Sorry, I am a bit late ;)

