W' searches at Colliders: Results & Prospects

Christos Leonidopoulos

THE UNIVERSITY of EDINBURGH

From Majorana to LHC: Workshop on the Origin of Neutrino Mass Trieste – 2-5 October 2013

"I know nothing except the fact of my ignorance"

Majorana neutrino $\leftrightarrow W_R$

Majorana neutrino $\leftrightarrow W_R \leftrightarrow$ General W' searches

- Review of recent (and not so recent) W' searches
- How well have we explored the full mass range?
- All *W*' signatures relevant to some extent for right-handed *W* and (by association) new types of neutrinos

Majorana neutrino $\leftrightarrow W_R \leftrightarrow$ General W' searches

- Review of recent (and not so recent) W' searches
- How well have we explored the full mass range?
- All W' signatures relevant to some extent for right-handed W and (by association) new types of neutrinos

Experimentalists should follow agnostic holistic approach

- Go beyond SSM limits, ie. provide limits on cross section × branching fractions
- Direct searches: allow for the unexpected to be discovered
- Consider as many final states as possible

W': experimental signatures

W' searches

- W' Signatures
 - \succ Leptonic: $e + v, \mu + v, \tau + v$
 - \succ Bosonic: WZ
 - ≻ Hadronic: $qq', t\overline{b}, \ell N_{\ell} (N_{\ell} \rightarrow qq'\ell') \ell = e, \mu$

W' searches

- W' Signatures
 - \succ Leptonic: $e + v, \mu + v, \tau + v$
 - \succ Bosonic: WZ
 - ≻ Hadronic: $qq', t\overline{b}, \ell N_{\ell} (N_{\ell} \rightarrow qq'\ell') \ell = e, \mu$
- Large W' mass opens up new channels
- Channels that are favored/suppressed: modeldependent

General W' searches and W_R

- W' Signatures
 - Exploric: e + v, $\mu + v$, $\tau + v$
 - \succ Bosonic: WZ
 - ≻ Hadronic: $qq', t\overline{b}, \ell N_{\ell} (N_{\ell} \rightarrow qq'\ell') \ell = e, \mu$
- $m(N_\ell) \to 0$, ie. $m(N_\ell) << m(W_R)$
- $m(N_{\ell}) \sim$ "few tens of GeV"
- $m(N_{\ell}) > 80-100 \text{ GeV}''$
- $m(N_\ell) \to \infty$, or $m(N_\ell) > m(W_R)$

General W' searches and W_R

- W' Signatures
 - \succ Leptonic: $e + v, \mu + v, \tau + v$
 - \succ Bosonic: WZ
 - ≻ Hadronic: $qq', t\overline{b}, \ell N_{\ell} (N_{\ell} \rightarrow qq'\ell') \ell = e, \mu$

•
$$m(N_{\ell}) \rightarrow 0$$
, ie. $m(N_{\ell}) \ll m(W_R)$

- $m(N_{\ell}) \sim$ "few tens of GeV"
- $m(N_{\ell}) > 80-100 \text{ GeV}''$
- $m(N_\ell) \to \infty$, or $m(N_\ell) > m(W_R)$

 $W' \to \ell \nu$

 $W' \rightarrow \ell \nu$: ATLAS & CMS

ATLAS: 7 TeV, 4.7 fb⁻¹, EXOT-2012-02 CMS: 8 TeV, 20 fb⁻¹, EXO12060

Christos Leonidopoulos

 $W' \rightarrow \ell \nu$: ATLAS & CMS

Christos Leonidopoulos

Channel	Experiment	Search range (TeV)	σ×B Limits (fb)	SSM limit (TeV)
e+MET	CMS, 20 fb ⁻¹ , 8 TeV	0.4-4.0	0.5-90	0.4-3.20
μ+ΜΕΤ	CMS, 20 fb ⁻¹ , 8 TeV	0.4-4.0	0.8-70	0.4-3.10
e/μ+MET	CMS, 20 fb⁻¹, 8 TeV	0.4-4.0	0.5-70	0.4-3.35

 $W' \rightarrow \ell \nu$: CDF

CDF: 1.8 TeV, 107 pb⁻¹, arXiv9910004

CDF: 1.96 TeV, 205 pb⁻¹, arXiv0611022

CDF: 1.8 TeV, 107 pb⁻¹, arXiv9910004

CDF: 1.96 TeV, 205 pb⁻¹, arXiv0611022

Exclusion limits much closer to theoretical curve here: weak limits

Channel	Experiment	Search range (TeV)	σ ×B Limits (fb)	SSM limit (TeV)
e+MET	CMS, 20 fb ⁻¹ , 8 TeV	0.4-4.0	0.5-90	0.4-3.20
μ+ΜΕΤ	CMS, 20 fb ⁻¹ , 8 TeV	0.4-4.0	0.8-70	0.4-3.10
e/μ+MET	CMS, 20 fb ⁻¹ , 8 TeV	0.4-4.0	0.5-70	0.4-3.35
e+MET	CDF, 205 pb⁻¹,2 TeV	0.2-1.0	100-1000	0.2-0.8
μ+ΜΕΤ	CDF, 107 pb ⁻¹ , 1.8 TeV	0.2-0.8	400-10000	0.2-0.7

Channel	Experiment	Search range (TeV) σ×B Limits (fb)		SSM limit (TeV)
e+MET	CMS, 20 fb ⁻¹ , 8 TeV	0.4-4.0	0.5-90	0.4-3.20
μ+ΜΕΤ	CMS, 20 fb ⁻¹ , 8 TeV	0.4-4.0	0.4-4.0 0.8-70 0.4	
e/μ+MET	CMS, 20 fb ⁻¹ , 8 TeV	0.4-4.0 0.5-70		0.4-3.35
e+MET	CDF, 205 pb⁻¹,2 TeV	0.2-1.0	100-1000	0.2-0.8
μ+MET	CDF, 107 pb ⁻¹ , 1.8 TeV	0.2-0.8 400-10000		0.2-0.7
€+MET	LEP	0-0.105	$10^{-3} \times SSM?$	0-0.105
€+MET		0.1-0.2	???	???

Channel	Experiment	Search range (TeV)	σ ×B Limits (fb)	SSM limit (TeV)
e+MET	CMS, 20 fb ⁻¹ , 8 TeV	0.4-4.0	0.5-90	0.4-3.20
μ+MET	CMS, 20 fb ⁻¹ , 8 TeV	0.4-4.0	0.8-70	0.4-3.10
e/μ+MET	CMS, 20 fb ⁻¹ , 8 TeV	0.4-4.0	0.5-70	0.4-3.35
e+MET	CDF, 205 pb⁻¹,2 TeV	0.2-1.0	100-1000	0.2-0.8
μ+MET	CDF, 107 pb ⁻¹ , 1.8 TeV	0.2-0.8	400-10000	0.2-0.7
የ+MET	LEP	0-0.105	$10^{-3} \times SSM?$	0-0.105
የ+MET		0.1-0.2	???	???
T+MFT				

Channel	Experiment	Search range (TeV)	σ ×B Limits (fb)	SSM limit (TeV)	
e+MET	CMS, 20 fb ⁻¹ , 8 TeV	0.4-4.0	0.5-90	0.4-3.20	
μ+ΜΕΤ	CMS, 20 fb ⁻¹ , 8 TeV	0.4-4.0	0.8-70	0.4-3.10	
e/μ+MET	CMS, 20 fb ⁻¹ , 8 TeV	0.4-4.0 0.5-70		0.4-3.35	
e+MET	CDF, 205 pb⁻¹,2 TeV	0.2-1.0	100-1000	0.2-0.8	
μ+ΜΕΤ	CDF, 107 pb ⁻¹ , 1.8 TeV	0.2-0.8 400-10000		0.2-0.7	
€+MET	LEP	0-0.105	$10^{-3} \times SSM?$	0-0.105	
€+MET		0.1-0.2	???	???	
τ+IVIE I		0.1-0.2	r f f	r f f	

Direct searches between 105 and 200 GeV?Tau searches?

τ+MET

General W' searches and W_R

- W' Signatures
 - \blacktriangleright Leptonic: $e + v, \mu + v, \tau + v$
 - \triangleright Bosonic: WZ
 - \succ Hadronic: $qq', t\overline{b}, \ell N_{\ell} (N_{\ell} \rightarrow qq'\ell') \ell = e, \mu$
- $m(N_{\ell}) \rightarrow 0$, i.e. $m(N_{\ell}) \ll m(W_R)$

• $m(N_{\ell}) \sim$ "few tens of GeV"

- M(N) > 80-100 GeV"
 As its mass increases, neutrino decay gradually moves inside detector,
- but not necessarily at IP
 - Non-IP activity may/may not be compatible with ℓ +MET signature
 - Dedicated searches (displaced vertices, etc), but not comprehensive!
- Chu Not discussed today

General W' searches and W_R

- W' Signatures
 - Exploric: e + v, $\mu + v$, $\tau + v$
 - \triangleright Bosonic: WZ
 - ≻ Hadronic: $qq', t\overline{b}, \ell N_{\ell} (N_{\ell} \rightarrow qq'\ell') \ell = e, \mu$
- $m(N_{\ell}) \rightarrow 0$, ie. $m(N_{\ell}) << m(W_R)$
- $m(N_{\ell}) \sim$ "few tens of GeV"
- $m(N_{\ell}) > 80-100 \text{ GeV}$ "
- $\overline{m(N_{\ell})} \to \infty$, or $m(N_{\ell}) > m(W_R)$

 $W' \to \ell N_\ell$, $N_\ell \to q q' \ell'$

 $W' \rightarrow \ell N_{\ell} (qq'\ell')$

Search for W' decaying to heavy neutrino plus lepton

- No L-R mixing: heavy neutrino decays via W_R'
- Cross-section: depends on W_R' , N_ℓ masses (assuming W_L' couplings)

• Final state: two (same-flavor) leptons plus two jets

 $W' \to \ell N_{\ell} (qq'\ell')$

Search for W' decaying to heavy neutrino plus lepton

- Discovery #1: mass of two jets & lepton = neutrino mass
- Discovery #2: mass of neutrino + lepton = W_R mass
- Discovery #3: compare lepton charges (Majorana vs Dirac)
- Discovery #4: compare lepton flavors (LFV)

 $W' \rightarrow \ell N_{\ell} (qq'\ell'): ATLAS^{(*)} \& CMS$

(*) See V. Savinov's talk for ATLAS results

 $W' \to \ell N_{\ell} (qq'\ell')$: CMS

Muons

Electrons

CMS: 8 TeV, 3.6 fb⁻¹, EXO120017

Channel	Experiment	Search range (TeV)	σ ×B Limits (fb)	SSM limit (TeV)
e+MET	CMS, 20 fb ⁻¹ , 8 TeV	0.4-4.0	0.5-90	0.4-3.20
μ+MET	CMS, 20 fb ⁻¹ , 8 TeV	0.4-4.0	0.8-70	0.4-3.10
e/μ+MET	CMS, 20 fb ⁻¹ , 8 TeV	0.4-4.0	0.4-4.0 0.5-70	
e+MET	CDF, 205 pb⁻¹,2 TeV	0.2-1.0	100-1000	0.2-0.8
μ+MET	CDF, 107 pb ⁻¹ , 1.8 TeV	0.2-0.8	400-10000	0.2-0.7
ℓ+MET	LEP	0-0.105	$10^{-3} \times SSM?$	0-0.105
ℓ+MET		0.1-0.2	???	???
τ+MET				
eejj	CMS, 3.6 fb ⁻¹ , 8 TeV	1.0-3.0		

General W' searches and W_R

- W' Signatures
 - Exploric: e + v, $\mu + v$, $\tau + v$
 - \triangleright Bosonic: WZ
 - ≻ Hadronic: $qq', t\overline{b}, \ell N_{\ell} (N_{\ell} \rightarrow qq'\ell') \ell = e, \mu$
- $m(N_\ell) \to 0$, ie. $m(N_\ell) << m(W_R)$
- $m(N_{\ell}) \sim$ "few tens of GeV"
- $m(N_{\ell}) > 80-100 \text{ GeV}''$

•
$$m(N_{\ell}) \rightarrow \infty$$
, or $m(N_{\ell}) > m(W_R)$

$W' \to t \overline{b}$

$W' \rightarrow t\bar{b}$: ATLAS & CMS

ATLAS assumes neutrino too heavy to produce

ATLAS: 8 TeV, 14.3 fb⁻¹, CONF-2013-050 CMS: 8 TeV, 20 fb⁻¹, B2G12010

Christos Leonidopoulos

$W' \rightarrow t\bar{b}$: ATLAS & CMS

Christos Leonidopoulos

Channel	Experiment	Search range (TeV) σ×B Limits (fb)		SSM limit (TeV)	
e+MET	CMS, 20 fb ⁻¹ , 8 TeV	0.4-4.0	0.5-90	0.4-3.20	
μ+ΜΕΤ	CMS, 20 fb ⁻¹ , 8 TeV	0.4-4.0	0.8-70	0.4-3.10	
e/μ+MET	CMS, 20 fb ⁻¹ , 8 TeV	0.4-4.0	0.5-70	0.4-3.35	
e+MET	CDF, 205 pb⁻¹,2 TeV	0.2-1.0	100-1000	0.2-0.8	
μ+MET	CDF, 107 pb ⁻¹ , 1.8 TeV	0.2-0.8	400-10000	0.2-0.7	
€+MET	LEP	0-0.105	$10^{-3} \times SSM?$	0-0.105	
€+MET		0.1-0.2	???	???	
τ+MET					
eejj	CMS, 3.6 fb ⁻¹ , 8 TeV	1.0-3.0			
tb	CMS, 20 fb ⁻¹ , 8 TeV	0.8-3.0	20-100	0.8-2.05(2.15)	

 $W' \rightarrow t\bar{b}$: CDF

CDF: 1.96 TeV, 1.9 fb⁻¹, arXiv: 0902.3276

Christos Leonidopoulos

Channel	Experiment	Search range (TeV)	σ×B Limits (fb)	SSM limit (TeV)	
e+MET	CMS, 20 fb ⁻¹ , 8 TeV	0.4-4.0	0.5-90	0.4-3.20	
μ+MET	CMS, 20 fb ⁻¹ , 8 TeV	0.4-4.0	0.8-70	0.4-3.10	
e/μ+MET	CMS, 20 fb ⁻¹ , 8 TeV	0.4-4.0	0.5-70	0.4-3.35	
e+MET	CDF, 205 pb ⁻¹ ,2 TeV	0.2-1.0	100-1000	0.2-0.8	
μ+MET	CDF, 107 pb ⁻¹ , 1.8 TeV	0.2-0.8	400-10000	0.2-0.7	
የ+MET	LEP	0-0.105	$10^{-3} \times SSM?$	0-0.105	
የ+MET		0.1-0.2	???	???	
τ+MET					
eejj	CMS, 3.6 fb ⁻¹ , 8 TeV	1.0-3.0			
tb	CMS, 20 fb ⁻¹ , 8 TeV	0.8-3.0	20-100	0.8-2.05(2.15)	
tb	CDF, 1.9 fb ⁻¹ , 2 TeV	0.3-0.9	300-1600	0.3-0.8	

 $W' \to qq'$

$W' \rightarrow qq'$: ATLAS & CMS

ATLAS: 7 TeV, 4.8 fb⁻¹, EXOT-2011-021 CMS: 8 TeV, 20 fb⁻¹, EXO12059

Christos Leonidopoulos

$W' \rightarrow qq'$: ATLAS & CMS

Christos Leonidopoulos

 $W' \rightarrow qq'$: CDF & UA2

CDF: 1.96 TeV, 1.13 fb⁻¹, arXiv:0812.4036 UA2: 0.45 TeV, 11 pb⁻¹, Nucl. Physics B400 (1993), 3-22

C • Exclusion limits much closer to theoretical curve here: weak limits
 U • No 1/2 σ "brazilian flag" bands: impossible to judge significance of fluctuations

Channel	Experiment	Search range (TeV)	Search range (TeV) σ×B Limits (fb)	
e+MET	CMS, 20 fb ⁻¹ , 8 TeV	0.4-4.0	0.5-90 0.4-	
μ+MET	CMS, 20 fb ⁻¹ , 8 TeV	0.4-4.0	0.8-70	0.4-3.10
e/μ+MET	CMS, 20 fb ⁻¹ , 8 TeV	0.4-4.0	0.5-70	0.4-3.35
e+MET	CDF, 205 pb⁻¹,2 TeV	0.2-1.0	100-1000	0.2-0.8
μ+MET	CDF, 107 pb ⁻¹ , 1.8 TeV	0.2-0.8	400-10000	0.2-0.7
ℓ+MET	LEP	0-0.105	$10^{-3} \times SSM?$	0-0.105
€+MET		0.1-0.2	???	???
τ+ΜΕΤ				
eejj	CMS, 3.6 fb ⁻¹ , 8 TeV	1.0-3.0		
tb	CMS, 20 fb ⁻¹ , 8 TeV	0.8-3.0	20-100	0.8-2.05(2.15)
tb	CDF, 1.9 fb ⁻¹ , 2 TeV	0.3-0.9	300-1600	0.3-0.8
jj	CMS, 20 fb ⁻¹ , 8 TeV	1.2-5.0	1-300	1.2-2.29
jj	CDF, 1.9 fb ⁻¹ , 2 TeV	0.3-1.4	0.3-1.4 1E2-1E5 0.3	
jj	UA2, 11 pb ⁻¹ , 0.45 TeV	0.13-0.30	3E3-2E5	0.13-0.26

- Weak limits at low masses
- Holes in mass spectrum coverage?

What about the *WZ*?

General W' searches and W_R

• W' Signatures

- \succ Leptonic: $e + v, \mu + v, \tau + v$
- > Bosonic: $WZ(3\ell v \text{ or } qq' \ell \ell \text{ or } qq'), \ell = e, \mu$
- ≻ Hadronic: $qq', t\bar{b}, \ell N_{\ell} (N_{\ell} \rightarrow qq'\ell') \ell = e, \mu$

$\bullet m(N_{-}) \rightarrow 0 \quad \text{in } m(N_{-}) < m(M_{-})$

- The fully leptonic channel is not exciting in terms of L-R models
- But: semi-leptonic (plus hadronic) channel very similar to the "traditional" W_R channel: two leptons + two jets
- W_R analysis typically includes some (kind of) Z-veto (cut on dilepton mass) WZ analysis reverses this cut, offering complementarity in phase space

$W' \rightarrow WZ \rightarrow 3\ell \nu$

$W' \rightarrow WZ \rightarrow 3\ell\nu$: ATLAS & CMS

ATLAS: 8 TeV, 13 fb⁻¹, CONF-2013-015 CMS: 8 TeV, 20 fb⁻¹, EXO12025

Christos Leonidopoulos

Channel	Experiment	Search range (TeV) σ×B Limits (fb)		SSM limit (TeV)
e+MET	CMS, 20 fb ⁻¹ , 8 TeV	0.4-4.0	0.5-90	0.4-3.20
μ+MET	CMS, 20 fb ⁻¹ , 8 TeV	0.4-4.0	0.8-70	0.4-3.10
e/μ+MET	CMS, 20 fb ⁻¹ , 8 TeV	0.4-4.0	0.5-70	0.4-3.35
e+MET	CDF, 205 pb⁻¹,2 TeV	0.2-1.0	100-1000	0.2-0.8
μ+MET	CDF, 107 pb ⁻¹ , 1.8 TeV	0.2-0.8	400-10000	0.2-0.7
ℓ+MET	LEP	0-0.105	$10^{-3} \times SSM?$	0-0.105
ℓ+MET		0.1-0.2	???	???
τ+MET				
eejj	CMS, 3.6 fb ⁻¹ , 8 TeV	1.0-3.0		
tb	CMS, 20 fb ⁻¹ , 8 TeV	0.8-3.0	20-100	0.8-2.05(2.15)
tb	CDF, 1.9 fb ⁻¹ , 2 TeV	0.3-0.9	300-1600	0.3-0.8
jj	CMS, 20 fb ⁻¹ , 8 TeV	1.2-5.0	1-300 1.2-2.2	
jj	CDF, 1.9 fb ⁻¹ , 2 TeV	0.3-1.4	1E2-1E5	0.35-0.75
jj	UA2, 11 pb ⁻¹ , 0.45 TeV	0.13-0.30	3E3-2E5	0.13-0.26
3€+MET	CMS, 20 fb ⁻¹ , 8 TeV	0.17-2.0	0.3-100	0.17-1.45

$W' \to WZ \to qq'\ell\ell$

$$\begin{split} B(WZ \to 3\ell\nu) &\sim 1.5\% \\ B(WZ \to qq'\ell\ell) \sim 5\% \end{split}$$

 $W' \to WZ \to qq'\ell\ell$: ATLAS &CMS

- Interpretation of results assumes ZZ final state.
- Cannot use results to extract W' limits

ATLAS: 8 TeV, 7 fb⁻¹, CONF-2012-150

CMS: 8 TeV, 20 fb⁻¹, EXO12022

Christos Leonidopoulos

 $W' \to WZ \to qq'\ell\ell$: ATLAS &CMS

Christos Leonidopoulos

$W' \rightarrow WZ \rightarrow (qq')(qq')$

 $B(WZ \to 3\ell\nu) \sim 1.5\%$ $B(WZ \to qq'\ell\ell) \sim 5\%$ $B(WZ \to (qq')(qq')) \sim 48\%$

CMS: 8 TeV, 20 fb⁻¹, EXO12024

Channel	Experiment	Search range (TeV) σ×B Limits (fb) SS		SSM limit (TeV)	
e+MET	CMS, 20 fb ⁻¹ , 8 TeV	0.4-4.0 0.5-90		0.4-3.20	
μ+ΜΕΤ	CMS, 20 fb ⁻¹ , 8 TeV	0.4-4.0	0.8-70	0.4-3.10	
e/μ+MET	CMS, 20 fb ⁻¹ , 8 TeV	0.4-4.0	0.5-70	0.4-3.35	
e+MET	CDF, 205 pb ⁻¹ ,2 TeV	0.2-1.0	100-1000	0.2-0.8	
μ+MET	CDF, 107 pb ⁻¹ , 1.8 TeV	0.2-0.8	400-10000	0.2-0.7	
የ+MET	LEP	0-0.105	$10^{-3} \times SSM?$	0-0.105	
የ+MET		0.1-0.2	???	???	
τ+ΜΕΤ					
eejj	CMS, 3.6 fb ⁻¹ , 8 TeV	1.0-3.0			
tb	CMS, 20 fb ⁻¹ , 8 TeV	0.8-3.0	20-100	0.8-2.05(2.15)	
tb	CDF, 1.9 fb ⁻¹ , 2 TeV	0.3-0.9	300-1600	0.3-0.8	
jj	CMS, 20 fb ⁻¹ , 8 TeV	1.2-5.0	1-300	1.2-2.29	
jj	CDF, 1.9 fb ⁻¹ , 2 TeV	0.3-1.4	.3-1.4 1E2-1E5 0.3		
jj	UA2, 11 pb ⁻¹ , 0.45 TeV	0.13-0.30	3E3-2E5	0.13-0.26	
3€+MET	CMS, 20 fb ⁻¹ , 8 TeV	0.17-2.0	0.3-100	0.17-1.45	
W(jj)Z(jj)	CMS, 20 fb ⁻¹ , 8 TeV	1.0-2.0	10-80	1.00-1.73	

Summary

First Summary

- LHC W' searches:
 - ➢ No smoking gun, but not all data analyzed yet (esp. ATLAS)
 - > A handful of deviations to keep an eye on
- Low-mass region not very well explored
 - Additionally, certain final states and mass regions have been overlooked completely

First Summary

- Comprehensive search approach
 - > Allows comparison of deviations in different final states
 - Helps reduce holes in phasespace coverage

TLEP: a Physics Study

First Look at the Physics Case of TLEP

The TLEP Design Study Working Group (See next pages for the list of authors)

arXiv: 1308.6176

Abstract

The discovery by the ATLAS and CMS experiments of a new boson with mass around 125 GeV and with measured properties compatible with those of a Standard-Model Higgs boson, coupled with the absence of discoveries of phenomena beyond the Standard Model up to scales of several hundred GeV. has triggered interest in ideas for future Higgs factories. A new circular e+ecollider hosted in a 80 to 100 km tunnel, TLEP, is among the most attractive solutions proposed so far. It has a clean experimental environment, produces high luminosity for top-quark, Higgs boson, W and Z studies, accommodates multiple detectors, and can reach energies up to the $t\bar{t}$ threshold and beyond. It will enable measurements of the Higgs boson properties and of Electroweak Symmetry-Breaking (EWSD) parameters with unequalled precision, offering exploration of physics beyond the Standard Model in the multi-TeV range. Moreover, being the natural precursor of the VHE-LHC, a 100 TeV hadron machine in the same tunnel, it builds up a long-term vision for particle physics. Altogether, the combination of TLEP and the VHE-LHC offers, for a great cost effectiveness, the best precision and the best search reach of all options presently on the market. This paper presents a first appraisal of the salient features of the TLEP physics potential, to serve as a baseline for a more extensive design study.

TLEP: a Physics Study

	TLEP-Z	TLEP-W	TLEP-H	TLEP-t
\sqrt{s} (GeV)	90	160	240	350
L $(10^{34} \text{ cm}^{-2} \text{s}^{-1})$	56	16	5	1.3
# bunches	4400	600	80	12
RF Gradient (MV/m)	3	3	10	20
Vertical beam size (nm)	270	140	140	100
Total AC Power (MW)	250	250	260	284
L _{int} (ab ⁻¹ /year/IP)	5.6	1.6	0.5	0.13

Table 2: Indicative costs for the main cost drivers of the TLEP collider.

Item	Cost (Million CHF)
RF system	900
Cryogenics system	200
Vacuum system	500
Magnets systems for the two rings	800
Pre-injector complex	500
Total	2,900

arXiv: 1308.6176

Epilogue

Backup

W_R (Right-Handed W Boson) MASS LIMITS

Assuming a light right-handed neutrino, except for BEALL 82, LANGACKER 89B, and COLANGELO 91. $g_R = g_L$ assumed. [Limits in the section MASS LIMITS for W' below are also valid for W_R if $m_{\nu_R} \ll m_{W_R}$.] Some limits assume manifest left-right symmetry, *i.e.*, the equality of left- and right Cabibbo-Kobayashi-Maskawa matrices. For a comprehensive review, see LANGACKER 89B. Limits on the W_L - W_R mixing angle ζ are found in the next section. Values in brackets are from cosmological and astrophysical considerations and assume a light right-handed neutrino.

VALUE (GeV)	CL%	DOCUMENT ID		TECN	COMMENT	
> 592	90	¹ BUENO	11	TWST	μ decay	
> 715	90	² CZAKON	99	RVUE	Electroweak	
\bullet \bullet \bullet We do not use the following data for averages, fits, limits, etc. \bullet \bullet						
> 245	90	³ WAUTERS	10	CNTR	60 Co β decay	
> 180	90	⁴ MELCONIAN	07	CNTR	37 K β^+ decay	
> 290.7	90	⁵ SCHUMANN	07	CNTR	Polarized neutron decay	
[> 3300]	95	⁶ CYBURT	05	COSM	Nucleosynthesis; light $ u_R$	
> 310	90	⁷ THOMAS	01	CNTR	β^+ decay	
> 137	95	⁸ ACKERSTAFF	99 D	OPAL	au decay	
>1400	68	⁹ BARENBOIM	98	RVUE	Electroweak, Z - Z' mixing	
> 549	68	¹⁰ BARENBOIM	97	RVUE	μ decay	
> 220	95	¹¹ STAHL	97	RVUE	au decay	
> 220	90	¹² ALLET	96	CNTR	β^+ decay	
> 281	90	¹³ KUZNETSOV	95	CNTR	Polarized neutron decay	
> 282	90	¹⁴ KUZNETSOV	94 B	CNTR	Polarized neutron decay	
> 439	90	¹⁵ BHATTACH	93	RVUE	Z-Z' mixing	
> 250	90	¹⁶ SEVERIJNS	93	CNTR	β^+ decay	
		¹⁷ IMAZATO	92	CNTR	κ^+ decay	
> 475	90	¹⁸ POLAK	92 B	RVUE	μ decay	
> 240	90	¹⁹ AQUINO	91	RVUE	Neutron decay	
> 496	90	¹⁹ AQUINO	91	RVUE	Neutron and muon decay	
> 700		²⁰ COLANGELO	91	THEO	$m_{\kappa_{L}^{0}}^{m} - m_{\kappa_{c}^{0}}^{m}$	
> 477	90	²¹ POLAK	91	RVUE	μ decay	
[none 540–23000]		²² BARBIERI	89 B	ASTR	SN 1987A; light ν_R	
> 300	90	²³ LANGACKER	89 B	RVUE	General	
> 160	90	²⁴ BALKE	88	CNTR	$\mu ightarrow e u \overline{ u}$	
> 406	90	²⁵ JODIDIO	86	ELEC	Any ζ	
> 482	90	²⁵ JODIDIO	86	ELEC	$\zeta = 0$	
> 800		MOHAPATRA	86	RVUE	$SU(2)_L \times SU(2)_R \times U(1)$	
> 400	95	²⁶ STOKER	85	ELEC	Any ζ	
> 475	95	²⁶ STOKER	85	ELEC	ζ <0.041	
		²⁷ BERGSMA	83	CHRM	$ u_{\mu} e \rightarrow \mu \nu_{e}$	
> 380	90	²⁸ CARR	83	ELEC	μ^+ decay	
>1600		²⁹ BEALL	82	THEO	${}^{m}\kappa_{I}^{0}-{}^{m}\kappa_{S}^{0}$	

¹The quoted limit is for manifest left-right symmetric model.

²CZAKON 99 perform a simultaneous fit to charged and neutral sectors.

³WAUTERS 10 limit is from a measurement of the asymmetry parameter of polarized

Christos Leonidopoulos