Vladimir Savinov (University of Pittsburgh)

Searches for Heavy Neutrinos, Lepton Number Violation (and more stuff) with the ATLAS detector at the LHC

Miramare, Trieste, Italy

The anisotropies of the Cosmic microwave background (CMB) as observed by Planck. The CMB is a snapshot of the oldest light in our Universe, imprinted on the sky when the Universe was just 380 000 years old. It shows tiny temperature fluctuations that correspond to regions of slightly different densities, representing the seeds of all future structure: the stars and galaxies of today.

Copyright ESA and the Planck Collaboration - D. Ducros

In 1967 Andrei Sakharov formulated three necessary conditions for baryogenesis, i.e., asymmetry between matter and anti-matter:

- 1. Baryon number violation
- 2. C asymmetry is due to CP violation
- 3. Departure from thermal equilibrium

Have to focus on:

1. Non-conservation of baryon and lepton numbers

2. Violation of charge-parity symmetry

3. Properties of electroweak vacuum

Some of these matters could be investigated

at the LHC experiments (but not only there!)

Successfully searched for and found the "missing piece" of this puzzle

The ATLAS Collaboration at the LHC: (like) 3,000 Happy Little Elves

London, RHBNC London, UC London, Lund, UA Madrid, Mainz, Manchester, CPPM Marseille, Massachusetts, MIT, Melbourne, Michigan, Michigan SU, Milano, Minsk NAS, Minsk NCPHEP, Montreal, McGill Montreal, RUPHE Morocco, FIAN Moscow, ITEP Moscow, MEPhI Moscow, MSU Moscow, Munich LMU, MPI Munich, Nagasaki IAS, Nagoya, Naples, New Mexico, New York, Nijmegen, BINP Novosibirsk, Ohio SU, Okayama, Oklahoma, Oklahoma SU, Olomouc, Oregon, LAL Orsay, Osaka, Oslo, Oxford, Paris VI and VII, Pavia, Pennsylvania, Pisa, Pittsburgh, CAS Prague, CU Prague, TU Prague, IHEP Protvino, Regina, Rome I, Rome II, Rome III, Rutherford Appleton Laboratory, DAPNIA Saclay, Santa Cruz UC, Sheffield, Shinshu, Siegen, Simon Fraser Burnaby, SLAC, NPI Petersburg, Stockholm, KTH Stockholm, Stony Brook, Sydney, Sussex, AS Taipei, Tbilisi, Tel Aviv, Thessaloniki, Tokyo ICEPP, Tokyo MU, Tokyo Tech, Toronto, TRIUMF, Tsukuba, Tufts, Udine/ICTP, Uppsala, UI Urbana, Valencia, UBC Vancouver, Victoria, Waseda, Washington, Weizmann Rehovot, FH Wiener Neustadt, Wisconsin, Wuppertal, Würzburg, Yale, Yerevan

Inner Detector: silicon pixels, silicon microstrips and transition radiation tracker

The Price of the Higgs

16 SEPTEMBER 2011 VOL 333 SCIENCE www.sciencemag.org Published by AAAS

Particle Physicists' New Extreme Teams

Life at the world's biggest atom smasher is an odd combination of selfless cooperation and intense competition by Adrian Cho

The United States has gone to great lengths to keep its scientists integrated in the far-away experiments—for example, by establishing a remote center for CMS at Fermi National Accelerator Laboratory in Batavia, Illinois. Nevertheless, many make personal sacrifices to be here. Vivek Sharma of the University of California, San Diego, is co-leader of the working group within the CMS team that's searching for the Higgs boson. He spends 8 weeks at CERN for every week at home with his wife and their 7-year-old daughter.

"It's more of a sacrifice for them," Sharma says. On weekends, he says, he and his family rely on Internet video links to "be" together: "When they wake up, we just put on the cameras. They go about their things and I go about mine, and we have conversations." **-A.C.**

"I don't look at it as a big collaboration, but as a small world. ... It's perfect being here." —MARTIJN MULDERS, CERN

"If you ask any physics analysis group in ATLAS, they will tell you they need more people, even with 3000 of us." —SARA STRANDBERG, STOCKHOLM UNIVERSITY

"There is the good-citizen approach, and then there is the approach 'I am better than you and I'm going to kill you.'" —MAURIZIO PIERINI, CERN

Search for Lepton Number Violation at the LHC

One particularly interesting (but not the only one!) scenario is Left Right Symmetry: $SU(2)_{L} \otimes SU(2)_{R} \otimes U(1)_{B-L}$

The seesaw mechanism in action

"O.K., now, when a teacher comes out, everybody look straight up."

The seesaw mechanism in action

"O.K., now, when a teacher comes out, everybody look straight up."

The seesaw mechanism in action

"O.K., now, when a teacher comes out, everybody look straight up."

R. N. Mohapatra and G. Senjanovic, *Neutrino Mass and Spontaneous Parity Violation*, Phys.Rev.Lett. **44** (1980) 912.

R. N. Mohapatra and G. Senjanovic, *Neutrino Masses and Mixings in Gauge Models with Spontaneous Parity Violation*, Phys.Rev. **D23** (1981) 165.

W.-Y. Keung and G. Senjanovic, *Majorana Neutrinos and the Production of the Right-handed Charged Gauge Boson*, Phys.Rev.Lett. **50** (1983) 1427.

J. C. Pati and A. Salam, Lepton Number as the Fourth Color, Phys.Rev. D10 (1974) 275–289.

R. Mohapatra and J. C. Pati, A Natural Left-Right Symmetry, Phys.Rev. D11 (1975) 2558.

G. Senjanovic and R. N. Mohapatra, *Exact Left-Right Symmetry and Spontaneous Violation of Parity*, Phys.Rev. **D12** (1975) 1502.

R. N. Mohapatra, *Unification and Supersymmetry, ISBN 0-387-95534-8*. Springer-Verlag, 3rd ed. ed., 2002.

R. N. Mohapatra and P. B. Pal, *Massive Neutrinos in Physics and Astrophysics, ISBN 981-238-070-1*. World Scientific, 3rd ed. ed., 2004.

V. Tello, M. Nemevsek, F. Nesti, G. Senjanovic, and F. Vissani, *Left-Right Symmetry: from LHC to Neutrinoless Double Beta Decay*, Phys.Rev.Lett. **106** (2011) 151801, arXiv:1011.3522 [hep-ph].

A. Melfo, M. Nemevsek, F. Nesti, G. Senjanovic, and Y. Zhang, *Type II Seesaw at LHC: The Roadmap*, arXiv:1108.4416 [hep-ph]. Phys.Rev.D85 (2012) 055018

T. Han, B. Zhang, Signatures for Majorana neutrinos at hadron colliders, Phys. Rev. Lett., 97 (17) 2006

A. Atre, et al., The Search for Heavy Majorana Neutrinos arXiv:0901.3589 [hep-ph], JHEP 0905:030,2009

P.F. Perez, et al., Neutrino Masses and the LHC: Testing Type II Seesaw, arXiv:0805.3536 [hep-ph], Phys.Rev. D78 (2008) 015018

T. Han, et al., Pair Production of Doubly-Charged Scalars: Neutrino Mass Constraints and Signals at the LHC, arXiv:0706.0441 [hep-ph], Phys.Rev. D76 (2007) 075013

Chien-Yi Chen, P.S. Bhupal Dev, R.N. Mohapatra, *Probing Heavy-Light Neutrino Mixing in Left-Right Seesaw Models at the LHC*, arXiv:1306.2342 [hep-ph], Phys. Rev. D88 (2013) 033014

F. del Aguila, S. Bar-Shalom, A. Soni, J. Wudka, *Heavy Majorana Neutrinos in the Effective Lagrangian Description: Application to Hadron Colliders,* arXiv:0806.0876 [hep-ph], Phys.Lett.B670:399-402, 2009

M. Nemevsek, G. Senjanovic, and V. Tello, Connecting Dirac and Majorana Neutrino Mass Matrices in the Minimal Left-Right Symmetric Model, arXiv:1211.2837 [hep-ph], PRL 110, 151802 (2013)

Our work is based on many important theoretical ideas developed before some of the LHCers were born!

Many other important papers should likely be added to this very incomplete list!

My apologies if I missed to include such papers.

Search for heavy neutrinos and right-handed W bosons in events with two leptons and jets in pp collisions at $\sqrt{s} = 7$ TeV with the ATLAS detector 2.1 fb⁻¹

The ATLAS Collaboration*

Eur. Phys. J. C (2012) 72:2056

CERN, 1211 Geneva 23, Switzerland

Received: 24 March 2012 / Revised: 17 May 2012 / Published online: 3 July 2012

Table 2 Summary of the expected background yields and observed numbers of events for the SS dilepton channels. The top part of the table shows the numbers obtained for events with two leptons, ≥ 1 jet and $m_{\ell\ell} > 110$ GeV. The bottom part of the table shows the numbers for the final LRSM selection, where an additional requirement

 $m_{\ell\ell j(j)} \ge 400 \text{ GeV}$ is imposed. The quoted uncertainties include statistical and systematic components, excluding the luminosity uncertainty of ± 3.7 %. The latter is relevant for all backgrounds except for the fake lepton(s) background, which is measured using data

Physics processes	$e^{\pm}e^{\pm}$	$\mu^{\pm}\mu^{\pm}$	$e^{\pm}\mu^{\pm}$	Total	
$Z/\gamma^* + jets$	26.1 ± 5.6	$0.0^{+1.6}_{-0}$	1.2 ± 0.7	27 ± 6	
Diboson	12.7 ± 2.3	7.2 ± 1.7	18.8 ± 3.0	39 ± 6	
Тор	5.8 ± 1.3	0.7 ± 0.3	6.8 ± 1.6	13 ± 3	
Fake lepton(s)	93.6 ± 35.7	3.1 ± 1.6	53.8 ± 20.3	151 ± 50	
Total background	138.3 ± 36.5	$11.0^{+2.9}_{-2.5}$	80.7 ± 20.8	230 ± 52	
Observed events	155	14	99	268	
	$m_{\ell\ell j(j)} \ge 400 \text{ GeV}$				
Total background	48.4 ± 16.1	$4.4^{+2.1}_{-1.3}$	24.6 ± 7.6	77 ± 21	
Observed events	59	8	39	106	

[TeV] $m_{IIj(j)}$

Events / 0.2 TeV

Data/SM

 $m_{IIj(j)}$ [TeV]

Data/SM

 $m_{lj(j)}$ [TeV]

 $m_{_{lj(j)}}$ [TeV]

Events / bin

The higher momentum muon has a PT of 187 GeV and an (eta,phi) of (-0.39,1.55). The subleading muon has PT of 183 GeV and an (eta,phi) of (0.93,-1.38). The jet has PT of 149 GeV and an (eta,phi) of (0.46,1.59). The dimuon invariant mass is 383 GeV and m(IIjj) = 512 GeV. Only tracks with PT > 3 GeV are displayed.

Received: 18 October 2012 / Published online: 4 December 2012

Eur. Phys. J. C (2012) 72:2244

Search for doubly charged Higgs bosons in like-sign dilepton final states at $\sqrt{s} = 7$ TeV with the ATLAS detector

The ATLAS Collaboration'

Abstract A search for doubly charged Higgs bosons decaying to pairs of electrons and/or muons is presented. The search is performed using a data sample corresponding to an integrated luminosity of 4.7 fb⁻¹ of pp collisions at \sqrt{s} = 7 TeV collected by the ATLAS detector at the LHC. Pairs of prompt, isolated, high- $p_{\rm T}$ leptons with the same electric charge $(e^{\pm}e^{\pm}, e^{\pm}\mu^{\pm}, \mu^{\pm}\mu^{\pm})$ are selected, and their invariant mass distribution is searched for a narrow resonance. No significant excess over Standard Model background expectations is observed, and limits are placed on the cross section times branching ratio for pair production of doubly charged Higgs bosons. The masses of doubly charged Higgs bosons are constrained depending on the branching ratio into these leptonic final states. Assuming pair production, coupling to left-handed fermions, and a branching ratio of 100% for each final state, masses below 409 GeV, 375 GeV, and 398 GeV are excluded for $e^{\pm}e^{\pm}$, $e^{\pm}\mu^{\pm}$, and $\mu^{\pm}\mu^{\pm}$, respectively.

 $SU(2)_L \otimes U(1)_Y$

 $U(1)_{em}$

m(H^{±±}) [GeV]

ATLAS NOTE

ATLAS-CONF-2012-139

ER

September 25, 2012

Search for Majorana neutrino production in pp collisions at $\sqrt{s} = 7$ TeV in same-sign dimuon final states with the ATLAS detector

A search for a heavy Majorana neutrino decaying into a *W* boson and a muon has been performed using the ATLAS detector at the LHC. The search is performed using events with two same-sign muons, at least two jets and low missing transverse momentum. The data used in the search were collected in *pp* collisions at $\sqrt{s} = 7$ TeV in 2011 and correspond to an integrated luminosity of 4.7 fb⁻¹. No excess of events above the background prediction is observed and 95% confidence level upper limits are set on the cross section times branching ratio for the production of heavy Majorana neutrinos. The observed limits range from 28 to 3.4 fb for heavy neutrino masses between 100 and 300 GeV.

Events with like-sign dimuons and (at least) two jets (with the invariant mass around W) are selected

Source	$\mu^{\pm}\mu^{\pm}$
WZ	$1.0 \pm 0.2 \pm 0.3$
ZZ	$0.22 \pm 0.05 {}^{+0.07}_{-0.06}$
$W^{\pm}W^{\pm}$	$0.15 \pm 0.04 \pm 0.08$
$t\bar{t} + V$	$0.23 \pm 0.04 \pm 0.12$
Charge mis-measurement	< 0.03
Non-prompt	$1.1\pm~0.5~^{+0.6}_{-0.5}$
Total background	$2.7 \pm 0.5 ^{+0.7}_{-0.6}$
Data	3

ATLAS NOTE ATLAS-CONF-2013-019

March 7, 2013

Search for Type III Seesaw Model Heavy Fermions in Events with Four Charged Leptons using 5.8 fb⁻¹ of $\sqrt{s} = 8$ TeV data with the ATLAS Detector

A search for Type III Seesaw model heavy fermions is presented. The search is performed in a data sample corresponding to 5.8 fb⁻¹ of integrated luminosity collected in 2012 in *pp* collisions at $\sqrt{s} = 8$ TeV by the ATLAS detector at the LHC. Charged heavy fermions, N^{\pm} , are reconstructed in the channel $Z(\ell\ell) + \ell^{\pm}$ together with an additional charged lepton from the decay of a partner heavy fermion, $N^{0/\mp} \rightarrow \ell X$, where $\ell = e, \mu$. No evidence of the N^{\pm} is observed. Upper limits at 95% confidence level are set on the production cross section of N^+N^0 times the branching fraction to the examined four lepton final states. When interpreted in the context of the Type III Seesaw model, the results translate into a lower limit on the mass of the *N* states of 245 GeV at 95% confidence level.

Search for anomalous production of events with same-sign dileptons and *b* jets in 14.3 fb⁻¹ of pp collisions at $\sqrt{s} = 8$ TeV with the ATLAS detector

Pair production of 4th generation (b') quarks, pair production of vector-like quarks, enhanced production of four top quarks, production of two positively-charged top quarks.

A search is presented for exotic processes that result in final states containing jets including at least one b jet, sizable missing transverse momentum, and a pair of leptons with the same electric charge. There are several models that predict an enhanced rate of production of such events beyond the expectations of the Standard Model (SM); the ones considered in this note are pair production of chiral b' quarks, pair production of vector-like quarks, enhanced four top quark production and production of two positively-charged top quarks. Using a sample of 14.3 fb⁻¹ of pp collisions at $\sqrt{s} = 8$ TeV recorded by the ATLAS detector at the Large Hadron Collider, with selection criteria optimised for each signal, no significant excess of events over the background expectation is observed. This observation is interpreted as constraining the signal hypotheses, and it is found at 95% confidence level that: the mass of the b', assuming 100% branching fraction to Wt, must be > 0.72 TeV; the mass of a vector-like B(T) quark, assuming branching ratios to W, Z, and H decay modes consistent with the B or T being a singlet, must be > 0.59 (0.54) TeV; the four top production cross section must be < 85 fb in the SM and < 59 fb for production via a contact interaction; the mass of an sgluon must be > 0.80 TeV; in the context of models with two universal extra dimensions the inverse size of the extra dimensions must be > 0.90 TeV; and the cross section for production of two positively-charged top quarks must be < 210 fb.

PHYSICAL REVIEW D 83, 115014 (2011)

Limits on the left-right symmetry scale and heavy neutrinos from early LHC data

Miha Nemevšek,^{1,2} Fabrizio Nesti,³ Goran Senjanović,¹ and Yue Zhang¹ ¹ICTP, Trieste, Italy ²Jožef Stefan Institute, Ljubljana, Slovenia ³Università di Ferrara, Ferrara, Italy (Received 24 March 2011; published 13 June 2011)

We use the early Large Hadron Collider data to set the lower limit on the scale of left-right symmetry, by searching for the right-handed charged gauge boson W_R via the final state with two leptons and two jets, for 33 pb⁻¹ integrated luminosity and 7 TeV center-of-mass energy. This signal is kinematically observable for right-handed neutrino lighter than W_R . In the absence of a signal beyond the standard model background, we set the bound $M_{W_R} \gtrsim 1.4$ TeV at 95% C.L.. This result is obtained for a range of right-handed neutrino masses of the order of few 100 GeV, assuming no accidental cancellation in right-handed lepton mixings.

ATLAS NOTE ATLAS-CONF-2011-115

August 2, 2011

Search for heavy Majorana neutrino and W_R in dilepton plus jets events with the ATLAS detector in pp collisions at $\sqrt{s} = 7$ TeV

The ATLAS Collaboration

Search for anomalous production of prompt like-sign lepton pairs at sqrt(s) = 7 TeV with the ATLAS detector arXiv:1210.4538

The ATLAS Collaboration

JHEP12(2012)007

A search for anomalous production of like-sign lepton pairs has been presented using $4.7 \,\mathrm{fb^{-1}}$ of pp collision data at $\sqrt{s} = 7 \,\mathrm{TeV}$ recorded by the ATLAS experiment at the LHC. The data are found to agree with the background expectation in $e^{\pm}e^{\pm}$, $e^{\pm}\mu^{\pm}$, and $\mu^{\pm}\mu^{\pm}$ final states both in overall rate and in the kinematic distributions. The data are used to constrain new physics contributions to like-sign lepton pairs within a fiducial region of two isolated leptons with large transverse momentum within the pseudorapidity range of the tracking system ($|\eta| < 2.5$). The 95% confidence level upper limits on the cross section of new physics processes within this fiducial region range between 1.7 fb and 64 fb for $\ell^{\pm}\ell^{\pm}$ pairs depending on the dilepton invariant mass and flavour combination.

This analysis (3rd generation shown today) is all that's needed to discover NP in events with two well-isolated like-sign leptons! If *your* model predicts events with at least two well-isolated like-sign leptons, these results is all you need to estimate limits!

	Electron requirement	Muon requirement
Leading lepton $p_{\rm T}$	$p_{\rm T} > 25 {\rm ~GeV}$	$p_{\rm T} > 20 {\rm ~GeV}$
Sub-leading lepton $p_{\rm T}$	$p_{\rm T} > 20 {\rm ~GeV}$	$p_{\rm T} > 20 {\rm ~GeV}$
Lepton η	$ \eta < 1.37 \text{ or } 1.52 < \eta < 2.47$	$ \eta < 2.5$
Isolation	$p_{\rm T}^{\rm cone0.3}/p_{\rm T} < 0.1$	$p_{\rm T}^{\rm cone0.4}/p_{\rm T} < 0.06$ and $p_{\rm T}^{\rm cone0.4} < 4 \ {\rm GeV} + 0.02 \times p_{\rm T}$

For $m(\ell^{\pm}\ell^{\pm}) > 15$ GeV in the $e^{\pm}e^{\pm}$ channel, the fiducial efficiencies range from 43% for models with low- $p_{\rm T}$ leptons to 65% for models with high- $p_{\rm T}$ leptons. The primary reason for this dependence is that the electron identification efficiency varies by about 15% over the relevant $p_{\rm T}$ range [60]. The model dependence introduced by not emulating the calorimeter isolation in the definition of the fiducial region is < 1%. For the $e^{\pm}\mu^{\pm}$ channel, $\varepsilon_{\rm fid}$ ranges from 55% to 70%, and for the $\mu^{\pm}\mu^{\pm}$ final state it varies between 59% and 72%. For the higher dilepton mass thresholds the efficiencies are slightly larger than for the lower mass thresholds. The efficiencies are also derived for $\ell^+\ell^+$ and $\ell^-\ell^-$ pairs separately and found to be independent of the charge. For the same new physics models, the fraction of events satisfying the experimental selection originating from outside the fiducial region ranges from < 1% to about 9%, depending on the final state and the model considered.

To derive the upper limit on the fiducial cross section, the lowest efficiency values are taken for all mass thresholds, i.e. 43% for the $e^{\pm}e^{\pm}$, 55% for the $e^{\pm}\mu^{\pm}$, and 59% for the $\mu^{\pm}\mu^{\pm}$ analysis. Check the paper when applying to your model!

ATLAS, arXiv:1210.4538 [hep-ex], JHEP12(2012)007

Sample	Number of electron pairs with $m(e^{\pm}e^{\pm})$					
	$> 15 { m GeV}$	$> 100 { m ~GeV}$	$> 200 { m ~GeV}$	$> 300 { m ~GeV}$	$> 400 { m ~GeV}$	
Prompt	101 ± 13	56.3 ± 7.2	14.8 ± 2.0	4.3 ± 0.7	1.4 ± 0.3	
Non-prompt	75 ± 21	28.8 ± 8.6	5.8 ± 2.5	$0.5_{-0.5}^{+0.8}$	$0.0^{+0.2}_{-0.0}$	
Charge flips and conversions	170 ± 33	91 ± 16	22.1 ± 4.4	8.0 ± 1.7	3.4 ± 0.8	
Sum of backgrounds	346 ± 44	176 ± 21	42.8 ± 5.7	12.8 ± 2.1	4.8 ± 0.9	
Data	329	171	38	10	3	
	Num	ber of muon p	pairs with $m(\mu$	$\mu^{\pm}\mu^{\pm}$)		
	$> 15 { m ~GeV}$	$> 100 { m ~GeV}$	$> 200 { m ~GeV}$	$> 300 { m ~GeV}$	$> 400 { m ~GeV}$	
Prompt	205 ± 26	90 ± 11	21.8 ± 2.8	5.8 ± 0.9	2.2 ± 0.4	
Non-prompt	42 ± 14	12.1 ± 4.6	1.0 ± 0.6	$0.0\substack{+0.3 \\ -0.0}$	$0.0\substack{+0.3 \\ -0.0}$	
Charge flips	$0.0^{+4.9}_{-0.0}$	$0.0^{+2.5}_{-0.0}$	$0.0^{+1.8}_{-0.0}$	$0.0^{+1.7}_{-0.0}$	$0.0^{+1.7}_{-0.0}$	
Sum of backgrounds	247^{+30}_{-29}	102 ± 12	$22.8^{+3.4}_{-2.9}$	$5.8^{+1.9}_{-0.9}$	$2.2^{+1.7}_{-0.4}$	
Data	264	110	29	6	2	
	Num	ber of lepton	pairs with $m($	$e^{\pm}\mu^{\pm})$		
	$> 15 { m ~GeV}$	$> 100 { m ~GeV}$	$> 200 { m ~GeV}$	$> 300 { m ~GeV}$	$> 400 { m GeV}$	
Prompt	346 ± 43	157 ± 20	36.6 ± 4.7	10.8 ± 1.5	3.9 ± 0.6	
Non-prompt	151 ± 47	45 ± 13	9.2 ± 4.1	2.6 ± 1.1	1.0 ± 0.6	
Charge flips and conversions	142 ± 28	33 ± 7	10.5 ± 2.8	2.9 ± 1.2	2.2 ± 1.1	
Sum of backgrounds	639 ± 71	235 ± 25	56.4 ± 7.0	16.3 ± 2.3	7.0 ± 1.4	
Data	658	259	61	17	7	

Sample	Number of lepton pairs with $m(\ell^{\pm}\ell^{\pm})$						
	$> 15 { m ~GeV}$	$> 100 { m ~GeV}$	$> 200 { m ~GeV}$	$> 300 {\rm ~GeV}$	$> 400 { m ~GeV}$		
	e^+e^+ pairs						
Sum of backgrounds	208 ± 28	112 ± 14	28.6 ± 4.0	8.5 ± 1.4	3.3 ± 0.7		
Data	183	93	26	6	1		
		e^-e^-	pairs				
Sum of backgrounds	138 ± 21	63.3 ± 8.5	14.2 ± 2.3	4.4 ± 0.8	$1.54_{-0.3}^{+0.4}$		
Data	146	78	12	4	2		
	$\mu^+\mu^+$ pairs						
Sum of backgrounds	147 ± 17	$63.7^{+7.7}_{-7.6}$	$14.5^{+2.1}_{-1.9}$	$4.1^{+1.1}_{-0.6}$	$1.6^{+0.9}_{-0.3}$		
Data	144	60	16	4	2		
	$\mu^-\mu^-$ pairs						
Sum of backgrounds	100 ± 12	$38.4^{+5.0}_{-4.8}$	$8.3^{+1.5}_{-1.2}$	$1.7^{+0.9}_{-0.3}$	$0.6^{+0.9}_{-0.1}$		
Data	120	50	13	2	0		
	$e^+\mu^+$ pairs						
Sum of backgrounds	381 ± 42	142 ± 15	33.8 ± 5.3	9.8 ± 1.5	4.2 ± 0.9		
Data	375	149	39	9	4		
	$e^-\mu^-$ pairs						
Sum of backgrounds	259 ± 31	93 ± 10	22.6 ± 3.0	6.5 ± 1.3	2.9 ± 1.0		
Data	283	110	22	8	3		

ATLAS, arXiv:1210.4538 [hep-ex], JHEP12(2012)007

An example of a 95% CL upper limit on NP cross section in fiducial region

	95% C.L. upper limit [fb]					
Mass range	expected	observed	expected	observed	expected	observed
	$e^{\pm}e^{\pm}$		$e^{\pm}\mu^{\pm}$		$\mu^{\pm}\mu^{\pm}$	
$m > 15 \mathrm{GeV}$	46^{+15}_{-12}	42	56^{+23}_{-15}	64	$24.0^{+8.9}_{-6.0}$	29.8
$m > 100 \mathrm{GeV}$	$24.1^{+8.9}_{-6.2}$	23.4	$23.0^{+9.1}_{-6.7}$	31.2	$12.2^{+4.5}_{-3.0}$	15.0
$m > 200 \mathrm{GeV}$	$8.8^{+3.4}_{-2.1}$	7.5	$8.4^{+3.4}_{-1.7}$	9.8	$4.3^{+1.8}_{-1.1}$	6.7
$m > 300 \mathrm{GeV}$	$4.5^{+1.8}_{-1.3}$	3.9	$4.1^{+1.8}_{-0.9}$	4.6	$2.4^{+0.9}_{-0.7}$	2.6
$m > 400 \mathrm{GeV}$	$2.9^{+1.1}_{-0.8}$	2.4	$3.0^{+1.0}_{-0.8}$	3.1	$1.7^{+0.6}_{-0.5}$	1.7
	e^+e^+		$e^+\mu^+$		$\mu^+\mu^+$	
$m > 15 \mathrm{GeV}$	$29.1^{+10.2}_{-8.6}$	22.8	$34.9^{+12.2}_{-8.6}$	34.1	$15.0^{+6.1}_{-3.3}$	15.2
$m > 100 \mathrm{GeV}$	$16.1^{+5.9}_{-4.3}$	12.0	$15.4^{+5.9}_{-4.1}$	18.0	$8.4^{+3.2}_{-2.4}$	7.9
$m > 200 \mathrm{GeV}$	$7.0^{+2.9}_{-2.2}$	6.1	$6.6^{+3.5}_{-1.8}$	8.8	$3.5^{+1.6}_{-0.7}$	4.3
$m > 300 \mathrm{GeV}$	$3.7^{+1.4}_{-1.0}$	2.9	$3.2^{+1.2}_{-0.9}$	3.2	$2.0^{+0.8}_{-0.5}$	2.1
$m > 400 \mathrm{GeV}$	$2.3^{+1.1}_{-0.6}$	1.7	$2.4^{+0.9}_{-0.6}$	2.5	$1.5^{+0.6}_{-0.3}$	1.8
	e^-e^-		$e^-\mu^-$		$\mu^-\mu^-$	
$m > 15 \mathrm{GeV}$	$23.2^{+8.6}_{-5.8}$	25.7	$26.2^{+10.6}_{-7.6}$	34.4	$12.1_{-3.5}^{+4.5}$	18.5
$m > 100 \mathrm{GeV}$	$12.0^{+5.3}_{-2.8}$	18.7	$11.5^{+4.2}_{-3.5}$	16.9	$6.0^{+2.3}_{-1.9}$	10.1
$m > 200 \mathrm{GeV}$	$4.9^{+1.9}_{-1.2}$	4.0	$4.6^{+2.1}_{-1.2}$	4.5	$2.7^{+1.1}_{-0.7}$	4.4
$m > 300 \mathrm{GeV}$	$2.9^{+1.0}_{-0.6}$	2.7	$2.7^{+1.1}_{-0.6}$	3.5	$1.5^{+0.8}_{-0.3}$	1.7
$m > 400 \mathrm{GeV}$	$1.8^{+0.8}_{-0.4}$	2.3	$2.3^{+0.8}_{-0.5}$	2.5	$1.2^{+0.4}_{-0.0}$	1.2

The leading electron has an ET of 196 GeV, (η, φ) of (1.31, -1.86). The subleading electron has an ET of 50 GeV, (n, ϕ) of (-2.25, 2.73). There is a third electron (shown as a blue track) with an ET of 35 GeV, (η , ϕ) of (-0.54, 1.73), and charge -1. There are two reconstructed jets. The leading jet has a pT of 207 GeV and (n, ϕ) of (0.59, 1.49), and the subleading jet has a pT of 30 GeV and (n, ϕ) of (1.14, 1.45). The missing transverse energy (shown as a green arrow) is 9 GeV with φ of -1.05. e+,η=-2.25 e+,η=1.31 Run Number: 190236 Event Number: 124996760 Date: 2011-10-02, 06:45:01 CET MET Electrons same sign:red Electron : blue Cells:Tiles, EMC Ega: Orange

Event display of the ee (++) event with the highest invariant mass (589 GeV).

THURSDAY

μ+,η=-1.7

μ+,η=0.1

Run Number: 183780, Event Number: 7827222 Date: 2011-06-20, 23:54:44 CET Muons: blue Muons Same Sign: red MET: green Cells:Tiles, EMC

MET

-

The leading muon has a pT of 486 GeV, (η, ϕ) of (0.13, -3.04). The subleading muon has a pT of 79 GeV, (η, ϕ) of (-1.73, -1.23). There is a third muon (shown as a blue track (-)) with a pT of 32 GeV, (η, ϕ) of (-1.41, 2.70). There are two reconstructed jets. The leading jet has a pT of 394 GeV and (η, ϕ) of (-0.64, 0.17), and the subleading jet has a pT of 27 GeV and (η, ϕ) of (1.16, 0.15). The missing transverse energy, shown as a green arrow, is 93 GeV with ϕ of

Event display of the $\mu\mu$ (++) event with the highest invariant mass (522 GeV).

Event display of the $e\mu$ (++) event with the highest invariant mass (464 GeV).

ATLAS Exotics Searches* - 95% CL Lower Limits (Status: May 2013)

			· · · · · · · · · · · · · · · · · · ·		
Large ED	D (ADD) : monojet + $E_{T,miss}$	L=4.7 fb ⁻¹ , 7 TeV [1210.449 ¹]		4.37 TeV M_D (δ =2)	
Large ED (AD	DD) : monophoton + $E_{T,miss}$	L=4.6 fb ⁻¹ , 7 TeV [1209.4625]	1.93 Te ^v	$M_D(\delta=2)$	ΔΤΙΔ
Large ED (ADD) :	diphoton & dilepton, $m_{\gamma\gamma/\parallel}$	L=4.7 fb ⁻¹ , 7 TeV [1211.1150]		4.18 TeV $M_{\rm S}$ (HLZ δ =3, N	LO) Preliminary
sic	UED: alphoton + $E_{T,miss}$	L=4.8 fb ⁻¹ , 7 TeV [1209.0753]	1.40 TeV C	ompact. scale R	
Ú e	S/Z_2 ED : dilepton, m_{\parallel}	L=5.0 fb ⁻¹ , 7 TeV [1209.2535]		4.71 TeV M _{KK} ~ R	2.4
<u> </u>	RS1 : dilepton, m_{\parallel}	L=20 fb ⁻¹ , 8 TeV [ATLAS-CONF-2013-017]	2.4	<u>7 Tev</u> Graviton mass $(K/M_{Pl} =$	0.1)
	$T : VVVV$ resonance, $m_{T, v v}$	L=4.7 fb ⁻¹ , 7 TeV [1208.2880]	1.23 TeV Gra	Viton mass $(K/M_{Pl} = 0.1)$	$1 dt = (1 - 20) fb^{-1}$
BU BU	IIK RS . ZZ resonance, m_{IIJ}	L=7.2 fb ⁻¹ , 8 TeV [ATLAS-CONF-2012-150]	850 GeV Graviton	mass $(k/M_{\rm Pl} = 1.0)$	$\int Ldt = (1 - 20) ID$
$RS g_{K} \to \mathfrak{ll} (E$	$3R=0.925$): tt \rightarrow I+Jets, m_{tt}	L=4.7 fb ⁻¹ , 7 TeV [1305.2756]	2.07 To	∎V g _{KK} mass	√s = 7. 8 TeV
	$N_{\rm D}=3$): 55 dimuon, $N_{\rm ch. part.}$	L=1.3 fb ⁻¹ , 7 TeV [1111.0080]	1.25 TeV <i>M_D</i>		•••••
	$m_{\rm D}$ = 3) : leptons + jets, $2p$	L=1.0 fb ⁻¹ , 7 TeV [1204.4646]	1.5 TeV /	$M_D (0=6)$	
Qualitu	contact interaction : $\sqrt[n]{(m_{jj})}$	L=4.7 fb ⁻ , 7 leV [1210.1718]		4.11 TeV M _D (0=6)	
		L=4.8 fb , 7 lev [1210.1718]		7.6 lev A	(constructive int)
	qq_{II} CI : ee $\alpha \mu\mu$, m	L=5.0 fb , 7 lev [1211.1150]			A (constructive int.)
	$\frac{7}{(SSM)} = \frac{1}{2}$	L=14.3 fb , 8 lev [AILAS-CONF-2013-051]		3.3 IeV Λ (C=1)	
	$Z(33W) . m_{ee/\mu\mu}$	L=20 fb , 8 lev [AILAS-CONF-2013-017]	7	2.86 TeV Z Mass	
7 (lastashahi	\angle (SSIVI). $II_{\tau\tau}$	L=4.7 fb, 7 lev [1210.6604]	1.4 IeV 2		
	$V'' (SSM) : m^{\text{tt}}$	L=14.3 fb , 8 lev [ATLAS-CONF-2013-052]	1.8 lev		
	W' (SSM) $: m_{T,e/\mu}$	L=4.7 fb, 7 leV [1209.4446]	2.5	S IEV VV IIIASS	
	$W' \rightarrow H RSM : m$	L=4.7 1D , 7 1eV [1209.0595]	130 Gev VV IIIdss	W/ mass	
Scalar I O pair (B	(-1): kin vars in soli svii	L=14.3 ID , 6 IEV [ATLAS-CONF-2013-030]			
\circ Scalar LQ pair (β	R=1) : kin. vars. in eejj, evjj R=1) : kin. vars. in uuii uvii	L=1.0 fB , 7 lev [1112.4828]		1055 mass	
Scalar LO pair (p	$(\beta - 1)$: kin vars in $\pi \pi i \pi \nu i$	L=1.0 fB , 7 lev [1203.3172]	524 Cov 2 rd don 1 O mag	111055	
	$p=1$). Kill. vals. Il t_{ij} , t_{ij}	L=4.7 fb ⁻¹ 7 TeV [1303.0526]	534 Gev 5 gen. LQ mass	5	
\approx 4th generation : b'b' \rightarrow	SS dilepton + jets + E	L=4.7 ID , 7 TeV [1210.3400]			
ler Voc	$T_{,\text{miss}}$	L=14.3 ID , 6 IEV [ATLAS-CONF-2013-031]		sospin doublet)	
	/ector-like quark : CC_m	$L = 14.5 \text{ fb}^{-1}$ 7 TeV [ATLAS-CONF-2012-137]		mass (charge $-1/3$, coupling r	-u(m)
Excited qua	irks : γ -iet resonance. <i>m</i>	$L = 2.1 \text{ fb}^{-1}$ 7 TeV [4112 3580]	1.12 160 VEQ	κ_{c}	$_{AQ} = V/IIQ$
Excited ou	Jarks : dijet resonance, $m_{\pi}^{\gamma jet}$	/ -13.0 fb ⁻¹ 8 TeV [ATLAS-CONE-2012-148]	2.4		
Excited b d	wark · W-t resonance m	$L = 4.7 \text{ fb}^{-1}$ 7 TeV [11301 1583]	870 GeV b* mass	(left-handed coupling)	
Excited le	eptons : I- γ resonance, m	$I = 43.0 \text{ fb}^{-1}$ 8 TeV [ATLAS-CONE-2012-146]	221	I^* mass ($\Lambda = m(I^*)$)	
Techni-hadron	γ (I STC) dilepton m	$I = 5.0 \text{ fb}^{-1}$ 7 TeV [1209 2535]	850 GeV 0 /0- ma	$s_{\rm N} (m(0 / \omega_{-}) - m(\pi_{-}) = M)$	
Techni-hadrons (LSTC)	: WZ resonance (k II), m	$I = 13.0 \text{ fb}^{-1}$ 8 TeV [ATLAS-CONE-2013-015]	920 GeV 0 mass	$s(m(0)) = m(\pi_{-}) + m_{} m(a) = 1$	1.1m(0)
Major neutr (LRSN	M no mixing) : 2-lep + jets	$I = 2.1 \text{ fb}^{-1}$ 7 TeV [1203 5420]	1.5 TeV	$M_{mass}(m(W)) = 2 \text{ TeV}$	······(P _T)/
$\overset{\bullet}{=}$ Heavy lepton N [±] (type III se	(1, 10, 11, 11, 11, 12, 12, 12, 12, 12, 12, 12	$L=5.8 \text{ fb}^{-1}$, 8 TeV [ATLAS-CONF-2073-5) f9lV	N^{\pm} mass (IV = 0.055, IV	= 0.063, $ V = 0$	
H [±] (DY prod., BR(F	$ 1^{\pm\pm} \rightarrow)=1$) : SS ee (uu). m	$I = 4.7 \text{ fb}^{-1}$, 7 TeV [1210.5070] 4	19 GeV $H^{\pm\pm}_{\pm}$ mass (limit at 39	$\frac{1}{2}$ $\frac{1}$	
Color octet s	calar : dijet resonance. m	$I = 4.8 \text{ fb}^{-1}$ 7 TeV [1210.1718]		Scalar resonance mass	
Multi-charged particles (DV pro	od) · highly jonizing tracks	$l = 4.4 \text{ fb}^{-1}$, 7 TeV [1301 5272]	490 GeV mass (Igl = 4e)		
Magnetic monopoles (DY pro	od) · highly ionizing tracks	$L=2.0 \text{ fb}^{-1}$, 7 TeV [1207.6411]	862 GeV Mass		
		10 ⁻¹	1	10	10 ²
		10	I	10	10
* Orabi a salastian of the suritable	, maaa limita an naw atataa ar				Mass scale [TeV]

*Only a selection of the available mass limits on new states or phenomena shown

We searched for violation of lepton and lepton flavor numbers in exclusive and inclusive dilepton channels.

> In all reported analyses we observe a good agreement with SM predictions.

From our measurements we estimated upper limits on production cross sections of various BSM processes and lower limits on masses of new hypothetical particles.

A discovery of heavy Majoranas would have explained neutrino masses and baryogenesis via violation of lepton number and more CP violation! Wishful thinking, hahaha...

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/Publications http://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES