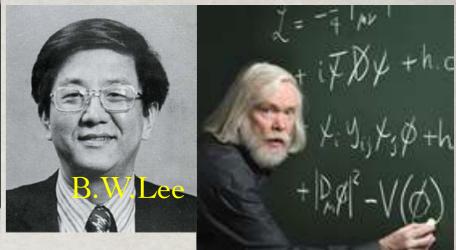
The Test of "See-saw" at the LHC

Tao Han

Pittsburgh Particle physics Astrophysics, Cosmology Center, University of Pittsburgh

From Majorana to LHC Trieste, Oct. 3-5, 2013

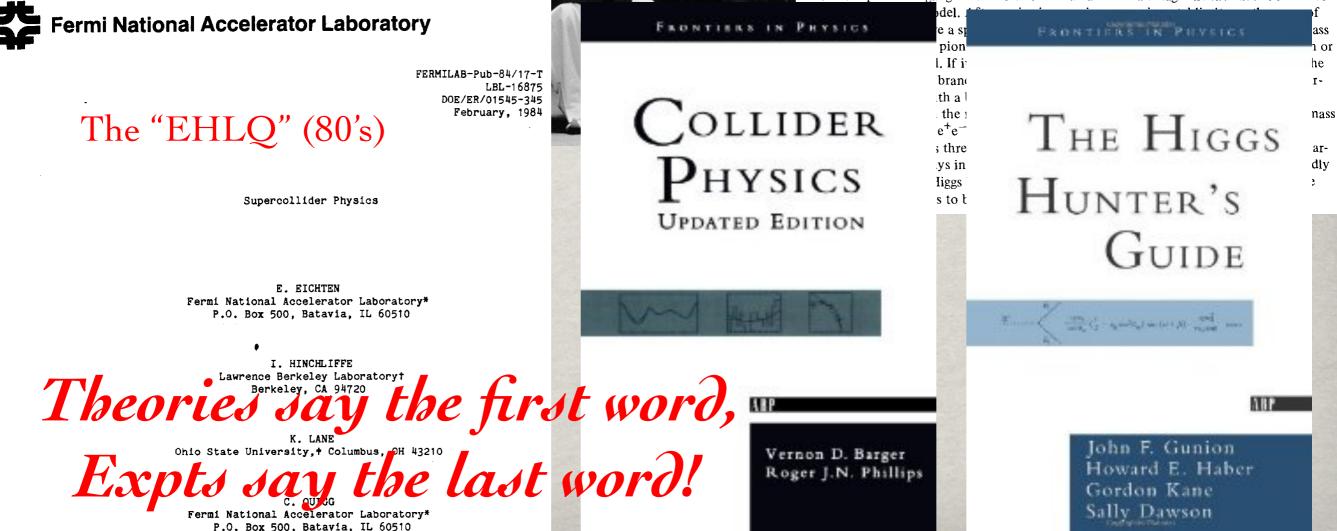
LHC ROCKS! ON THE 4TH OF JULY, 2012: Salute To ATLAS/CMS !



(1964)

The SM (1960-1967)

Higgs Phenomenology (70's)



A PHENOMENOLOGICAL PROFILE OF THE HIGGS BOSON

John ELLIS, Mary K. GAILLARD * and D.V. NANOPOULOS ** CERN, Geneva

Received 7 November 1975

A discussion is given of the production, decay and observability of the scalar Higgs boson H expected in gauge theories of the weak and electromagnetic interactions such as

Marching into TeV scale physics: But, no sign for BSM physics (yet)

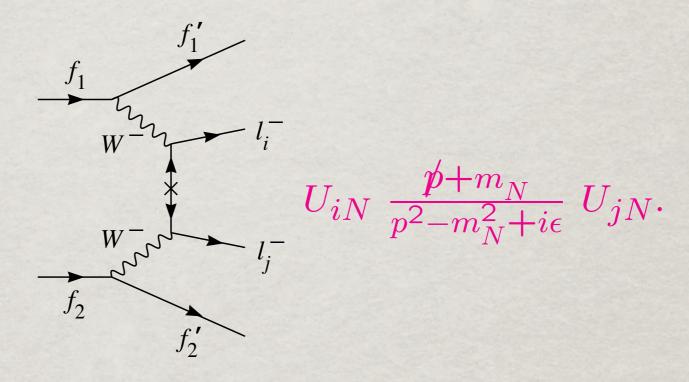
		ATLAS Exotics S	earches* - 95% CL Lowe	er Limits (Status: Ma	ay 2013)	
	Large ED (ADD) : monojet + E _{7,miss}	L=4.7 fb ⁻¹ , 7 TeV [1210.4491]		TeV M _D (δ=2)		
	Large ED (ADD) : monophoton + E _{T,miss}	L=4.6 fb ⁻¹ , 7 TeV [1209.4625]	1.93 TeV Μ _D (δ		ATLAS	TT 0 1
ns	Large ED (ADD) : diphoton & dilepton, m _{yy / II}	L=4.7 fb ⁻¹ , 7 TeV [1211.1150]		TeV M_{S} (HLZ δ =3, NLO)	Preliminary	Under the
	UED : diphoton + $E_{T,miss}$		1.40 TeV Compact.		ricaniary	Under the
U.S.	$S^{1}/Z_{2}ED$: dilepton, m_{\parallel}	L=5.0 fb ⁻¹ , 7 TeV [1209.2535]		11 TeV M _{KK} ~ R ⁻¹		
Extra dimensions	RS1 : dilepton, m	L=20 fb ⁻¹ , 8 TeV [ATLAS-CONF-2013-017]		aviton mass $(k/M_{Pl} = 0.1)$		Higgs lamp post
di	RS1: WW resonance, $m_{T,WW}$	L=4.7 fb ⁻¹ , 7 TeV [1208.2880]	1.23 TeV Graviton ma	$ss(k/M_{\rm Pl} = 0.1)$.dt = (1 - 20) fb ⁻¹	HIAAS LAMD DOSE
ra	Bulk RS : ZZ resonance, m		850 Gev Graviton mass (k)			
X	RS g _{KK} → tt (BR=0.925) : tt → I+jets, m_{tt} ADD BH (M_{TH}/M_{D} =3) : SS dimuon, $N_{ch, part}$.	L=4.7 fb ⁻¹ , 7 TeV [1305.2756] L=1.3 fb ⁻¹ , 7 TeV [1111.0080]	2.07 TeV g _{κκ} n 1.25 TeV M _D (δ=6)	1055	s = 7, 8 TeV	
- U	ADD BH $(M_{TH}/M_D=3)$: leptons + jets, Σp_T	L=1.0 fb ⁻¹ , 7 TeV [1204.4646]	1.25 TeV M _D (δ=6)			
	Quantum black hole : dijet, $F_{u}(m_{i})$	L=1.0 fb , 7 lev [1204.4646] L=4.7 fb ⁻¹ , 7 TeV [1210.1718]	<u> </u>	ΓeV <i>M</i> _D (δ=6)		
	qqqq contact interaction : $\chi(m_{-})$	L=4.8 fb ⁻¹ , 7 TeV [1210.1718]	9.11	7.6 TeV A		
0	qqll Cl : ee & μμ, m	L=5.0 fb ⁻¹ , 7 TeV [1211.1150]		13.9 TeV A (CO	nstructive int.)	0
0	uutt CI : SS dilepton + jets + $E_{T,miss}$	L=14.3 fb ⁻¹ , 8 TeV [ATLAS-CONF-2013-051]	3 3 TeV	Λ (C=1)	naudeuve int.)	
	Z' (SSM) : m _{ee/μμ}	L=20 fb ⁻¹ , 8 TeV [ATLAS-CONF-2013-017]	2.86 TeV			
	Z' (SSM) : m_{zz}	L=4.7 fb ⁻¹ , 7 TeV [1210.6604]	1.4 TeV Z' mass	E mass		
~	Z' (leptophobic topcolor) : $t\bar{t} \rightarrow l+jets, m_{a}$	L=14.3 fb ⁻¹ , 8 TeV [ATLAS-CONF-2013-052]	1.8 TeV Z' mas	s		
Ň	W' (SSM) : $m_{\text{T,e/}\mu}$		2.55 TeV W			
	W' $(\rightarrow tq, g_{p}=1): m_{tq}$		30 GeV W' mass			State of the second
	W'_{R} (\rightarrow tb, LRSM) : m_{L}^{M}	L=14.3 fb ⁻¹ , 8 TeV [ATLAS-CONF-2013-050]	1.84 TeV W' mas	ss		And the second sec
~	Scalar LQ pair (β=1) : kin. vars. in eejj, evjj	L=1.0 fb ⁻¹ , 7 TeV [1112.4828]	660 Gev 1 st gen. LQ mass			And the second se
ΓÖ	Scalar LQ pair (β=1) : kin. vars. in μμjj, μvjj	L=1.0 fb ⁻¹ , 7 TeV [1203.3172]	685 GeV 2 nd gen. LQ mass		1.5	And the state of t
	Scalar LQ pair (β=1) : kin. vars. in ττjj, τvjj	L=4.7 fb ⁻¹ , 7 TeV [1303.0526]	534 GeV 3rd gen. LQ mass			
0	4 th generation : t't'→ WbWb	L=4.7 fb ⁻¹ , 7 TeV [1210.5468]	656 GeV ť mass			
New quarks	4 generation : $tt \rightarrow WDWD$ 4th generation : b'b' \rightarrow SS dilepton + jets + $E_{T,miss}$	L=14.3 fb ⁻¹ , 8 TeV [ATLAS-CONF-2013-051]	720 GeV b' mass			A DECISION OF A DECISIONO OF A
Ne	Vector-like quark : $TT \rightarrow Ht+X$	L=14.3 fb ⁻¹ , 8 TeV [ATLAS-CONF-2013-018]	790 Gev T mass (isospin do		1000	and the second se
	Vector-like quark : CC, mixq	L=4.6 fb ⁻¹ , 7 TeV [ATLAS-CONF-2012-137]		harge -1/3, coupling κ _{q0} = v/n	n _o)	A DESCRIPTION OF THE OWNER OF THE
÷.	Excited quarks : γ-jet resonance, m	L=2.1 fb ⁻¹ , 7 TeV [1112.3580]	2.46 TeV q*		1.1.1	
Excit. ferm.	Excited quarks : dijet resonance, m	L=13.0 fb ⁻¹ , 8 TeV [ATLAS-CONF-2012-148]		ev q* mass		
Щæ	Excited b quark : W-t resonance, m	L=4.7 fb ⁻¹ , 7 TeV [1301.1583]	870 Gev b* mass (left-hand		and the second se	
	Excited leptons : I-y resonance, m	L=13.0 fb ⁻¹ , 8 TeV [ATLAS-CONF-2012-146]		ass (Λ = m(I*))		No. of Concession, Name of Concession, Name of Street, or other
	Techni-hadrons (LSTC) : dilepton, mee/µµ	L=5.0 fb ⁻¹ , 7 TeV [1209.2535]	850 GeV $\rho_{\uparrow} / \omega_{\uparrow}$ mass $(m(\rho_{\uparrow} / \omega_{\uparrow}))$			A DESCRIPTION OF THE OWNER OWNER OF THE OWNER OWNER OF THE OWNER
	Techni-hadrons (LSTC) : WZ resonance (IvII), mwz	L=13.0 fb ⁻¹ , 8 TeV [ATLAS-CONF-2013-015]	920 GeV $\rho_{\rm T}$ mass $(m(\rho_{\rm T}) =$	$m(\pi_{T}) + m_{W}, m(a_{T}) = 1.1 m(\rho_{T})$	r))	ALCON THE REAL OF
ъ	Major. neutr. (LRSM, no mixing) : 2-lep + jets	L=2.1 fb ⁻¹ , 7 TeV [1203.5420]	1.5 TeV N mass (/	$m(vv_R) = 2 \text{ IeV}$	0 10 1	
Othe	eavy lepton N [±] (type III seesaw) : Z-I resonance, m _{ZI} H ^{±±} (DY prod., BR(H ^{±±} →II)=1) : SS ee (μμ), m _⊥		N [±] mass ($ V_e = 0.055$, $ V_{\mu} = 0.063$,		10- 21	and the second s
0	Color octet scalar : dijet resonance, m		9 GeV HL ^{±±} mass (limit at 398 GeV fo	resonance mass	T ALL	
N.A. JAC		L=4.8 fb ⁻¹ , 7 TeV [1210.1718] L=4.4 fb ⁻¹ , 7 TeV [1301.5272]	490 GeV mass (q = 4e)	resonance mass	and the second se	
	charged particles (DY prod.) : highly ionizing tracks gnetic monopoles (DY prod.) : highly ionizing tracks	L=4.4 fb ⁻¹ , 7 TeV [1301.5272] L=2.0 fb ⁻¹ , 7 TeV [1207.6411]	862 GeV mass (q = 4e) 862 GeV mass		100	
ivia	gneac monopoles (or prod.) . highly ionizing tracks					
		10 ⁻¹	1	10	11	
		10	I	10		
*0~	a selection of the available mass limits on new states o	r abagamana abawa		Mas	ss scale [Te	
· ()///	r a selection of the available mass limits on new states o	r onenomena snown				

NEUTRINOS ARE HOT! ACTIVE PROGRAMS, RICH PHYSICS Now we know a LOT: $7.27 \times 10^{-5} \,\mathrm{eV}^2 < \Delta m_{21}^2 < 8.01 \times 10^{-5} \,\mathrm{eV}^2$ $2.38 (2.29) \times 10^{-3} \,\mathrm{eV}^2 < |\Delta m_{31}^2| < 2.68 (2.58) \times 10^{-3} \,\mathrm{eV}^2,$ $0.29 < \sin^2 \theta_{12} < 0.35,$ $0.38(0.39) < \sin^2 \theta_{23} < 0.66(0.65),$ $0.019 (0.020) < \sin^2 \theta_{13} < 0.030 (0.030),$ 95% limits $\Sigma m_{\nu} [eV]$ Jan Hamann < 0.230 Still need to know: $m_1 - m_3$ mass hierarchy CP phases • And what theory at work? Dirac/Majorana

Weinberg's operator: $\frac{1}{\Lambda} (y_{\nu}LH)(y_{\nu}LH)$ charaterized the "seesaw". See-saw implies the synergy:

among low-energy, high-energy, and cosmology!

Illustrative models:

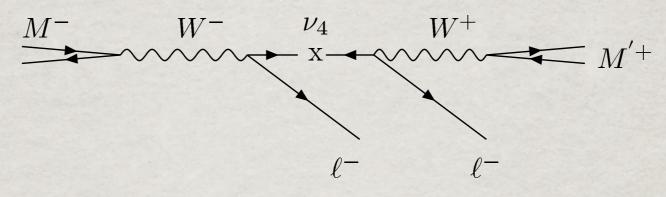

- Neutral fermion N (type I)
- Charged scalar H^{±±}, H[±] and W_R (type II)
- Charged fermion triplet T[±], T⁰ (type III)

*S. Weinberg, Phys. Rev. Lett. 1566 (1979)

[†]Yanagita (1979); Gell-Mann, Ramond, Slansky (1979), S.L. Glashow (1980); Mohapatra, Senjanovic (1980) ...

The search for $\Delta L=2$ processes

(1). Neutrino-less double β Decay



The transition rates are proportional to

 $|\mathcal{M}|^{2} \propto \begin{cases} \langle m \rangle_{ee}^{2} = \left| \sum_{i=1}^{3} U_{ei} U_{ei} m_{i} \right|^{2} & \text{for light } \nu \quad \Rightarrow \langle m \rangle_{ee} \sim \mathcal{O}(0.1 \text{ eV}) \\ \\ \frac{\left| \sum_{i}^{n} V_{ei} V_{ei} \right|^{2}}{m_{N}^{2}} & \text{for heavy } N \quad \Rightarrow |V_{eN}|^{2} / m_{N} < 5 \times 10^{-8} \text{ GeV}^{-1} \end{cases}$

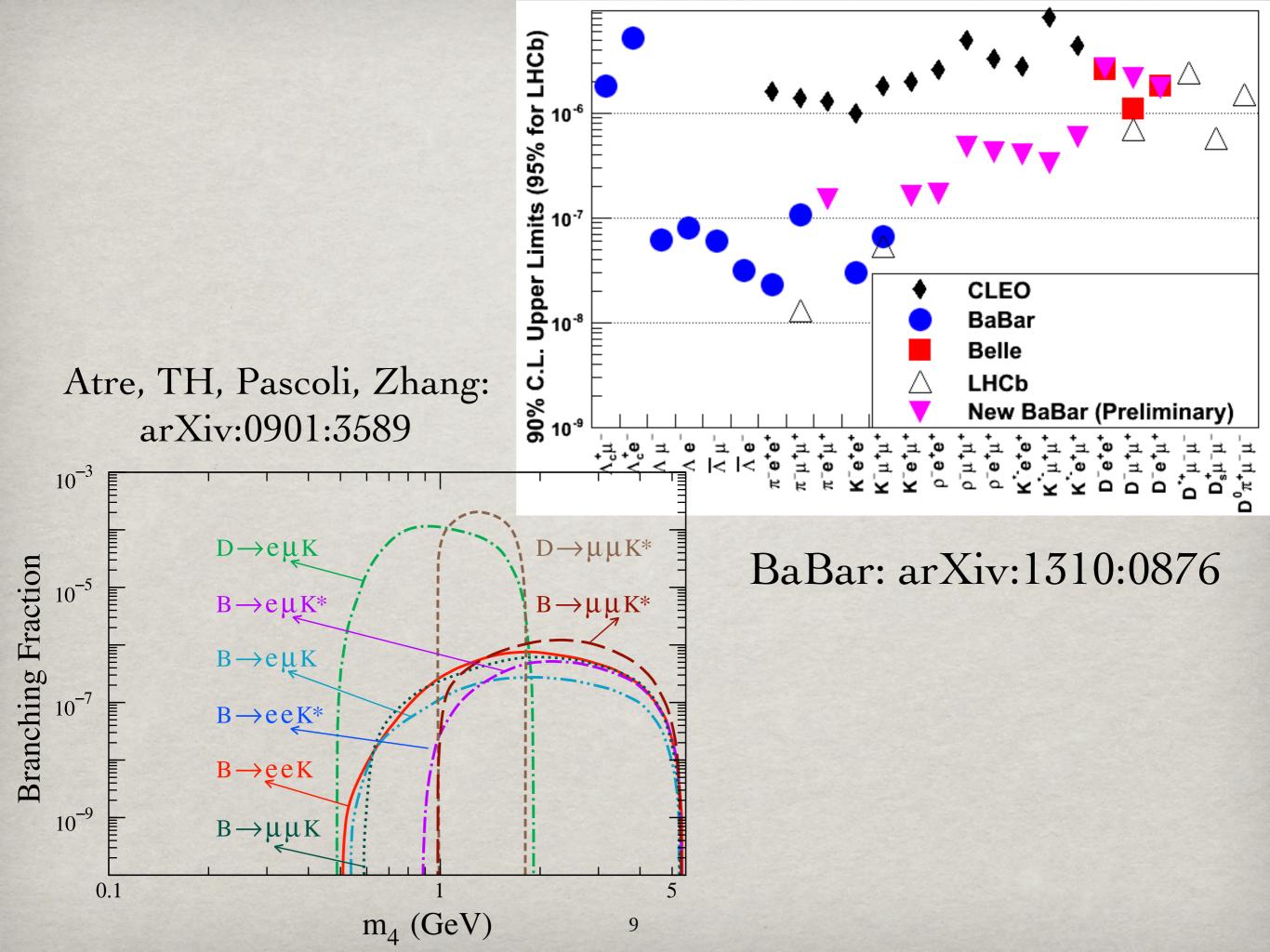
Very challenging!

(2). Extension to N Resonance Signals

The transition rates are proportional to[†]

$$|\mathcal{M}|^2 \propto rac{\Gamma(N o i) \ \Gamma(N o f)}{m_N \Gamma_N}$$
 for resonant N production.

Active searches:*


 τ, K, D, B decays: $M^+ \rightarrow \ell_i^+ \ell_j^+ M^-$ via N

• Other processes to look for:

$$D^+, B^+ \to \ell^+ \ell^+ K^*, \\ B^+ \to \tau^+ e^+ M^-, \tau^+ \mu^+ M^-, \tau^+ \tau^+ M^-.$$

at Super-B, LHCb.

[†]A. Atre, T. Han, S. Pascoli, B. Zhang, arXiv.0901.3589. *LHCb Collaboration: arXiv:1201.5600 [hep-ex]; PDG listing.

THE SEARCH AT THE LHC *A FEW ILLUSTRATIVE CASES:* (1). Type I Seesaw: N

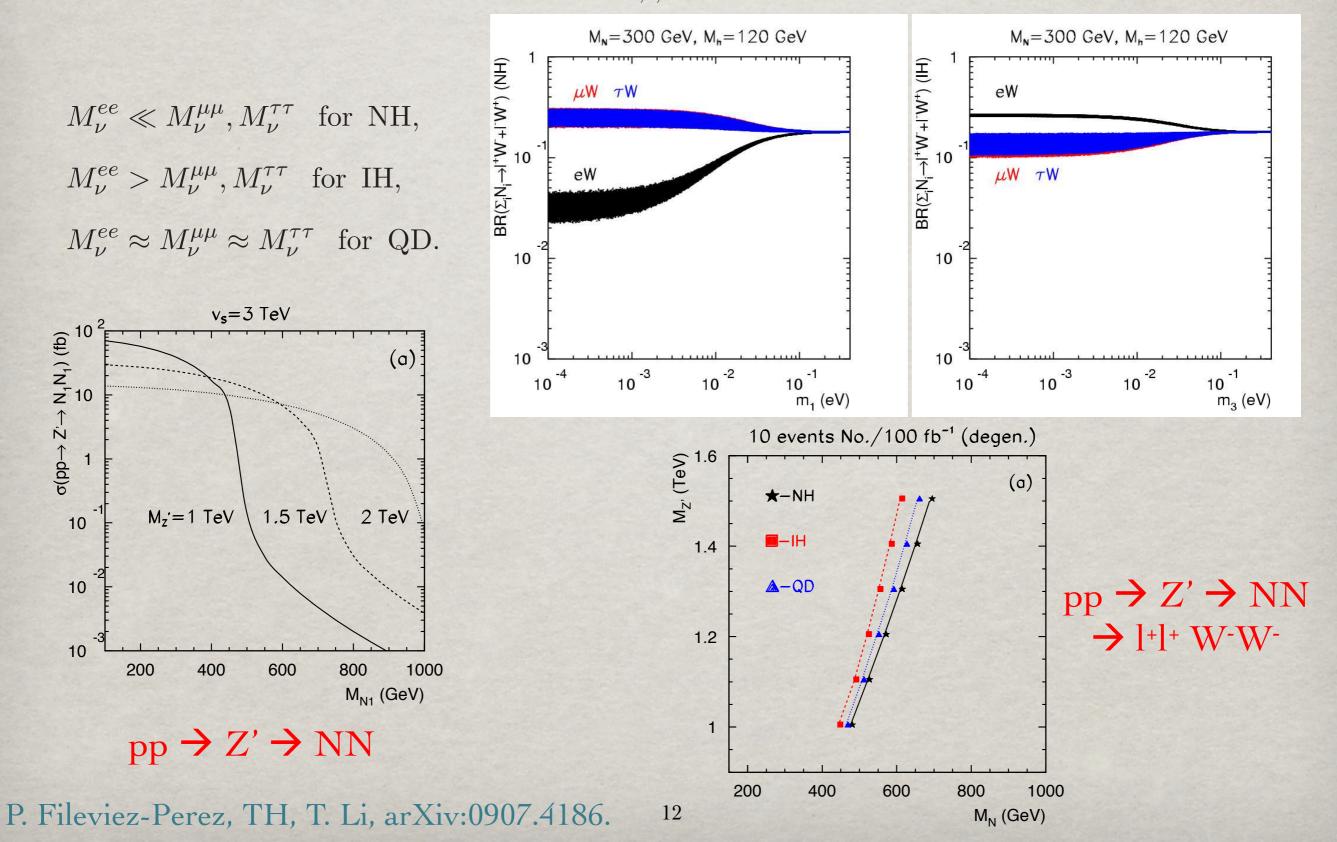
At hadron colliders: $\[\] pp(\bar{p}) \rightarrow \ell^{\pm}\ell^{\pm}jjX$ q_i W^{\mp} \bar{q}_j \bar{q}_j W^{\mp} NV W^{\pm}

 $\sigma(pp \to \mu^{\pm} \mu^{\pm} W^{\mp}) \approx \sigma(pp \to \mu^{\pm} N) Br(N \to \mu^{\pm} W^{\mp}) \equiv \frac{V_{\mu N}^2}{\sum_l |V^{\ell N}|^2} V_{\mu N}^2 \sigma_0.$

Suffer from mixing suppression. (see talks by F. Del Aguila; P.S.Bhupal Dev)

[§]Keung, Senjanovic (1983); Dicus et al. (1991); A. Datta, M. Guchait, A. Pilaftsis (1993); ATLAS TDR (1999); F. Almeida et al. (2000); F. del Aguila et al. (2007).
 [†]T. Han and B. Zhang, hep-ph/0604064, PRL (2006).

Type I Seesaw: A case with B-L


Fields	Vertices	Couplings	Approximations
Z'	$\bar{q}_i q_i Z'$	$-iQ^q_{BL}g_{BL}\gamma^\mu$	—
	$q_1 = u, q_2 = d$	$Q_{BL}^q = \frac{1}{3}$	
	$ar{\ell}\ell Z'$	$-iQ_{BL}^{\ell}g_{BL}\gamma^{\mu}$	—
	$\ell=e,\mu,\tau$	$Q_{BL}^\ell = -1$	
	$\overline{N_{m_1}}N_{m_2}Z'$	$-i(U_C^T U_C^* - V^T V^*)_{m_1 m_2} Q_{BL}^{\ell} g_{BL} \gamma^{\mu} P_R$	$iI_{m_1m_2}g_{BL}\gamma^{\mu}P_R$
	$\overline{ u_{m_1}} u_{m_2}Z'$	$-i(U^{\dagger}U - V_C^{\dagger}V_C)_{m_1m_2}Q_{BL}^{\ell}g_{BL}\gamma^{\mu}P_L$	$iI_{m_1m_2}g_{BL}\gamma^{\mu}P_L$
N_m	$\overline{N_m^c}\ell^-W^+$	$-i\frac{g}{\sqrt{2}}V_{\ell m}^*\gamma^{\mu}P_L$	—
	$N_m^T \ell^- W^+$	$-irac{g}{\sqrt{2}}V_{\ell m}^*C\gamma^{\mu}P_L$	—
	$\overline{\nu_{m_1}} N^c_{m'_2} Z$	$-i\frac{g}{2c_W}U^{\nu N}_{m_1m'_2}\gamma^{\mu}P_L$	-
	$\overline{\nu_{m_1}}\overline{N_{m_2'}}^T Z$	$-i\frac{g}{2c_W}U^{\nu N}_{m_1m'_2}\gamma^{\mu}P_LC$	—

In general, $M_{\nu} = m_D M_N^{-1} m_D^T$, Casas-Ibarra parameterization: $m_D = V_{PMNS} m^{1/2} \Omega M^{1/2}$, $V_{\ell N} = V_{PMNS} m^{1/2} \Omega M^{-1/2}$.

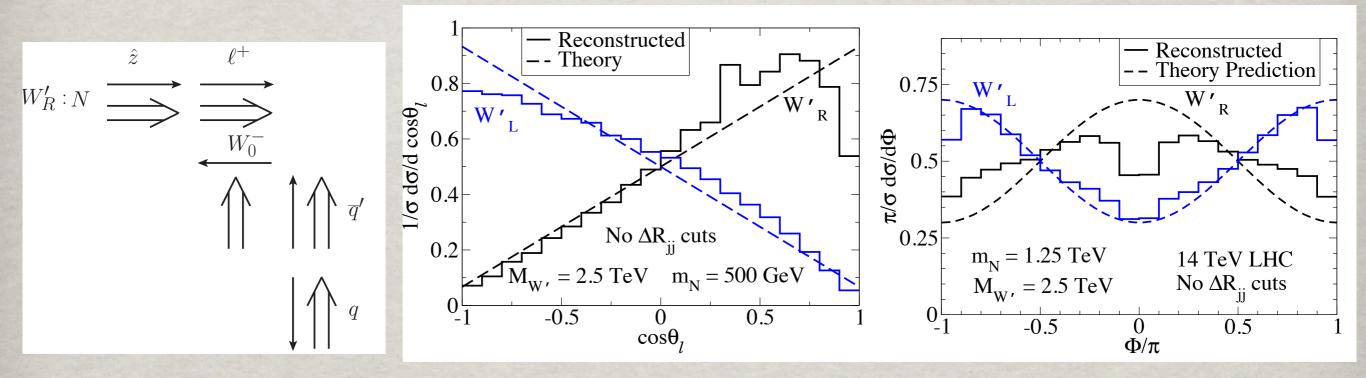
P. Fileviez-Perez, TH, T. Li, arXiv:0907.4186.

Type I Seesaw: A case with B-L

Assuming degenerate N's: $M \sum_{N=1,2,3} (V_{\ell N}^*)^2 = (V_{PMNS}^* m V_{PMNS}^\dagger)_{\ell \ell} \equiv (M_{\nu})_{\ell \ell}, \ (\ell = e, \mu, \tau).$

(2). Type II Seesaw: W_R & N

 u_i

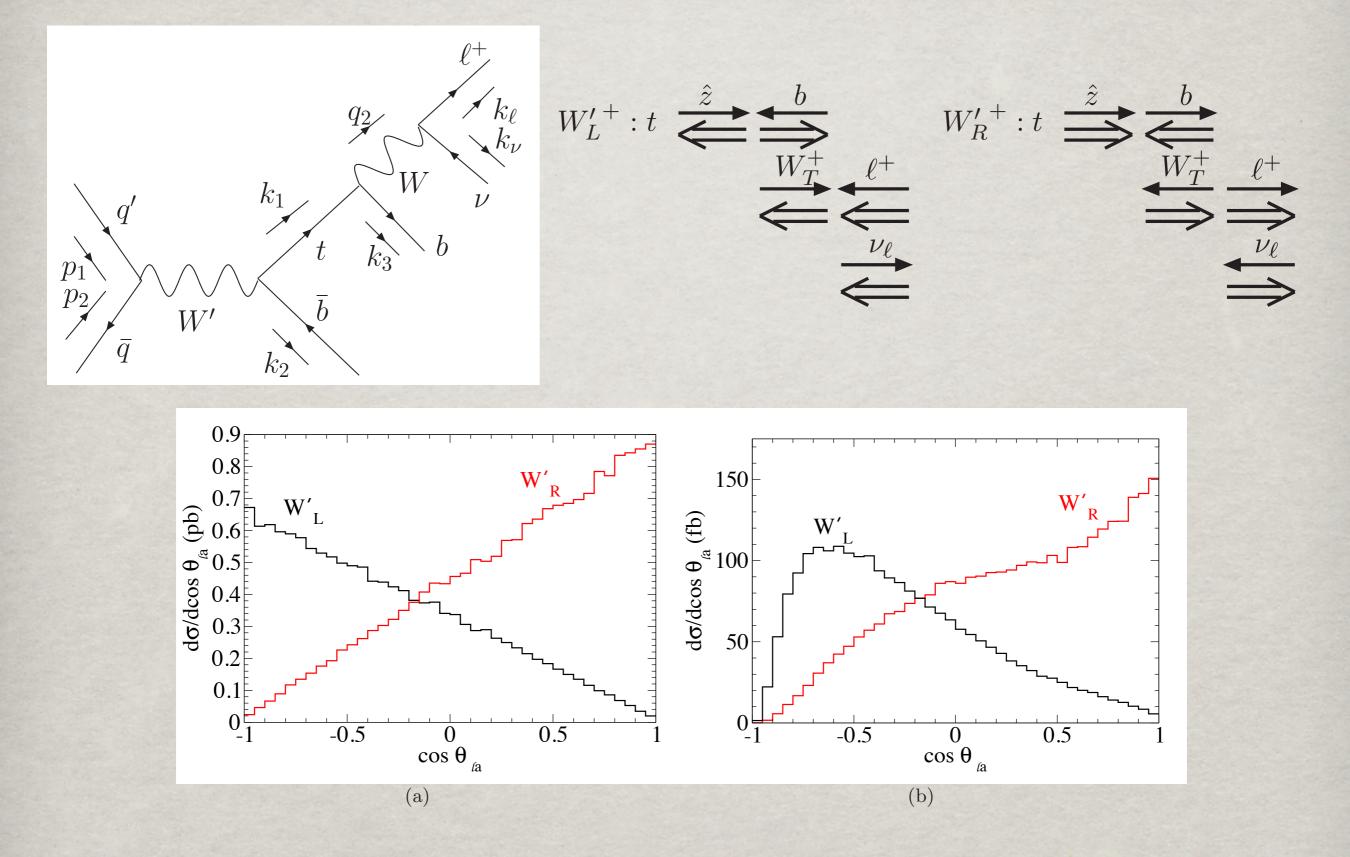

 \overline{d}_j

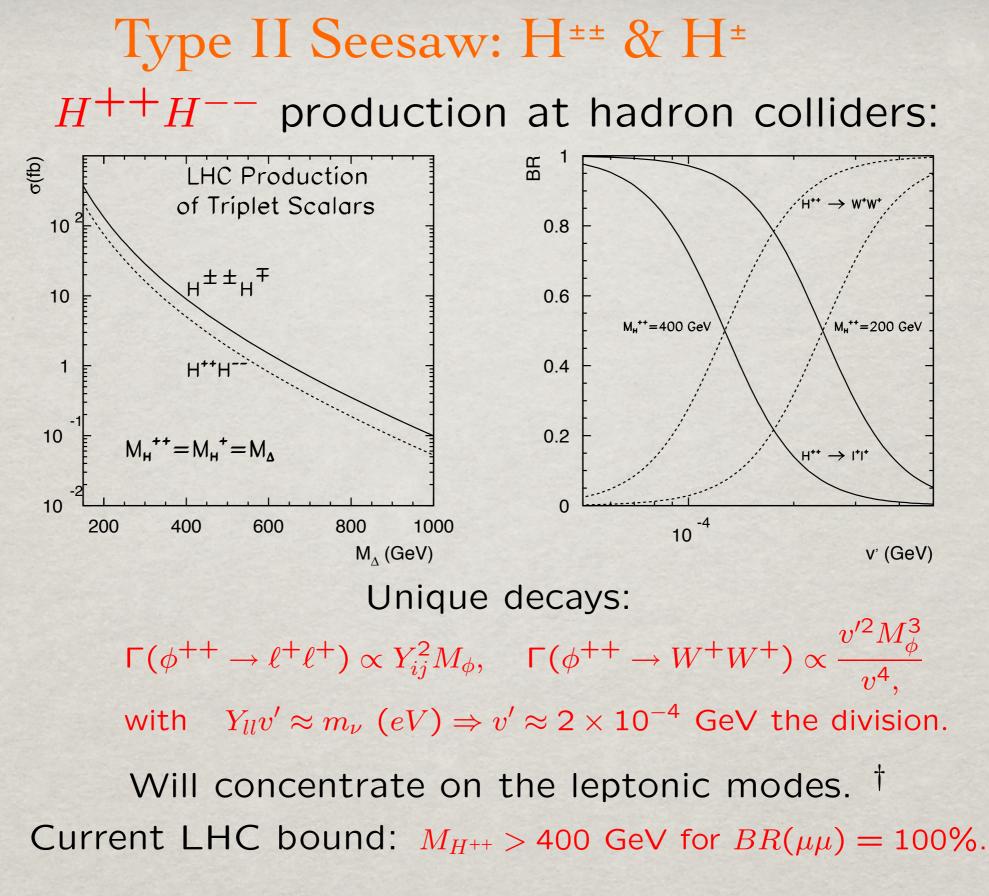
 W'^+

N

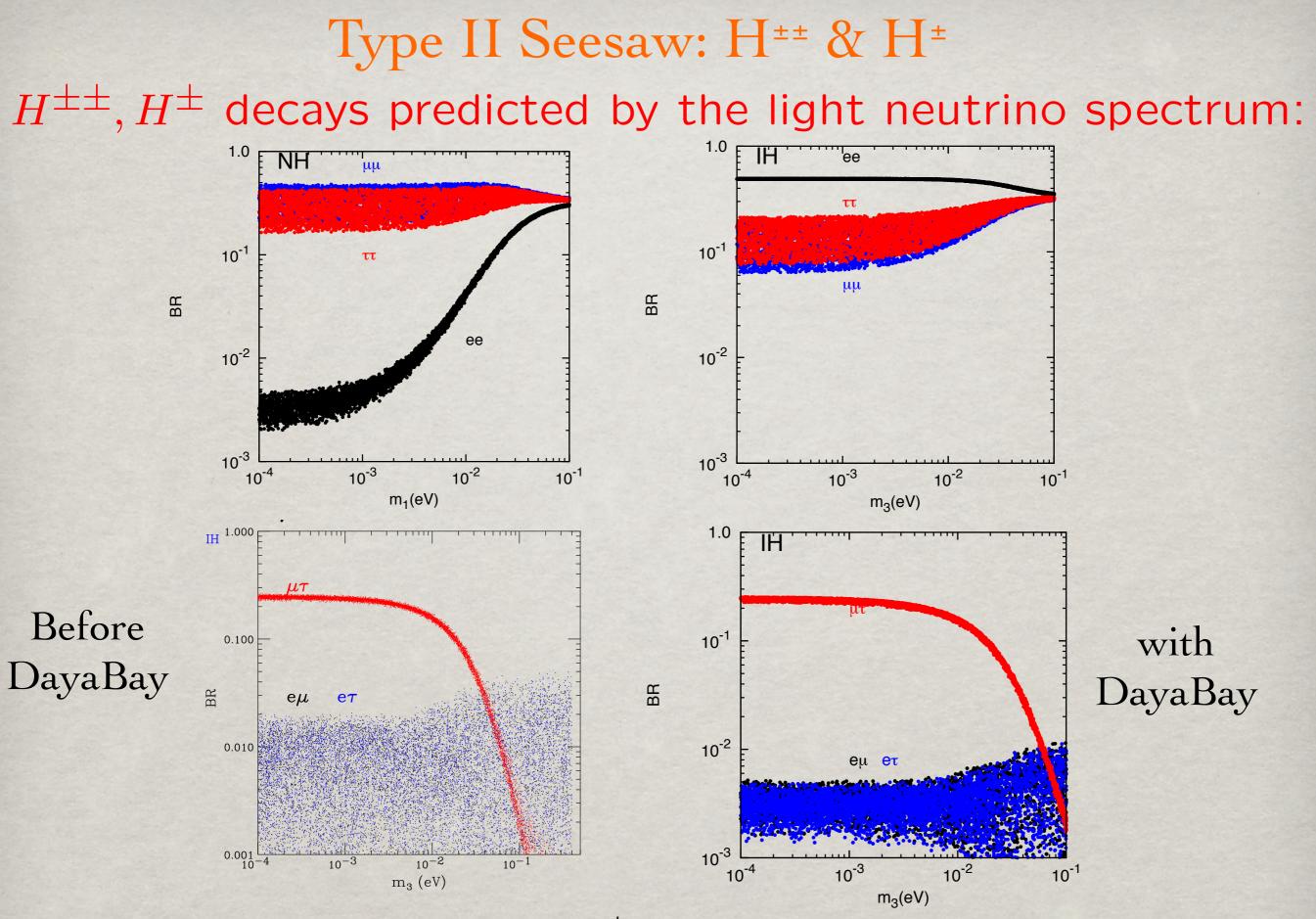
A clean channel with rich physics:[†]

- Significantly enhanced rate at W_R resonance; \P
- If observed, determine N's nature: $\Delta L = 2$, azimuthal angle ...
- and determine W' chiral coupling to $\ell N_{R,L}$ and $q \bar{q}$.


$$\cos\Phi = \frac{\hat{p}_N \times \vec{p}_{\ell_2}}{|\hat{p}_N \times \vec{p}_{\ell_2}|} \cdot \frac{\hat{p}_N \times \vec{p}_q}{|\hat{p}_N \times \vec{p}_q|}$$


 W^{-}

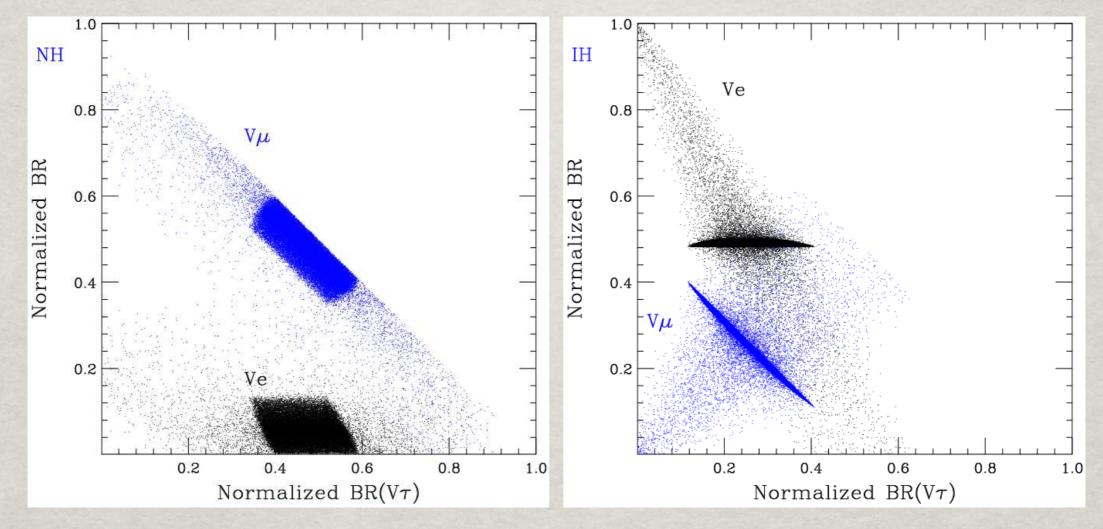
Keung & Senjanovic, PRL (1983).


[†]ATLAS, arXiv:1203.5420 [hep-ex]
[†]T. Han, I. Lewis, R. Ruiz, Z. Si, *arXiv:1211.6447*.

Type II Seesaw: $W_R \rightarrow t b$

[†]Pavel Fileviez Perez, Tao Han, Gui-Yu Huang, Tong Li, Kai Wang, arXiv:0803.3450 [hep-ph]; ATLAS/CMS: 4.7 fb⁻¹

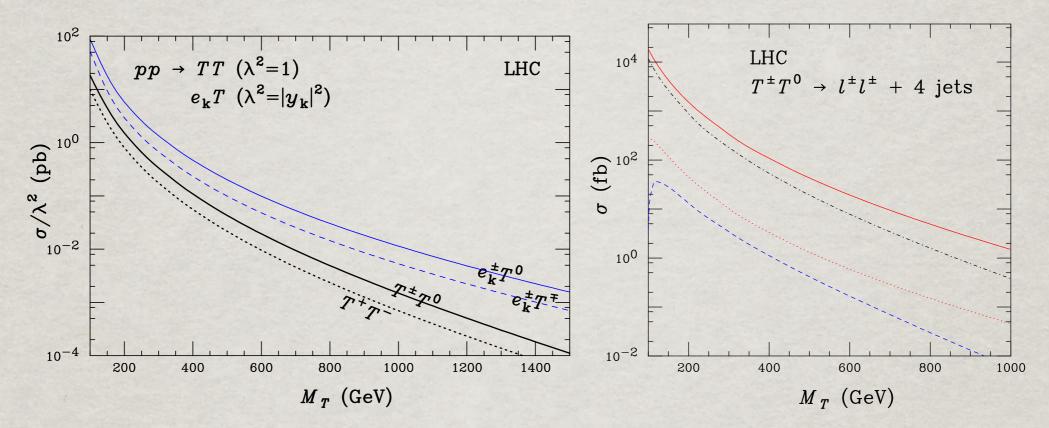
[†]TH, Gui-Yu Huang, Tong Li, to appear.


Type II Seesaw: H^{±±} & H[±]

Summarize the discovery modes:					
Spectrum	Relations				
Normal Hierarchy	$BR(H^{++} \to \tau^+ \tau^+), \ BR(H^{++} \to \mu^+ \mu^+) \gg BR(H^{++} \to e^+ e^+)$				
$(\Delta m_{31}^2 > 0)$	$BR(H^{++} \to \mu^+ \tau^+) \gg BR(H^{++} \to e^+ \mu^+), \ BR(H^{++} \to e^+ \tau^+)$				
	$BR(H^+ \to \tau^+ \overline{\nu}), \ BR(H^+ \to \mu^+ \overline{\nu}) \gg BR(H^+ \to e^+ \overline{\nu})$				
Inverted Hierarchy	$BR(H^{++} \to e^+ e^+) > BR(H^{++} \to \mu^+ \mu^+), BR(H^{++} \to \tau^+ \tau^+)$				
$(\Delta m_{31}^2 < 0)$	$BR(H^{++} \to \mu^+ \tau^+) \gg BR(H^{++} \to e^+ \tau^+), \ BR(H^{++} \to e^+ \mu^+)$				
	$BR(H^+ \to e^+ \bar{\nu}) > BR(H^+ \to \mu^+ \bar{\nu}), BR(H^+ \to \tau^+ \bar{\nu})$				
Quasi-Degenerate	$BR(H^{++} \to e^+ e^+) \sim BR(H^{++} \to \mu^+ \mu^+) \sim BR(H^{++} \to \tau^+ \tau^+) \approx 1/3$				
$(m_1, m_2, m_3 > \Delta m_{31})$	$BR(H^+ \to e^+ \bar{\nu}) \sim BR(H^+ \to \mu^+ \bar{\nu}) \sim BR(H^+ \to \tau^+ \bar{\nu}) \approx 1/3$				

[†]Pavel Fileviez Perez, Tao Han, Gui-Yu Huang, Tong Li, Kai Wang, arXiv:0803.3450 [hep-ph]

(3). Type III (& I) Seesaw: $T^{\pm} \& T^{0}$ Lepton flavor combination determines the ν mass pattern: [†]


 $m_{\nu}^{ij} \sim -v^2 \frac{y_T^i y_T^j}{M_T}, \quad BR(T^{\pm,0} \to W^{\pm}\ell, \ Z\ell) \sim y_T^2 \sim V_{PMNS}^2 \ \frac{M_T m_{\nu}}{v^2}.$

Lepton flavors correlate with the ν mass pattern.

[†]Abdesslam Arhrib, Borut Bajc, Dilip Kumar Ghosh, Tao Han, Gui-Yu Huang, Ivica Puljak, Goran Sejanovic, arXiv:0904.2390.

Type III (& I) Seesaw: $T^{\pm} \& T^{0}$

• Single production $T^{\pm}\ell^{\mp}$, $T^{0}\ell^{\pm}$:

Kinematically favored, but highly suppressed by mixing.

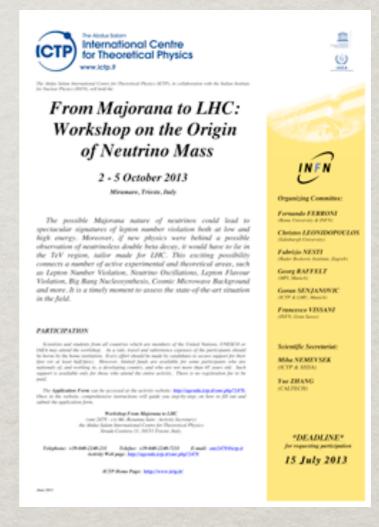
• Pair production with gauge couplings. Example: $T^{\pm} + T^0 \rightarrow \ell^+ Z(h) + \ell^+ W^- \rightarrow \ell^+ j j (b \overline{b}) + \ell^+ j j$. Low backgrounds.

LHC studies with Minimal Flavor Violation implemented.

[†]Similar earlier work: Franceschini, Hambye, Strumia, arXiv:0805.1613. [‡]O. Eboli, J. Gonzalez-Fraile, M.C. Gonzalez-Garcia, arXiv:1108.0661 [hep-ph].

Summary

- It is of fundamental importance to test the Majorana nature of ν 's.
- Type I See-saw:
 - τ , K, D, B rare decays sensitive to


140 MeV < m_4 < 5 GeV, $10^{-9} < |V_{\ell 4}|^2 < 10^{-2}$;

- LHC sensitive: 10 GeV < m_4 < 400 GeV, $10^{-6} < |V_{\mu4}|^2 < 10^{-2}$.
- May be helped with B-L Z'.
- Type II See-saw: for a scalar triplet $\Phi^{\pm\pm}$
 - LHC sensitive: $M_{\phi} \sim 600 1000 \text{ GeV} \ (\ell^{\pm} \ell^{\pm} \text{ or } W^{\pm} W^{\pm}).$
 - Distinguish Normal/Inverted Hierarchy; Probe Majorana phases.
 - With $W'^{\pm} \rightarrow N\ell^{\pm}$, reach $M_N < M_{W'} \sim 4-5$ TeV.
- Type III See-saw: for a lepton triplet T^{\pm} , T^{0}
 - LHC sensitive: $M_T \sim 800$ GeV.
 - Also distinguish Normal/Inverted Hierarchy.

The See-saw models for m_{ν} may be the best playground for synergies among the frontiers: intensity, energy and astrophysics/cosmology.

LAST, NOT LEAST Many Thanks to the organizers:

F. Ferroni
C. Leonidopoulos
F. Nesti
G. Raffelt
G. Senjanovic
F. Vissani

It has been a lot of fun!

SPECIAL THANKS TO GORAN!

Best wishes to your new endeavor!