

ROYAL INSTITUTE OF TECHNOLOGY

Leptonic CP Violation in Neutrino Oscillations

Shun Zhou

KTH Royal Institute of Technology, Stockholm

Based on T. Ohlsson, H. Zhang and S.Z., Phys. Rev. D 87 (2013) 013012; Phys. Rev. D 87 (2013) 053006; Phys. Rev. D 88 (2013) 013001.

From Majorana to LHC: Workshop on the Origin of Neutrino Mass

ICTP, Trieste, Oct. 2 - 5, 2013

Outline

- Introduction
- RG running of Dirac CP-violating phase
- Leptonic CP violation in v oscillations
- NSI Effects @ IceCube (DeepCore & PINGU)
- Summary

Open Questions in v Physics

• Are neutrinos Dirac or Majorana particles?

Lepton number violation, neutrinoless double beta decays

- What is the neutrino mass hierarchy? Normal $(m_1 < m_2 < m_3)$ or inverted $(m_3 < m_1 < m_2)$?
- What is the absolute neutrino mass scale?

Is the lightest v massless? Hierarchical or degenerate?

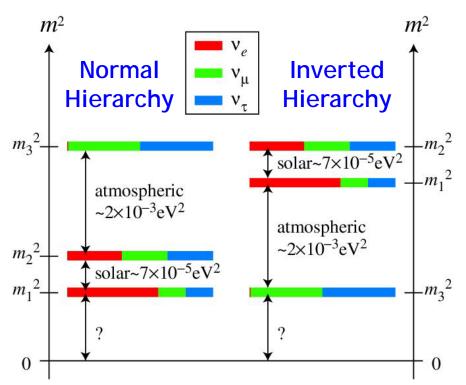
- What is the origin of neutrino masses and flavor mixing? Seesaw mechanisms, flavor symmetries, ...
- Is there CP violation in the lepton sector?

What is the value of the Dirac CP-violating phase δ ?

Current Status

ROYAL INSTITUTE OF TECHNOLOGY

Precision measurements of neutrino parameters:


$$U = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
Global-fit analyses:
Forero *et al.*, Phys. Rev. D
86 (2012) 073012
Fogli *et al.*, Phys. Rev. D
86 (2012) 013012

		ctor / erator	Solar / Reactor	Gonzalez-Garc JHEP 1212 (20	,
		bfp $\pm 1\sigma$			3σ range
$\sin^2 \theta_{12}$		0.30 ± 0.013	Pascoli & Schw	etz	$0.27 \rightarrow 0.34$
$ heta_{12}/^{\circ}$		33.3 ± 0.8	Adv. HEP, 2013		$31 \rightarrow 36$
$\sin^2\theta_{23}$		$0.41^{+0.037}_{-0.025} \oplus 0.59$	+0.021 -0.022		$0.34 \rightarrow 0.67$
$\theta_{23}/^{\circ}$		$40.0^{+2.1}_{-1.5} \oplus 50.4$	+1.2 -1.3		$36 \rightarrow 55$
$\sin^2 \theta_{13}$		0.023 ± 0.002	23		$0.016 \ \rightarrow \ 0.030$
$\theta_{13}/^{\circ}$		$8.6^{+0.44}_{-0.46}$			$7.2 \rightarrow 9.5$
$\delta/^{\circ}$	Leptonic CP violation?	300^{+66}_{-138}			$0 \rightarrow 360$
$\Delta m_{21}^2 / 10^{-5} \mathrm{eV}^2$		7.50 ± 0.185	5		$7.00 \rightarrow 8.09$
$\Delta m_{31}^2 / 10^{-3} \mathrm{eV}^2$ (NH)		$2.47^{+0.069}_{-0.067}$	Neutrino mass	hierarchv2	$2.27 \rightarrow 2.69$
$\Delta m_{32}^2 / 10^{-3} \mathrm{eV}^2$ (IH)		$-2.43^{+0.042}_{-0.065}$			$-2.65 \rightarrow -2.24$

Neutrino Mass Hierarchy

ROYAL INSTITUTE OF TECHNOLOGY

- Medium-baseline reactor experiments: JUNO, RENO-50

- Long-baseline accelerator experiments: T2K, NOvA, LBNO, LBNE
- Huge neutrino telescopes: PINGU, ORCA

Leptonic CP Violation

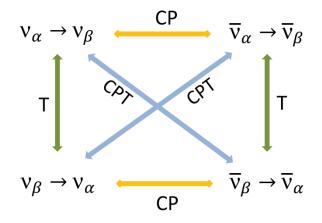
Gonzalez-Garcia et al.

Branco et al., Rev. Mod.

Forero et al.

Phys. 84 (2012) 515

ROYAL INSTITUTE OF TECHNOLOGY


Parameter

Neutrino oscillations in vacuum:

$$A_{\alpha\beta}^{\rm CP} \equiv P(\nu_{\alpha} \rightarrow \nu_{\beta}) - P(\overline{\nu}_{\alpha} \rightarrow \overline{\nu}_{\beta})$$

Fogli et al.

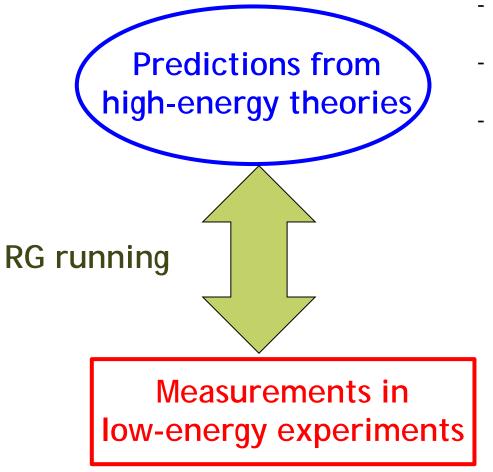
$$=16\underbrace{s_{12}c_{12}s_{23}c_{23}s_{13}c_{13}^{2}\sin\delta}_{I:\text{ Jarlskog Invariant}}\sin\frac{\Delta m_{21}^{2}L}{4E}\sin\frac{\Delta m_{32}^{2}L}{4E}\sin\frac{\Delta m_{31}^{2}L}{4E}$$

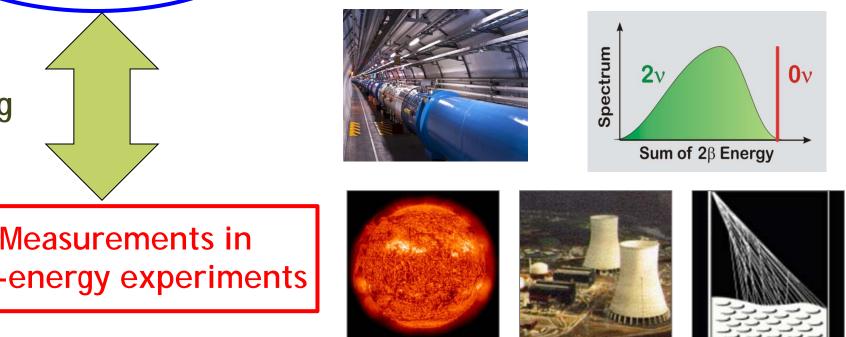
- First hint from global fits?

	J		
$\sin^2\theta_{12}$	0.307	0.300	0.320
$\delta m \theta_{12}$	0.291-0.325	0.287-0.313	0.303-0.336
$\sin^2\theta_{13}$	0.0241	0.0230	0.0246
$\sin^2\theta_{13}$	0.0216-0.0266	0.0207-0.0253	0.0218-0.0275
$ain^2 0$	0.386	0.410	0.427
$\sin^2\theta_{23}$	0.365-0.410	0.385-0.447	0.400-0.461
$\Lambda = \frac{2}{10^{-5}} \sqrt{2}$	7.54	7.50	7.62
$\Delta m_{21}^2 / 10^{-5} \text{ eV}^2$	7.32-7.80	7.32–7.69	7.43-7.81
$\Lambda = \frac{2}{10^{-3}} \cdot \frac{10^{-3}}{10^{-3}}$	2.51	2.47	2.55
$\Delta m_{31}^2 / 10^{-3} \text{ eV}^2$	2.41-2.57	2.40-2.54	2.46-2.61
S/	1.08	1.67	0.8
δ/π	0.77-1.36	0.90-2.03	0–2.0

- Predictions from theories
- Compare between theory
 & exp. observation of δ:
 Radiative corrections

- Optimize the exp. setup: CP measures, v-oscillogram


- E.g., NSI effects in the ice


RG Running of Neutrino Parameters

ROYAL INSTITUTE OF TECHNOLOGY

Why is RG running important?

- Grand Unified Theories: SU(5), SO(10), ...
- Extra-dimensional models: ADD, UED, ...
- Flavor symmetry models: A₄, S₄, ...

RG Running of Neutrino Parameters

The SM as an effective theory: dimension-5 operator Weinber 43 (1970

Weinberg, Phys. Rev. Lett. 43 (1979) 1566

 $\mathcal{L}_{\nu} = \frac{1}{2} (\overline{\ell} H) \cdot \kappa \cdot (H^{T} \ell^{C})$ $[\Lambda]^{-1} : \text{high energy scale } \Lambda$

Renormalization Group Equation:

$$16\pi^2 \frac{\mathrm{d}\kappa}{\mathrm{d}t} = \alpha_{\kappa} + C_{\kappa} [(Y_l Y_l^{\dagger})\kappa + \kappa (Y_l Y_l^{\dagger})^T]$$

$$t = \ln\left(\frac{\mu}{\Lambda_{\rm EW}}\right) \qquad C_{\kappa} = -\frac{3}{2}$$
$$\alpha_{\kappa} = -3g_2^2 + \lambda + 2\mathrm{tr}\left[3\left(Y_{\rm u}Y_{\rm u}^+\right) + 3\left(Y_{\rm d}Y_{\rm d}^+\right) + \left(Y_{l}Y_{l}^+\right)\right]$$

Majorana neutrino mass matrix:

$$M_{\nu} = \kappa v^2$$

Masses, mixing angles, and leptonic CP-violating phases

Babu *et al.*, Phys. Lett. B 319 (1993) 191; Chankowski & Pluciennik, ibid., 316 (1993) 312

Antusch *et al.*, Phys. Lett. B 519 (2001) 238

- Realized in various seesaw models

- Running of masses is dominated by the flavor-diagonal term (gauge, quark Yuk.)

- RG running of mixing angles and CPviolating phases is dominated by charged-lepton Yukawa couplings

MSSM and 5D-UED

ROYAL INSTITUTE OF TECHNOLOGY

Extensions of the SM: supersymmetry and extra dimensions

$$L_{\nu} = \frac{1}{2} L H_{u} \cdot \kappa \cdot L H_{u}$$

- v mass matrix:
- $M_v = \kappa (v \sin \beta)^2$

RGE coefficients:

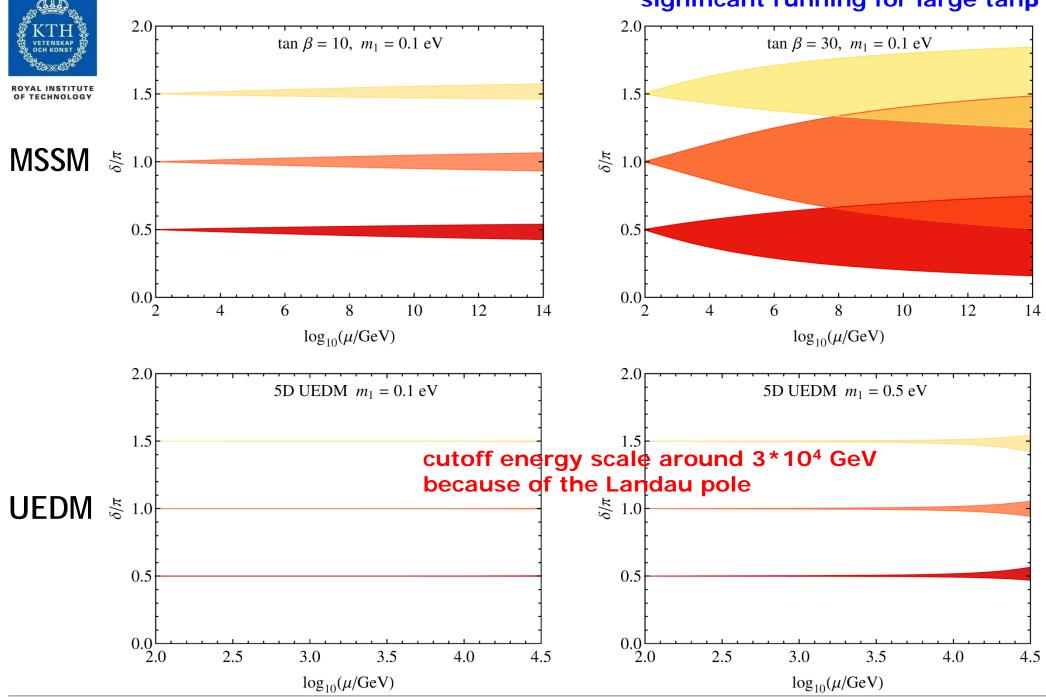
 $C_{\kappa}^{\mathrm{MSSM}} = 1$

Tau Yukawa coupling dominated:

$$y_{\tau}^2 = m_{\tau}^2 (1 + \tan^2 \beta) / v^2$$

$$L_{\nu} = \frac{1}{2} LH \cdot \hat{\kappa} \cdot LH$$

v mass matrix: $M_{\nu} = \hat{\kappa} v^2 / (\hat{\kappa})$ radius of the extra spatial dimension RGE coefficients: $C_{\kappa}^{\text{UED}} = C_{\kappa}^{\text{SM}} (1 - s)$ number of excited KK modes Coefficient becomes larger at higher- $s \equiv \left\lfloor \frac{\mu}{\mu_0} \right\rfloor$


RG Running of Dirac CP-violating Phase

ROYAL INSTITUTE OF TECHNOLOGY

In the standard parametrization:

- Keep all contributions of the same order.
- RG running depends crucially on the Majorana CP-violating phases; insignificant running for $\rho = \sigma$.
- RG running is in the opposite direction for the MSSM, compared to the SM and 5D-UED.

significant running for large $tan\beta$

Summary for RG Running of $\boldsymbol{\delta}$

The RGE of the leptonic Dirac CP-violating phase is derived, and small contributions of the same order are included.

Very tiny RG running effects in the SM, even for nearly-degenerate neutrino masses

> No significant RG running also in the MSSM and 5-UED, except for a very large tan β in the former case; however, note the dependence on the Majorana phases

> Non-zero δ can be radiatively generated at the low-energy scale even if $\delta = 0$ holds at a high-energy scale.

➢ For Dirac neutrinos, RG running is even smaller because of the absence of Majorana CP-violating phases.

> Constraints on δ from neutrino oscillation experiments can be directly applied to theory at a superhigh-energy scale.

CP Violation and Matter Effects

ROYAL INSTITUTE OF TECHNOLOGY

Neutrino oscillations in matter:

$$H_{\rm eff} = \frac{1}{2E} \begin{bmatrix} U \begin{pmatrix} 0 & & & \\ & \Delta m_{21}^2 & \\ & & \Delta m_{31}^2 \end{pmatrix} U^+ + 2\sqrt{2}G_{\rm F}N_eE \begin{pmatrix} 1 & & \\ & 0 & \\ & & 0 \end{pmatrix} \end{bmatrix}$$

Oscillation probabilities:

Kimura *et al.*, Phys. Lett. B 537 (2012) 86

 $P_{\mu e}(\delta) \equiv P(v_{\mu} \to v_{e}) = a \cos \delta + b \sin \delta + c$ $\overline{P}_{\mu e}(\delta) \equiv P(\overline{v}_{\mu} \to \overline{v}_{e}) = \overline{a} \cos \delta + \overline{b} \sin \delta + \overline{c} \} \Rightarrow A_{\mu e}^{CP}(\delta) = \Delta a \cos \delta + \Delta b \sin \delta + \Delta c$

- Fake CP violation is induced by matter effects:
 - obscuring the intrinsic CP-violating effects by ${oldsymbol \delta}$
- How to describe leptonic CP violation?
 - working observables based on oscillation probabilities

Working Observables

ROYAL INSTITUTE OF TECHNOLOGY

Series expansions of the probabilities in terms of $\alpha = \Delta m_{21}^2 / \Delta m_{31}^2$ and s_{13} :

$$\begin{aligned} a &\approx +8\alpha J_r \frac{\sin A\Delta}{A} \frac{\sin (A-1)\Delta}{A-1} \cos \Delta \\ b &\approx -8\alpha J_r \frac{\sin A\Delta}{A} \frac{\sin (A-1)\Delta}{A-1} \sin \Delta \\ c &\approx 4s_{13}^2 s_{23}^2 \frac{\sin^2 (A-1)\Delta}{(A-1)^2} \\ J_r &\equiv s_{12}c_{12}s_{23}c_{23}s_{13}c_{13}^2 \end{aligned} \qquad \begin{aligned} \Delta a &\approx +8\alpha J_r \Theta_- \frac{\sin A\Delta}{A} \cos \Delta \\ \Delta b &\approx -8\alpha J_r \Theta_+ \frac{\sin A\Delta}{A} \sin \Delta \\ \Delta b &\approx -8\alpha J_r \Theta_+ \frac{\sin A\Delta}{A} \sin \Delta \\ \Delta c &\approx 4s_{13}^2 s_{23}^2 \Theta_+ \Theta_- \\ \Theta_{\pm} &\equiv \frac{\sin (A-1)\Delta}{A-1} \pm \frac{\sin (A+1)\Delta}{A+1} \end{aligned}$$

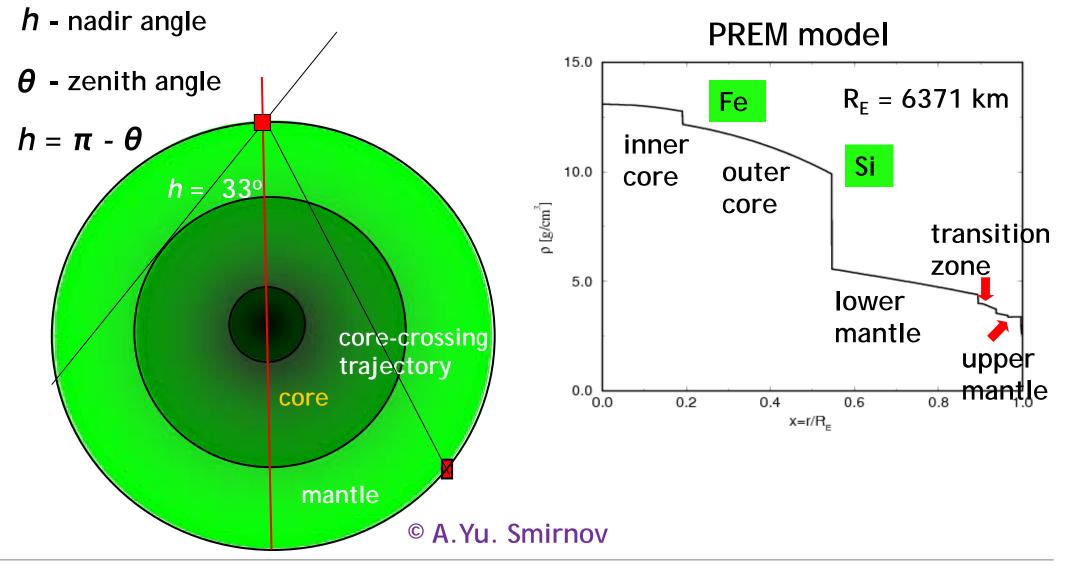
Here $\Delta = \Delta m_{31}^2 L/4E$ and $A = VL/2\Delta$, with V being the matter potential, Δ the oscillation phase, and L the distance between the source and the detector.

$$\Delta P_{\mu e}^{\rm CP}(\delta) \& \Delta P_{\mu e}^{\rm m} \qquad \Delta A_{\mu e}^{\rm CP}(\delta) \& \Delta A_{\mu e}^{\rm m}$$

Definitions:

 $\Delta P_{\mu e}^{\rm CP}(\delta) \equiv P_{\mu e}(\delta) - P_{\mu e}(\delta = 0)$

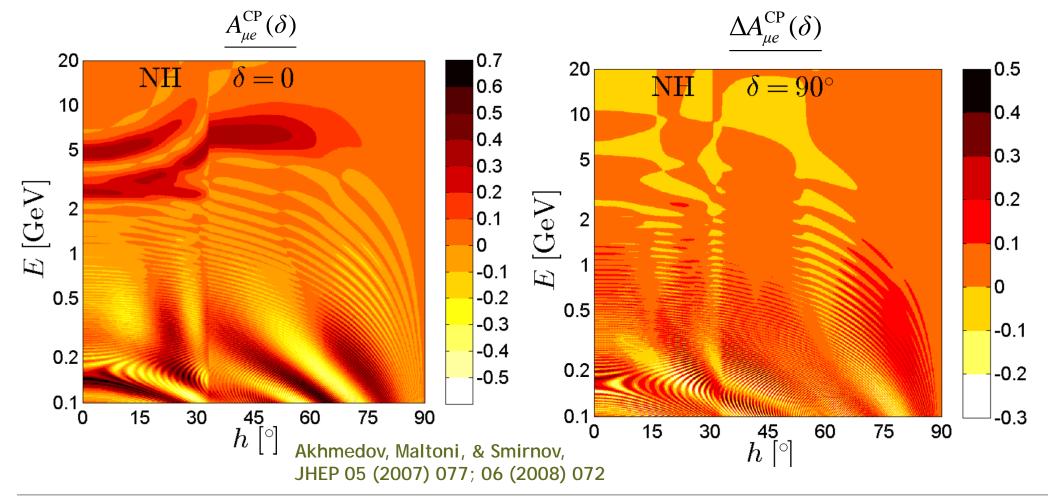
 $\Delta P_{\mu e}^{\rm m} \equiv \max \left[P_{\mu e}(\delta) \right] - \min \left[P_{\mu e}(\delta) \right]$


Definitions:

$$\Delta A_{\mu e}^{\rm CP}(\delta) \equiv A_{\mu e}^{\rm CP}(\delta) - A_{\mu e}^{\rm CP}(\delta = 0)$$
$$\Delta A_{\mu e}^{\rm m} \equiv \max \left[A_{\mu e}^{\rm CP}(\delta) \right] - \min \left[A_{\mu e}^{\rm CP}(\delta) \right]$$

Neutrino Oscillograms of the Earth

ROYAL INSTITUTE OF TECHNOLOGY

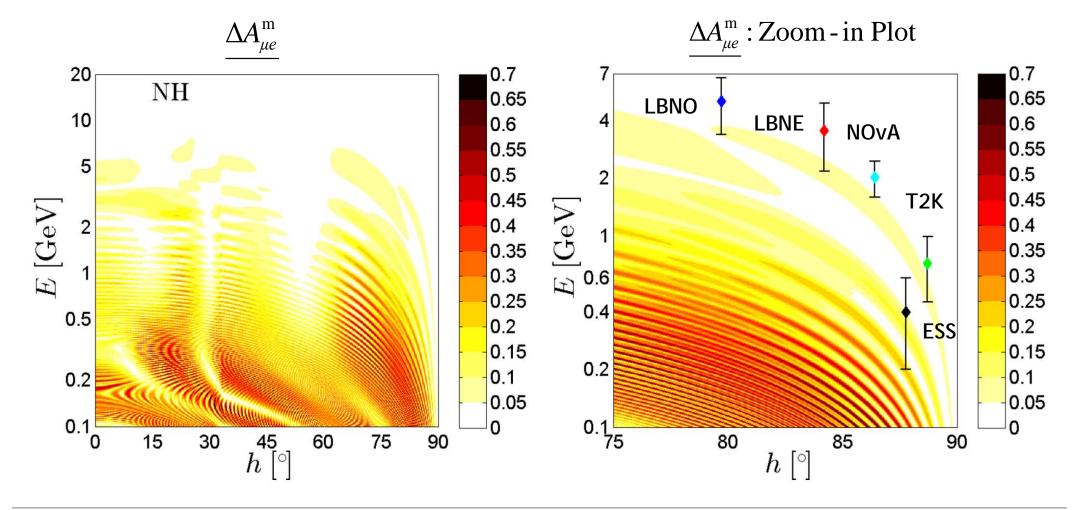


Oscillograms for CP Violation

ROYAL INSTITUTE OF TECHNOLOGY

Conventional CP asymmetry

Working observable



Oscillograms for CP Violation

ROYAL INSTITUTE OF TECHNOLOGY

Working observable

Locating future experiments

Non-Standard Neutrino Interactions

ROYAL INSTITUTE OF TECHNOLOGY

Neutrino oscillations in matter with NSIs:

For a review, Ohlsson, Rept. Prog. Phys. 76 (2013) 044201

$$H_{\rm eff} = \frac{1}{2E} \left\{ U \begin{pmatrix} 0 & & \\ & \Delta m_{21}^2 & \\ & & \Delta m_{31}^2 \end{pmatrix} U^+ + 2\sqrt{2}G_{\rm F}N_eE \begin{bmatrix} \begin{pmatrix} 1 & & \\ & 0 & \\ & & 0 \end{pmatrix} + \begin{pmatrix} \mathcal{E}_{ee} & \mathcal{E}_{e\mu} & \mathcal{E}_{e\tau} \\ \mathcal{E}_{e\mu}^* & \mathcal{E}_{\mu\tau} & \mathcal{E}_{\mu\tau} \\ \mathcal{E}_{e\tau}^* & \mathcal{E}_{\mu\tau}^* & \mathcal{E}_{\tau\tau} \end{pmatrix} \right\}$$

Oscillation probability with NSIs:

$$P_{\mu\mu}^{\text{NSI}} \simeq P_{\mu\mu}^{\text{SD}} - |\varepsilon_{\mu\tau}| c_{\phi_{\mu\tau}} \left(s_{2\times23}^3 A \Delta \sin \Delta + 4s_{2\times23} c_{2\times23}^2 A \sin^2 \frac{\Delta}{2} \right)$$
$$+ \left(|\varepsilon_{\mu\mu}| - |\varepsilon_{\tau\tau}| \right) s_{2\times23}^2 c_{2\times23} \left(\frac{A\Delta}{2} \sin \Delta - 2A \sin^2 \frac{\Delta}{2} \right)$$

- Deviation from the std. probability; only mu-tau flavors are involved
- Not suppressed by mixing angle θ_{13} or the mass ratio $\Delta m_{21}^2 / \Delta m_{31}^2$

Neutrino Parameter Mappings

ROYAL INSTITUTE OF TECHNOLOGY

Leptonic mixing matrix elements in matter:

$$\begin{split} U_{e3}^{\rm m} &= \sin\hat{\theta}_{13} + \frac{\cos\hat{\theta}_{13}}{2\hat{C}} \left\{ \sin 2\hat{\theta}_{13} \left[\alpha s_{12}^2 + A(\varepsilon_{ee} - \tilde{\varepsilon}_{\tau\tau}) \right] + 2A \left[\cos 2\hat{\theta}_{13} \operatorname{Re}(\tilde{\varepsilon}_{e\tau}) + i\operatorname{Im}(\tilde{\varepsilon}_{e\tau}) \right] \right\} \\ U_{e2}^{\rm m} &= -\frac{c_{13}}{2A} \alpha \sin 2\theta_{12} - \tilde{\varepsilon}_{e\mu} + \frac{\tan\theta_{13}}{A} \tilde{\varepsilon}_{\mu\tau}^* , \\ U_{\mu3}^{\rm m} &= s_{23} \cos\hat{\theta}_{13} e^{\mathrm{i}\delta} \left\{ 1 - \frac{A \tan\hat{\theta}_{13}}{\hat{C}} \left[\cos 2\hat{\theta}_{13} \operatorname{Re}(\tilde{\varepsilon}_{e\tau}) + i\operatorname{Im}(\tilde{\varepsilon}_{e\tau}) \right] \right\} + \frac{\alpha c_{23} \sin 2\theta_{12} \sin\hat{\theta}_{13}}{1 + A + \hat{C}} , \end{split}$$

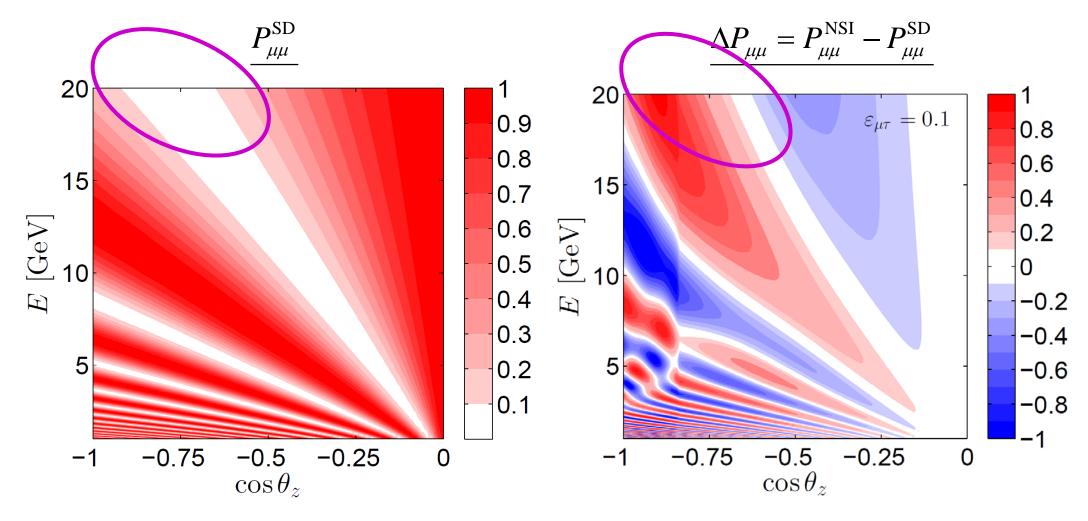
Modified NSI parameters:

 $\tilde{\varepsilon} = \varepsilon c_{\alpha\alpha} - \varepsilon s_{\alpha\alpha}$

Modified mixing angle:

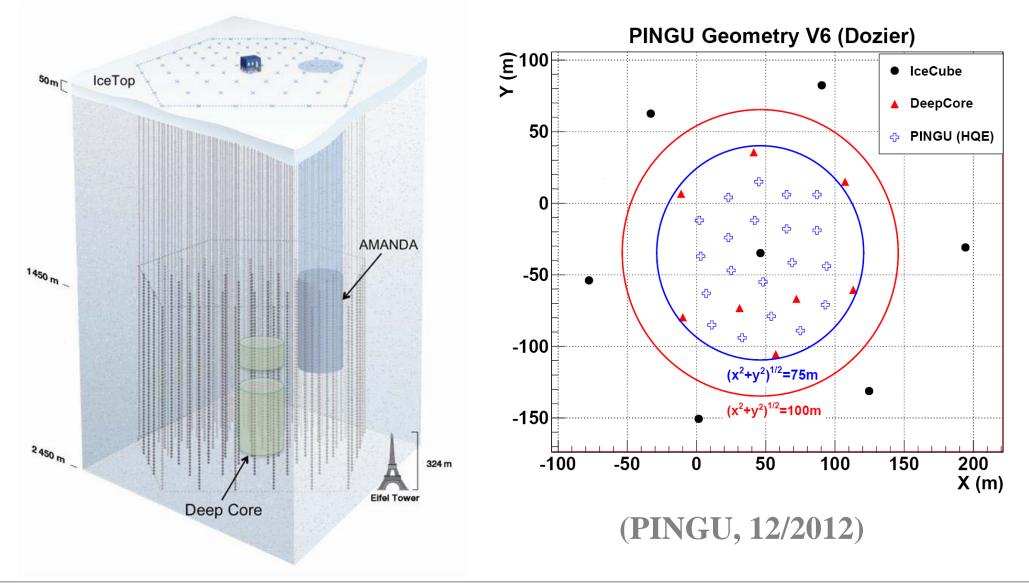
$$\begin{split} \tilde{\varepsilon}_{e\mu} &= \varepsilon_{e\mu} \varepsilon_{23} - \varepsilon_{e\tau} \varepsilon_{23} ,\\ \tilde{\varepsilon}_{e\tau} &= (\varepsilon_{e\mu} s_{23} + \varepsilon_{e\tau} c_{23}) e^{i\delta} ,\\ \tilde{\varepsilon}_{\mu\mu} &= (\varepsilon_{\mu\mu} c_{23}^2 + \varepsilon_{\tau\tau} s_{23}^2) - 2s_{23} c_{23} \text{Re}[\varepsilon_{\mu\tau}] ,\\ \tilde{\varepsilon}_{\tau\tau} &= (\varepsilon_{\mu\mu} s_{23}^2 + \varepsilon_{\tau\tau} c_{23}^2) + 2s_{23} c_{23} \text{Re}[\varepsilon_{\mu\tau}] ,\\ \tilde{\varepsilon}_{\mu\tau} &= \left[(\varepsilon_{\mu\tau} c_{23}^2 - \varepsilon_{\mu\tau}^* s_{23}^2) + (\varepsilon_{\mu\mu} - \varepsilon_{\tau\tau}) s_{23} c_{23} \right] e^{i\delta} \end{split}$$

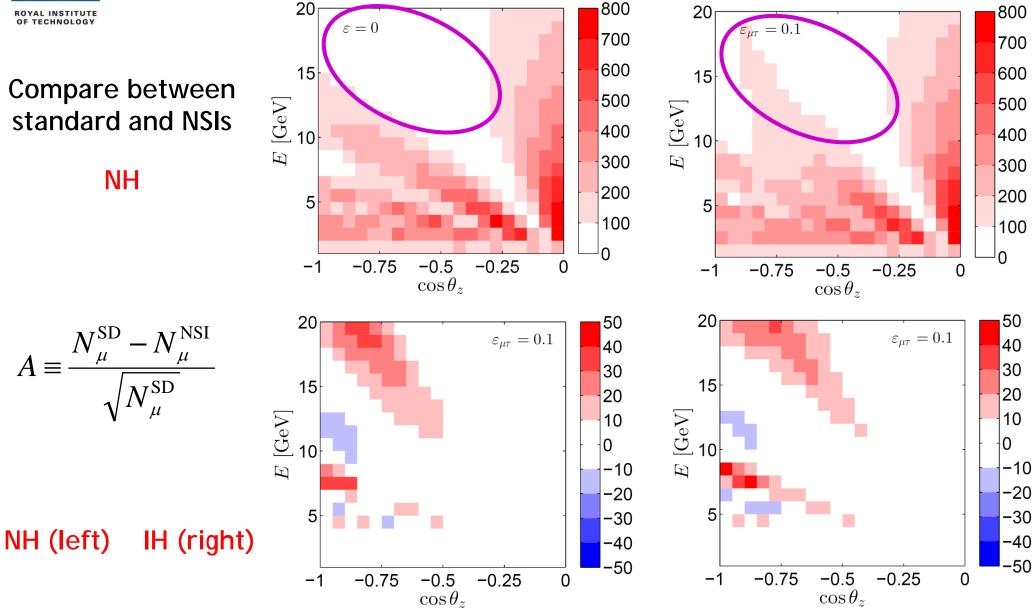
$$\sin^2 \hat{\theta}_{13} = \frac{\hat{C} - \cos 2\theta_{13} + A}{2\hat{C}}$$


$$\hat{C} = \sqrt{(\cos 2\theta_{13} - A)^2 + \sin^2 2\theta_{13}}$$

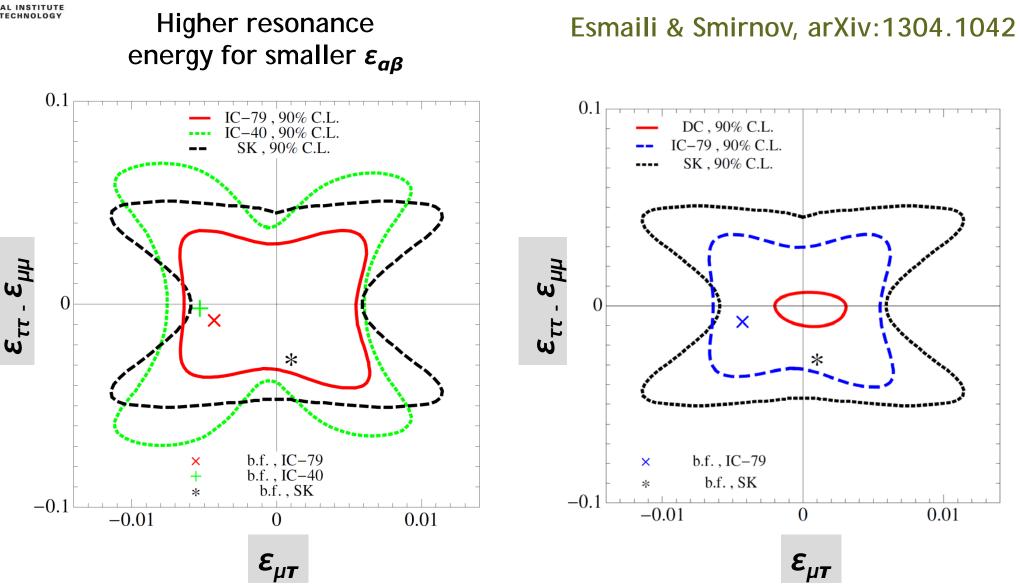
Oscillation Probabilities with NSIs

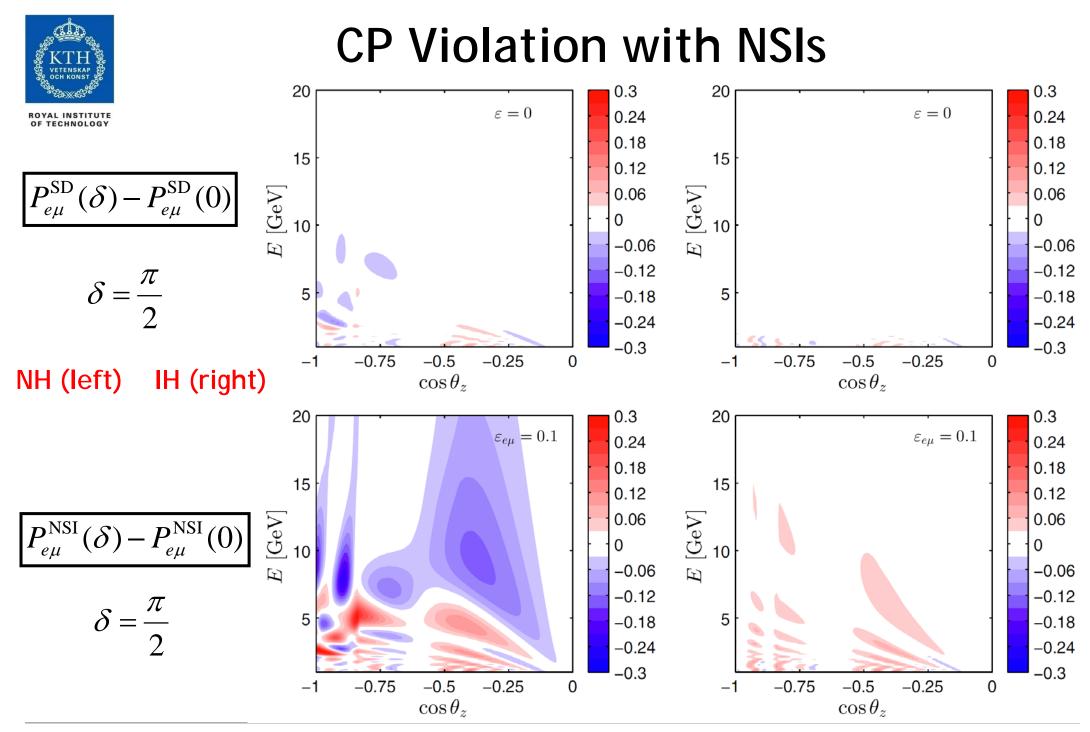
ROYAL INSTITUTE OF TECHNOLOGY


Significant deviation in the high-energy range:


IceCube (DeepCore and PINGU)

ROYAL INSTITUTE OF TECHNOLOGY


Number of Events @ PINGU



Sensitivity @ IceCube (DeepCore)

ROYAL INSTITUTE OF TECHNOLOGY

Summary

> Future neutrino oscillation experiments aim to determine the neutrino mass ordering and measure the Dirac CP-violating phase.

➢ Usually theoretical prediction for the CP phase is given at a super-high energy scale, which should be compared with low-energy measurements. So, RG running has to be taken into account.

➤ Two new working observables have been introduced to describe intrinsic leptonic CP violation, disentangle the fake CP-violating effects, and optimize the experimental setup.

The possibility to constrain NSIs has been investigated at IceCube (DeepCore and PINGU).

ROYAL INSTITUTE OF TECHNOLOGY

Thanks a lot for your attention!