Cosmological neutrinos after Planck

Jan Hamann

CERN

Workshop on the Origin of Neutrino Mass — From Majorana to LHC

ICTP Trieste, 2-5 Oct 2013

Planck at a glance

Deutsches Zentrum für Luft- und Raumfahrt e.V.

planck

Planck at a glance

Table 2. Planck performance parameters determined from flight data.

			ν _{center} b [GHz]	Scanning Beam ^c		Noise ^d Sensitivity	
	Channel	$N_{ m detectors}{}^a$		FWHM [arcm]	Ellipticity		$\frac{11V11Y}{[\mu K_{CMB} s^{1/2}]}$
	30 GHz	4	28.4	33.16	1.37	145.4	148.5
LFI \	44 GHz	6	44.1	28.09	1.25	164.8	173.2
	> 70 GHz	12	70.4	13.08	1.27	133.9	151.9
	100 GHz	8	100	9.59	1.21	31.52	41.3
	143 GHz	11	143	7.18	1.04	10.38	17.4
HFI $\stackrel{\downarrow}{\prec}$	217 GHz	12	217	4.87	1.22	7.45	23.8
	353 GHz	12	353	4.7	1.2	5.52	78.8
	545 GHz	3	545	4.73	1.18	2.66	0.0259^{d}
	857 GHz	4	857	4.51	1.38	1.33	0.0259^{d}

Planck's view of the microwave sky

Planck's view of the microwave sky

Cosmological observables

What have we learnt about cosmology?

A maximally boring Universe?

No real surprises, no paradigm changes

The cosmological "standard" (ACDM) model still stands strong

Significant improvements in constraints on nearly all interesting cosmological parameters

Planck (temperature) angular power spectrum

Goodness-of-fit of ΛCDM

Table 6. Goodness-of-fit tests for the *Planck* spectra. The $\Delta \chi^2 = \chi^2 - N_\ell$ is the difference from the mean assuming the model is correct, and the last column expresses $\Delta \chi^2$ in units of the dispersion $\sqrt{2N_\ell}$.

Spectrum	ℓ_{min}	$\ell_{ ext{max}}$	χ^2	χ^2/N_ℓ	$\Delta \chi^2 / \sqrt{2N_\ell}$
100×100	50	1200	1158	1.01	0.14
143×143	50	2000	1883	0.97	-1.09
217×217	500	2500	2079	1.04	1.23
143×217	500	2500	1930	0.96	-1.13
All	50	2500	2564	1.05	1.62

Different models/data combinations: "the grid"

- Basic ΛCDM model plus eighteen different extensions
- Each of them fit with up to thirty-four combinations of Planck with external data sets
- Almost 400 pages of tables with parameter constraints
- Available online under:

```
http://www.sciops.esa.int/index.php?project=
planck&page=Planck_Legacy_Archive
```

 CMB data alone show no preference for extended models!

The ACDM model

Six cosmological parameters:

plus another 14 "nuisance" parameters for Planck data, describing

- perturbations from
 - the cosmic infrared background (4)
 - unresolved point sources (4)
 - the Sunyaev-Zeldovich effect (3)
- beam shape uncertainties (1)
- relative calibration uncertainties (2)

So what about neutrinos?

Cosmological neutrinos

Cosmic neutrino background

(decoupling at T ~ 1 MeV)

Cosmological neutrinos

Cosmic neutrino background

(decoupling at T ~ 1 MeV)

Background Evolution

a(z)

Evolution of perturbations (free streaming, anisotropic stress)

Cosmological neutrinos

Cosmic neutrino background

(decoupling at T ~ 1 MeV)

These are purely gravitational effects which do not care about "neutrinoness" at all!

Cosmological neutrinos: parameters

How much energy density do "neutrinos" contribute

at early times?

at late times?

photon Fermi-Dirac lower neutrino energy density vs. Bose-Einstein temperature
$$\rho_{\rm r} = \rho_{\gamma} \left[1 + N_{\rm eff} \frac{7}{8} \left(\frac{4}{11} \right)^{4/3} \right]$$
 radiation effective number energy density of neutrino species

Standard model/ Λ CDM: $N_{\text{eff}} = 3.046$

Cosmological neutrinos: parameters

How much energy density do "neutrinos" contribute

at early times?

at late times?

photon Fermi-Dirac lower neutrino energy density vs. Bose-Einstein temperature
$$\rho_{\rm r} = \rho_{\gamma} \left[1 + N_{\rm eff} \frac{7}{8} \left(\frac{4}{11} \right)^{4/3} \right]$$
 radiation effective number energy density of neutrino species

neutrino energy density
$$\Omega_{\nu}h^{2} \simeq \frac{\sum m_{\nu}}{93~\mathrm{eV}}$$
 sum of neutrino

masses

Standard model/ Λ CDM: $N_{\text{eff}} = 3.046$ Λ CDM: $\Sigma m_{_{V}} = 0.06 \text{ eV}$

- Parameters must be inferred from CMB power spectrum
- Adding parameters often introduces parameter degeneracies
- To understand degeneracy directions, look at parameter combinations that leave broad features of the spectrum unchanged

[e.g., Bashinsky & Seljak 2003; Lesgourgues et al. 2013; Archidiacono et al. 2013]

via early ISW effect related to redshift of matter-radiation equality

$$1+z_{
m eq}=rac{\omega_{
m m}}{\omega_{\gamma}}\,rac{1}{1+0.2271N_{
m eff}}$$

Matter density

Photon energy density

$$\theta_{\rm d} \equiv r_d(z_\star)/D_{\rm A}(z_\star)$$

Accidental approximate degeneracy with $n_s!$

Photon diffusion scale

Neutrino parameters: main degeneracy directions

Increasing N_{eff} ...

- increases ω_m
- increases H₀
- increases n_s

Increasing ∑m_v ...

- does not affect ω_m much
- decreases H₀
- decreases n_s

Why are non-CMB data sets important?

- In Λ CDM, these three observables essentially depend only on $\omega_{\rm m}$, $H_{\rm 0}$ and $n_{\rm s}$
- In extended models, often a dependence on a fourth parameter (e.g., neutrino mass, number of neutrinos, curvature, etc.) → unconstrained direction
- External data (BAO, clusters, HST, lensing) can break degeneracy

Constraints from Planck temperature + WMAP large scale polarisation (+ ACT/SPT small scale temperature) (+ Baryon Acoustic Oscillation) data

Neutrino mass constraints

	Planck+WP		Planck+WP+BAO		Planck+WP+highL		Planck+WP+highL+BAO	
Parameter	Best fit	95% limits	Best fit	95% limits	Best fit	95% limits	Best fit	95% limits
Σm_{ν} [eV]	0.022	< 0.933	0.002	< 0.247	0.023	< 0.663	0.000	< 0.230

No evidence for neutrino masses

Effective number of neutrino species

	Planck+WP		Planck+WP+BAO		Planck+WP+highL		Planck+WP+highL+BAO	
Parameter	Best fit	95% limits	Best fit	95% limits	Best fit	95% limits	Best fit	95% limits
<i>N</i> _{eff}	3.08	3.51 ^{+0.80} _{-0.74}	3.08	$3.40^{+0.59}_{-0.57}$	3.23	3.36+0.68 -0.64	3.22	$3.30^{+0.54}_{-0.51}$

No evidence for extra ("dark") radiation, but overwhelming evidence for existence of "neutrino" background

[Planck 2013 results XVI]

Consistency with BBN and primordial element abundances

Discrepancies (?)

Local measurements of the Hubble parameter

In ACDM, CMB seems to prefer too small Values of the Hubble parameter?

Discrepancies (?)

rms amplitude of

• Cluster counts: matter perturbation at scale of 8 h-1 Mpc

$$\sigma_8 (\Omega_{\rm m}/0.27)^{0.3} = 0.782 \pm 0.010$$

$$\sigma_8 (\Omega_{\rm m}/0.27)^{0.3} = 0.869 \pm 0.023$$

Planck clusters + X-ray

CMB

Galaxy shear measurements:

$$\sigma_8 \left(\Omega_{\rm m}/0.27\right)^{0.46} = 0.774 \pm 0.040$$
 CFHTLenS

$$\sigma_8 \left(\Omega_{\rm m}/0.27\right)^{0.46} = 0.891 \pm 0.031$$
 CMB

In \(\Lambda\text{CDM}\), CMB seems to have a preference for too much power on small scales?

Consistency with other data sets

- Parameter discrepancies could imply underestimated systematical uncertainties or bias in either data set
- Parameters are not directly measured, but rather inferred from the data
 - → Discrepancy is model-dependent!
- Are we perhaps looking at the wrong model?
- If so, what model could resolve the discrepancies?

Look at degeneracies

Extra radiation can enhance H_0

Hot dark matter can suppress σ_8

Sterile neutrinos as a solution?

- Consider standard active neutrinos plus additional light particles (could be, e.g., sterile neutrinos)
- Characterised by two parameters:
 - Energy density when relativistic: $\Delta N_{\text{eff}} = N_{\text{eff}} 3.046$
 - Energy density today: $m_{\nu, \text{ sterile}}^{\text{eff}} \equiv (94.1\omega_{\nu, \text{ sterile}}) \,\text{eV}$

effective mass is equal to physical mass if $\Delta N_{\rm eff} = 1$

Table 2. Best fit effective χ^2 for various combinations of data sets in the vanilla (v) and sterile (s) models: total and individual contributions.

Data	$-2 \ln \mathcal{L}_{ ext{max}}^{ ext{tot}}$	$-2 \ln \mathcal{L}_{ ext{max}}^{ ext{CMB}}$	$-2 \ln \mathcal{L}_{ ext{max}}^{ ext{HST}}$	$-2 \ln \mathcal{L}_{ ext{max}}^{ ext{C}}$	$-2 \ln \mathcal{L}_{ ext{max}}^{ ext{BAO}}$	$-2 \ln \mathcal{L}_{ m max}^{ m WL}$	Model
CMB	9802.5	9802.5	_	_	_	_	v
	9802.3	9802.3	_	_		_	S
CMB+HST	9808.4	9803.6	4.8	_	_	_	v
CMD+H51	9803.2	9802.4	0.8	_	_	_	S
CMB+C	9818.1	9815.3	_	2.8	_	_	v
CMD+C	9806.5	9806.3	_	0.1	_	_	S
CMB+BAO	9804.1	9802.7	_	_	1.4	_	v
	9804.0	9802.3	_	_	1.8	_	S
CMB+WL	9808.5	9804.2	_	_	_	4.3	v
	9806.4	9804.5	_	_	_	1.9	S
CMB+all	√ 9825.2	9811.3	2.0	4.6	6.7	0.6	v
	9812.0	9807.4	2.2	0.2	1.7	0.5	S

No serious discrepancy remaining

→ can combine data sets

$$\Delta \chi^2_{\rm eff} = 13.2$$

Hints for a hot dark matter component? (assumption: non-CMB data can be trusted!)

[Wyman, Rudd, Vanderveld & Hu 2013]

[Battye & Moss 2013]

Conclusions

- Planck has delivered an exquisite measurement of the CMB temperature anisotropies, extracting close to the maximum achievable amount of information from this observable
- The ΛCDM model continues to provide an overall very good description of CMB data
- Some discrepancies with non-CMB cosmological data: unknown systematics or sign of new physics?
- Possible to resolve discrepancies with an additional hot dark matter component. Could be interpreted as a light sterile neutrino, but preferred parameter region is not compatible with reactor/accelerator/gallium-preference, unless sterile production can be suppressed
- Planck full mission data (including polarisation data) will be released next year