Postseismic Deformation

Juliet Biggs, Tim Wright COMET+ ¹University of Bristol; ² University of Leeds

Postseismic motion

Coseismic slip induces stress

Causes deformation

Which mechanism?

Poro-elastic rebound

Poro-elastic rebound near the June 17 fault

Water Level Changes in Geothermal Wells

Jónsson et al., Nature, 2003

Postseismic Deformation

Denali Earthquake

USGS Press Release

3 November 2002. M_w 7.9.

340 km rupture on Denali, Susitna Glacier and Totshunda Faults.

Max. offset = 9m.

Denali Earthquake

Trans Alaska Pipeline and Richardson Highway

Denali Earthquake

Trans Alaska Pipeline

Richardson Highway

Summer 2003 (8 months) - Summer 2004 (20 months)

Biggs et al, 2009

What happens under the seismogenic layer?

Single Fault, Continuously Sliding

Shear Zone

Viscoelastic Rheology

INSAR:

- Sub-sampled (1185 pts)
- Satellite line of sight (~23° to vertical)

GPS:

- 86 sites (errors < 1cm/yr)
- East and North components
- Corrected for interseismic vel. (Elliott et al)

Postseismic Deformation

Viscosity

Stress Diffusion

- For an elastic lid over a viscous channel, we can show that the deformation at the surface obeys the diffusion equation.
- Hence solution is identical to heat flow in the oceans.

Viscoelastic Relaxation

Н

- Earthquakes are not infinitely long
- Below the elastic lid, the earth is not viscous, it is viscoelastic (it transmits elastic waves on short time scales)

upper mantle.

Origin of Asymmetry

Postseismic Deformation

Rate and State Frictional Behaviour

Upper crust (T<300°C) (a-b) < 0

- \Rightarrow velocity weakening
- \Rightarrow stick-slip behaviour
- \Rightarrow earthquakes in seismogenic zone.

- Lower crust/upper mantle
- (a-b) > 0
- \Rightarrow velocity strengthening
- \Rightarrow stable-sliding
- \Rightarrow aseismic creep in ductile shear zones.

Parkfield Earthquake

Coseismic Model drives afterslip using rate and state friction law. Solve for (a-b)

Barbot et al, 2009

Use observations to solve for appropriate (a-b) and $\rm V_{\rm o}$ parameters

3

Barbot et al, 2009

Postseismic Deformation

Postseismic Deformation

Wright et al, 2013

3 years

9 months

4 years 4 months 5 years

Postseismic Deformation

• Inferred mechanisms vary as a function of the size of the earthquake: small earthquakes do not cause deep flow Wright et

Wright et al, 2013

Postseismic Deformation

• Inferred mechanisms and timescales vary as a function of the time period of observation

Wright et al, 2013

• Inferred mechanisms and timescales vary as a function of the time period of observation

and as a function of the distance of observation

Manyi Earthquake: Ryder et al, GJI 2007; Yamasaki and Houseman, 2012

Power-law

n~3-3.5: Freed and Burgmann, Nature 2004

Laboratory experiments

$$\eta_{eff} = \frac{\sigma}{\dot{\varepsilon}} = A^{-1}\sigma^{1-n}d^m f_{H_2O}^{-r} \exp\left(\frac{Q+pV}{RT}\right)$$

"Effective viscosity"

- Occurs when dislocation lines move through the crystal lattice
- Plane along which the movement takes place is called a glide plane
- Strain rate is dependent on (stress)ⁿ, hence sometimes called "power-law creep"

[Cartoon from http://ijolite.geology.uiuc.edu/07fallclass/geo411/Ductile/ductile.html]

Viscous flow by *power-law creep*

Diffusion Creep

vacancy		interstitial			substitution			
ø	۰	0	0	۰	۰	0	•	ь
0		0	٥	0	٥	0	•	•
٥	٥	0	•	۰ ،	•	٥	~	•

• Point defects come in three basic forms:

(i) <u>Vacancies</u> (where an atom is missing from the lattice, leaving a hole)

(ii) Interstitial defects (where an extra atom is inserted into the lattice)

(iii) Substitutional defects (where a different atom replaces what should be there,

inducing strain in the crystal lattice)

- Defects move through crystal by diffusion thermally activated process.
- Linearly dependent on stress, but grain size is important

[Cartoon from http://ijolite.geology.uiuc.edu/07fallclass/geo411/Ductile/ductile.html]

Viscous flow by diffusion creep

High stress or large grain size -> dislocation creep (power-law) Low stress or small grain size -> diffusion creep (Maxwell) Wet rocks weaker than dry rocks

Strain rates 10⁻¹² s⁻¹; Burgmann and Dresen, Ann Rev 2008

Spatial variations

Another way to achieve multiple timescales is with spatially different material properties

Lateral Variations in Properties:

- Shear heating
- 'Weak zone' (e.g. smaller grain size).

Vertical Variations in Properties:

 Temperature dependence with depth => vertical viscosity gradient

Summary of Observations

Transient deformation on timescales of years to decades occurs after most earthquakes > M6

Four primary mechanisms: 1) poroelastic rebound, 2) afterslip, 3) lower crustal viscoelasticity, 4) upper mantle flow viscoelasticity operate under different circumstances.

Maxwell viscoelasticity of a single layer cannot match postseismic observations at all time periods. Requires, power-law rheology, responses of multiple layers, depthdependence or lateral variations.