

ICTP SAR Workshop | Trieste | 3rd Sept 13

ma

Intellat

Landslides and InSAR: Breakthroughs and recent developments

Andy Singleton, Zhenhong Li, Peng Liu, Roberto Tomás School of Geographical and Earth Sciences University of Glasgow, UK

a.singleton.1@research.gla.ac.uk

How can InSAR help landslide studies?

Detection

Mapping/Measuring

Long-term monitoring -

Characterisation

How it all began...

• Fruneau *et al.,* 1996

TECTONOPHYSICS

Tectonophysics 265 (1996) 181-190

Observation and modelling of the Saint-Étienne-de-Tinée landslide using SAR interferometry

B. Fruneau, J. Achache^{*}, C. Delacourt

Département Etudes Spatiales, Institut de Physique du Globe de Paris 4, place Jussieu, 75252 Paris, France

Received 16 October 1995; accepted 11 March 1996

Abstract

Six different interferograms of the "La Clapière" landslide were derived from ERS-1 SAR images during the period Aug. 20-Sept. 4, 1991. The coherence of the associated images is shown to remain significant over most of the surface of

How it all began...

• Fruneau *et al.,* 1996

Landslide-related developments

– 1996: Fruneau *et al.*

— 1999: Rott *et al.*

- 2000: Kimura & Yamaguchi (+ SRTM)

— 2001: Ferretti *et al.*

— 2004: Hilley *et al.* Science

- 2005: Strozzi *et al.*
- 2006: Colesanti & Wasowski
- 2007: TerraSAR-X and COSMO SkyMed

- 2011: SAR sub-pixel offsets for landslides

Landslide-related developments

8

Landslide-related developments

Available online at www.sciencedirect.com

ENGINEERING GEOLOGY

www.elsevier.com/locate/enggeo

Engineering Geology 88 (2006) 173-199

Investigating landslides with space-borne Synthetic Aperture Radar (SAR) interferometry

Carlo Colesanti¹, Janusz Wasowski^{a,*}

^a CNR-IRPI, Bari, Italy

Accepted 11 September 2006 Available online 15 November 2006

IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 39, NO. 1, JANUARY 2001

Permanent Scatterers in SAR Interferometry

Alessandro Ferretti, Claudio Prati, and Fabio Rocca

Abstract—Temporal and geometrical decorrelation often prevents SAR interferometry from being an operational tool for surface deformation monitoring and topographic profile reconstruction. Moreover, atmospheric disturbances can strongly compromise the accuracy of the results. In this paper, we present a complete procedure for the identification and exploitation of stable natural reflectors or permanent scatterers (PSs) starting from long temporal series of interferometric SAR images. When, as it often happens, the dimension of the PS is smaller than the resolution cell, the coherence is good even for interferograms with baselines larger [11], [8], [26], [24]) and cannot be detected and estimated from the coherence map associated with each interferogram [2].

The main goal of this paper is the identification of image pixels, hereafter called permanent scatterers (PSs), coherent over long time intervals [3], [4]. When, as it often happens, the dimension of the PS is smaller than the resolution cell, the coherence is good even for interferograms with baselines larger than the decorrelation one [6], and all the available images of the EBS data set can be gracessfully exploited for interfero

The rise of SAR interferometry

Landslides = 275

0 50 100 150 200 250 0 23 Volcanoes = 228

Elevation = 648

0		5	0 1	00) 1	50	20	00	25	50
	0									
		3	0							
					97					
							17	6		
										250
	S	u	bsic	le	enc	e =	= (553	3	

All Databases Select a Database Web of Science					
Search Search	History Compound Marked List (0)				
All Databases					
Search					
	sar interferometry				
	Example: oil spill* mediterranean				
AND 💌	AND earthquake				
Example: oil spill* mediterranean					
AND 💌	1990-1995				

Limitations of InSAR

Detection Coherence loss Bad geometry Scale

(landcover, landslide speed, orientation, size, SAR resolution, wavelength, baseline and repeat interval)

Mapping/Measuring Atmosphere Ionosphere

> (Rate & scale of movement, SAR wavelength, landslide location)

Long-term monitoring ←

Characterisation 1-D sensitivity

InSAR TS results (Badong, China)

• Liu et al., 2013. International Journal of Applied Earth Observation and Geoinformation

Landslide Interpretations

- Tomás et al., submitted. Geophysical Journal International
- Liu et al., 2013. International Journal of Applied Earth Observation and Geoinformation

Landslide Interpretations

- Tomás et al., submitted. Geophysical Journal International
- Liu et al., 2013. International Journal of Applied Earth Observation and Geoinformation

Coherence loss and 1-D sensitivity

Problems of coherence loss

20th - 31st May 2009

28th Apr – 9th May 2009

9th – 20th May 2009

The use of corner reflectors in vegetated terrain

The use of corner reflectors in vegetated terrain

Accuracy assessment

	(111)		(111)	
TSX Spotlight (corner reflectors)	0.012	0.015	0.052	0.057
TSX Spotlight (natural reflectors)	0.466	0.522	0.662	1.122

Landslide interpretations

Vertical

Conclusions

- SAR/InSAR techniques have been successfully applied in many examples...
 - ... for the detection/delineation of previously unknown landslides.
 - ...for regular monitoring of known landslides.
- Current major limitations:
 - Temporal resolution of SAR images (not suitable for early warning systems).
 - Availability of highly reflective objects amongst dense vegetation.
- <u>Comparisons</u>:

X-band (e.g. TerraSAR-X & CSK)	L-band (e.g. ALOS 1-2)
 Shorter repeat interval 	 Higher displacement gradients
High resolution Spotlight mode	 Greater penetration of vegetation
Transmission rate affected by rain	 More affected by the ionosphere
Still alive!	Quad-Polarisation modes

Future developments...?

<u>Systems</u>

- Sentinel-1 satellite(s)
- ALOS 2
- TerraSAR-X2
- Radarsat Constellation
- Airborne SAR
- UAV SAR
- Ground-based SAR for more frequent monitoring

Techniques

- Installation of artificial reflectors for high quality repeat measurements
- Data processing advancements?
- Automated-processing of global(?), regularly acquired data

Thanks for listening

Comments / Questions?

ma

Intellat

<u>Andy Singleton</u> a.singleton.1@research.gla.ac.uk