

Adriano Nobile^{1,2,3}

C. Pagli^{3*}, D. Keir⁴, A. Ayele⁵, J. Ruch², T. J. Wright³, A. Acocella²

Outline

- Introduction
- Afar
- Dallol
 - \circ 2004 dyke intrusion
 - 2005-2010 deformation time series
- Conclusions

Volcanic system

 Magma emplacement (reservoir) and propagation (conduit, dike and sill)

 Pressurization of hydrothermal system

 Detected by: seismicity, gas emission, surface deformation

Magma can reach the surface producing an eruption or the volcanic system can return to quiescence

Introduction	Afar - Dallol	Dallol - Dyke	Dallol - Time Series	Conclusions

Why InSAR?

- measure elastic and anelastic surface deformation
- mm scale displacements
- over wide areas (spatial info, deformation maps)
- remote approach (complimentary to field analysis)

InSAR analysis of ground deformation to study the nature and behavior of magmatic systems

				-
Introduction	Afar - Dallol	Dallol - Dyke	Dallol - Time Series	Conclusions

Divergent Plate Boundary – Afar

- 3 plates diverge with non uniform velocities
- Extension and volcanism located along different magmatic segments
- Thin crust (14 km in N Afar)
- Several dyke intrusions (Asal 1978, Dabbahu 2005-2010)

Another active magmatic system along rift axis

Introduction	Afar - Dallol	Dallol - Dyke	Dallol - Time Series	Conclusions		

Dallol segment

12:40

October 2004 seismic swarm

Envisat SAR imagesAscending & descending tracks

Introduction	Afar - Dallol	Dallol - Dyke	Dallol - Time Series	Conclusions

Dallol – October 2004 Dyke intrusion model

- Joint inversion of two interferograms
- 3 deformation sources (dyke, fault, Mogi)
- Elastic half space

- Two steps inversion
- 1) Non-linear inversion to fix geometries
- 2) Linear least-square method for variable opening and slip

Introduction Afar - Dallol Dallol - Dyke Dallol - Time Series Conclusion
--

Dallol – October 2004 Dyke intrusion model

• M_w 5.6 modeled Eq.

- RMS = 2.3 cm
- Data variance 95%

Proto-volcanic system (no volcanism at the surface)

Magma induced opening of rift axis segments

Introduction	Afar - Dallol	Dallol - Dyke	Dallol - Time Series	Conclusions

Magma does the split

Dallol and other dyke intrusions along rifts

Several dyke intrusion along rifts in the last 10 years

2004 Dallol

Dallol - Time Series

- 2005-2010 Dabbahu (14)
- 2007 Lake Natron
- 2009 Harrat Lunayyir

Conclusions

Dallol and other dyke intrusions along rifts

Area	Data	МІ	Seism. Mom. (10 ¹⁷ Nm)	Geod. Mom. (10 ¹⁷ Nm)	SM/GM %	Volume (km ³)	Ref.
Dallol	Oct-Nov 2004	2.6-5.5	2.28	22.0	10.4	0.058	
	Sep 2005	1.8-5.5	25 ^a -34 ^b	800 ^c -896 ^b	3.1-3.8	1.8 ^b -2.5 ^c	a,b,c
	Jun 2006	2.5-4.7	1.80	54.4	3.3	0.120	d
	Jul 2006	2-3	0.02	32.4	0.1	0.042	d
	Sep 2006	2.6-3.4		32.0	0.1 ^a	0.088	а
	Aug 2007	<3	0.01	24.1	0.0	0.048	d
Dabbahu	Nov 2007	2.9-4.5	1.03	60.1	1.7	0.15	d
	Mar-Apr 2008	<3	0.16	37.2	0.4	0.088	d
	Jul 2008	<3	0.08	32.1	0.2	0.066	d
	Oct 2008	1.8-4.6	1.78	78.8	2.3	0.17	d
	Feb 2009	2-3.5	0.27	30.2	0.9	0.077	d
	Jun 2009	<4	0.01	18.1	0.1	0.046	d
Lake Natron	Jul-Aug 2007	3-5.9	14.00	40.0	35.0	0.09	е
Harrat Lunayyir	Apr-Jun 2009	3-5.4	2.79	44.1	6.3	0.13	f

Delleh 400/ OM due to estamisitu

High seismic moment suggests that normal border faults accomodate extension

latro du oti o p	Afer Dellal	Dellel Dyke	Dellal Time Carias	Canalysiana
Introduction	Afar - Dallol	Dallol - Dyke	Dalloi - Time Series	Conclusions

Dallol - Post dyke ground deformations

a) 081119-090128 – Track 28 (A) b) 090325-090429 – Track 321 (D)

Introduction	Afar - Dallol	Dallol - Dyke	Dallol - Time Series	Conclusions

Dallol – Mean-term deformation (2005-2010)

- Nov. 2005 Aug. 2007: A,B,C and D uplift of 0.5 - 1 cm
- Sep. 2007 Feb. 2010: D subsides ~1 cm
- Sep. 2007 Aug. 2008: A,B,C uplift/subsid
- Sep. 2008 Feb. 2010: A,B and C subside with a constant rate of ~4 cm/yr

We modeled the deformation source for the subsidence between Sep. 2008 – Feb. 2010

Dallol - Modeling Sep. 2008 – Feb. 2010

- Deformation rate map between Sep. 2008 – Feb. 2010
- Data resampling using Quadtree algorithm
- 3 different sources (Mogi, ellipsoid and sill)
- Elastic half space with Poisson's ratio 0.25

Dallol - Time Series

Shallow deformation source

Conclusions

Dallol -Modeling Sep. 2008 – Feb. 2010

Distributed model for the sill

- Source depth 1.35 km
- Volume change 0.25e-3 km³
- Deformed area ~2 km²
- Max opening ~35 cm
- 96% of data variance

Not possible to distinguish between magmatic or hydrothermal source

Introduction	Afar - Dallol	Dallol - Dyke	Dallol - Time Series	Conclusions
--------------	---------------	---------------	----------------------	-------------

Dallol and the Erta Ale Range

Dallol and the Erta Ale Range June – August 2010

- Few months before Erta Ale
 lava lake overflow
- ALOS sensor

Correlation between gound deformation at Dallol and Erta Ale Range continued until August 2010

Dallol and the Erta Ale Range

- Assuming a shallow magmatic deformation source at Dallol
- Shallow magma reservoir suggested for different volcanoes along Erta Ale Range
- Considering the correlation between the deformation at Dallol and along the Erta Ale Range

Possible connection at deeper level between these two magmatic segments?

Introduction	Afar - Dallol	Dallol - Dyke	Dallol - Time Series	Conclusions
--------------	---------------	---------------	----------------------	-------------

Conclusions

- InSAR monitoring of a remote and poorly studied area
- Unnoticed dyking event (one year before the 2005 mega dyke intrusion at Dabbahu)
- Shallow (<3 km) magmatic source in area without volcanism: capturing a proto-volcanic system in a hydrothermal area
- Extension along the rift segment partially seismically accommodated
- Possible correlation between deformations at Dallol and along the Erta Ale Range

Introduction	Afar - Dallol	Dallol - Dyke	Dallol - Time Series	Conclusions
--------------	---------------	---------------	----------------------	-------------

Affiliations

1. INGV – CNT – Roma

2. Dipartimento di Scienze – Università Roma Tre

3. SEE - Leeds University

4. NOC – University of Southampton.

5. Addis Abeba University

InSAR technique

Introduction InSAR	Dallol	Aso	Discussion	Conclusions
--------------------	--------	-----	------------	-------------

