

InSAR observations of post-rifting deformation around the Dabbahu rift segment, Afar, Ethiopia

- Ian Hamling^{1,2}, <u>Tim Wright²</u>, Laura Bennati³, Eric Calais³, Elias Lewi⁴, Carolina Pagli²
- 1. GNS Science; 2. University of Leeds;

esa

3. Purdue University; 4. Addis Ababa University.

ATURAL

NVIRONMENT

School of Earth & Environment

InSAR observations of post-rifting deformation around the Dabbahu rift segment, Afar, Ethiopia

- Ian Hamling^{1,2}, <u>Tim Wright²</u>, Laura Bennati³, Eric Calais³, Elias Lewi⁴, Carolina Pagli²
- 1. GNS Science; 2. University of Leeds;
- 3. Purdue University; 4. Addis Ababa University.

Key Question: How do we model viscoelastic relaxation when magma is moving?

Wright et al., Nature 2006

- 2.5 km³ magma intruded along 60 km dyke, which was up to ~10 m thick
- Equivalent moment release to M~7.2 earthquake [Landers M~7.3; Hector Mine M~7.1]

2006 – 2010 dyke sequence

• More details on dyke intrusion sequence in:

Hamling et al., GJI 2009; Keir et al., Geology 2009; Hamling et al., Nature Geosci. 2010; Ebinger et al., AREPS 2010

Deformation at magmatic centres

Visco-elastic relaxation

 Analogy with Iceland, viscosity estimates for hot upper mantle beneath rift:

GIA
$$\Rightarrow$$
 $\eta < 10^{19}$ Pas(Sigmundsson, 1991)Krafla \Rightarrow $\eta ~ 1 \times 10^{18}$ Pas(Hofton & Foulger, 1996)

 $\eta \sim 3 \times 10^{18} \text{ Pa s}$ (Pollitz & Sacks, 1996)

• Expect relaxation times ~1-10 years.

Modelled as entirely viscoelastic...

...and entirely magmatic

We assume that visco-elastic relaxation is happening and attempt to separate its contribution from magmatic deformation

But first... the data: InSAR time series on 1 Ascending and 2 Descending tracks

First solve for simple time series on each track using least squares approach.

Comparison with GPS for track

- In general, when projected into satellites line of site, GPS and InSAR displacements are consistent.
- Similar results for descending tracks

Separating steady deformation from sudden dyke intrusions

Time

- We isolate steady background deformation by solving for linear displacement rates (m₁, m₂), with jumps (d₁, d₂,...d_n) at the known times of each dyke intrusion.
- Again, a simple least squares problem.

year

year

year

Retrieving the vertical and horizontal components

 Assuming that all of the motion is in the vertical and perpendicular to the rift we can transform LOS deformation into these components

Reminder of strategy

1. Find best fit visco-elastic model

Fukahata & Matsu'ura (2005, 2006) and Hashima et al. (2008) 8 65 4 Elastic Visco-elastic Z Х Density (kg/m^3) $V_p (m/s)$ $V_s (m/s)$ Layer 5.352.9526001

Simulate the September 2005 intrusion with 6, 10 km-long patches with the amount of opening shown.

3.7

3000

7.1

2

γ

1. Find best fit visco-elastic model Best fit model with 20 km thick lid and viscosity of 10¹⁸ Pa s.

1. Find best fit visco-elastic model

Large residuals around Ado'Ale and to the south east of the segment.

2. Model residual using magmatic sources

3. Remove magmatic deformation from original data, and re-estimate visco-elastic parameters

Viscosity ~10^{18.5} Pa s.

Problem matching the vertical displacements with this simple model

4. Final model (iterations did not change parameters)

Displacement (mm)

Conclusions

- Deformation in Dabbahu cannot be explained by viscoelasticity alone
- But models of ongoing deformation that do not consider visco-elasticity are probably unreasonable.
- Two step approach allows us to separate magmatic and v-e contributions
- Suggests viscosity of ~ 10^{18.5} beneath an elastic lid > 15 km thick.
- More work required on understanding longwavelength vertical deformation.

Magmatic Rifting & Active Volcanism Conference

Plenary Sessions

- Active Magmatic Rifting
- Mid-Ocean Ridge Processes
- Rifted Continental Margins
- The East African Rift
- Natural Hazards
- Rifting and Climate

Addis Ababa, Ethiopia

11-13th January, 2012

- Mantle-Lithosphere Interactions and the Causes of Break Up
 Becourses from Magmatic Bift (Coethormal Botroloum etc)
 - Resources from Magmatic Rift (Geothermal, Petroleum etc)

Field Trips

- Introduction to the East African Rift (3 days)
- Afar including the Erta Ale lava lake (6 days)
 - Transect through a continental margin, including the historic sites of Axum, Gonar and Lalibela (6 days) website: http://see.leeds.ac.uk/afar/conference.html email: addis2012@see.leeds.ac.uk

