Persistent Scatterer InNSAR
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“Good Interferogram”

42° b

- 2011 Tohoku earthquake

e Good correlation (low
noise)

e Signal is dominated by
deformation

ALOS data supplied by JAXA: each
colour fringe represents 11.6 cm of
displacement away from satellite

ful

o

UNIVERSITY OF LEEDS




Typical interferograms

Signal dominated by
amosphere, orbit and
DEM errors

High
Decorrelation

(especially for

(larger than long intervals)

deformation for low
strains and short
Intervals)
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Time Series Analysis

Motivation!

e Allows better selection of coherent
pixels

e DEM error estimation possible

= More reliable phase unwrapping
possible (3-D)

e Other errors can be reduced by
filtering in space and time
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Improvement of coherence

INSAR (80 looks) Persistent Scatterer InSAR
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After unwrapping and reduction of

non-deformation signals
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Main Categories of Algorithms

Time Series
INSAR
Persistent Scatterer Small Baseline
Methods Methods

Combined
Methods
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Persistent Scatterer Methods

Time Series
INSAR
Persistent Scatterer Small Baseline
Methods Methods

Combined
Methods
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Cause of Decorrelation

The echos sum to _
give one phase value If scatterers move with respect

for the pixel to each other, the phase sum
changes

Distributed scatterer pixel

(similar effect if incidence angle changes)
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Persistent Scatterer (PS) Pixel

One Scatterer

The echos sum to dominates

give one phase value
for the pixel
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Acquisition

Distributed scatterer pixel
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PS Interferogram Processing

« All interferograms with respect to same “master” image
= No spectral filtering applied (maximise resolution)
e Oversampling is preferred to avoid PS at edge of pixel

» Coregistration can be difficult - use DEM/orbits or slave-slave
coregistration

= Reduction of interferometric phase using a priori DEM to
minimize ambiguities
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Cxample: single-master interferograms

4638
04—JUN—-1992
428.5 m

22016
30—-SEP—1995
436.9 m

16872
12—JUL—1998
—451.5 m

24387
19—-DEC—1999
188.8 m

5141

T =SER 1992
572.5 m

2844
05—NOV—-1925
522.8 m

2 4SS
16-JUL—-2000
—399.3 m

11151
DZ2+=SEP— 1995
73.8 m

5850
02—-JUN—-1996
—506.8 m

17874
20—SEP—1998
—2334 m

27894

20—AUG—2000

282.2 m

12153
11—=NOV—-1993
=B S m

11862
27 =JUk— 1997
1208 m

22383
01-AUG—1999
227.0m

= “Master”

20513

17=JUN—=1995
—-124.7 m

12363
31—-AUG—1987
473.7 m

22884
05-=SEP=1999
=56 i

21014

22—JUL—1995
241.2 m

13365
09 —NOV—-1927
—335.5 m

23886
14—NOV-1999
351.6 m
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Interferometric Phase

For each pixel in each interferogram:

q)int = W{q)defo T (I)atmos T A(I)orbit'l' A(i)topo

Atmospheric DEM
Delay Error
Deformation Orbit Error “Noise”
in LOS

W{*} = wrapping operator
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PS Processing Algorithms

PS
Methods
Temporal Spatial
Model Correlation

 Relying on model of deformation in time: e.g. “Permanent
Scatterers” (Ferretti et al. 2001), Delft approach (Kampes et al.,
2005)

» Relying on correlation in space: StaMPS (Hooper et al. 2004)
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PS Processing Algorithms

PS
Methods
Temporal Spatial
Model Correlation

 Relying on model of deformation in time: e.g. “Permanent
Scatterers” (Ferretti et al. 2001), Delft approach (Kampes et al.,
2005)

» Relying on correlation in space: StaMPS (Hooper et al. 2004)
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‘Permanent Scatterer Techniaue

Range-change
rate (mm/yr)

E T T
11.3

Ferretti et al, 2004
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Double-ditference phase

For each pair of pixels in each interferogram:

6(I)int = 6(I)defo T 6(I)atmos. T A(I)orbit'l' 6A(I)topo + 6(I)noise
Atmospheric DEM
Delay Error

Deformation Orbit Error “Noise”
in LOS
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Double-ditference phase

If pixel pairs are nearby:

6(I)int

= 6(I)defo +0

0S +A bit+ 6A¢topo + 6(I)noise

Atmospheric

Delay

Deformation
in LOS

T

DEM
Error

Orbit Error

4

“Noise”
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Double-ditference phase

If pixel pairs are nearby:

6(I)int = 6(I)defo T 6Aq)topo 6(l)noise

» model these two term

DEM
Error

Deformation
in LOS

“Noise”
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Preliminary Network

;:-:_.;_- 1: SELECTION
. _" - e e Only consider point (-like) scatterers.
SO BT T Select the best points (%) in each grid cell
m o e em| T (ca. 250x250 m).
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Initial selection

« Initial network of nearby likely PS is required

« Initial selection based on amplitude dispersion (Ferretti et al.,
2001)

Imag

0,7 0y
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Real w Phase noise

Reasonable proxy for small phase noise (<0.25 rad)

(0)
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Preliminary Network

Only consider point (-like) scatterers.
Select the best points (=) in each grid cell

(ca. 250x250 m).

2: ESTIMATION

Construct a "network" to estimate
displacement parameters and DEM error
differences between nearby points in
order to reduce atmospheric signal.
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Estimation in Time

e Linear deformation model
e Phase is function of time
d(t)=a * t
e Observed is wrapped phase
-t < phase <«
e Goalis to unwrap the phase
time series, supported by the
model

Time

e There are many possibilities.

(for each arc between 2 pOintS) e A norm must be used to
decide which solution best.
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Simultaneous Estimation in Baseline

APhase

Perpendicular Baseline (B, )

Tl
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Preliminary Network

24,

Only consider point (-like) scatterers.

Select the best points (= in each grid cell
(ca. 250x250 m).

Construct a "network" to estimate

displacement parameters and DEM error
differences between nearby points in

order to reduce atmaospheric signal.

3: INTEGRATION

—,.z::_ ______ \ "

LN g Obtain the parameters at the points by LS
s e integration w.r.t. a reference point (X).
N AN |dentify incorrect estimates and/or incoherent
oo u

points using alternative hypothesis tests.
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Next steps...

e Estimation and interpolation of atmospheric delay
from initial network. This is subtracted from all pixels

 Testing of all other pixels by forming arcs to initial
network

e Filtering in time and space to try and separate
unmodelled deformation from atmosphere

Pl
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Corner Retlector Experiment

| Geodesy bul
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Displacement [mm,vertical]

Corner Retlector InSAR vs Leveling

ILe\arelirll_g and II’SI results corpparisoln ; |
L L L | L L |

[JlLeveling E
—#— ENVISAT PSI

Mar03 Aug03 Dec03 May04 Sep04 Feb05 Juld5 Nov05 Apr06 Aug06 Jan07 Jun07 Octd7 Mar08
Time [monthsg]

Marinkovic et al, CEOS SAR workshop, 2004
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Results: Bay Area, California

Range-change
rate (mm/yr)

San Francisco Bay Area (Ferrtti et al., 2004)

» Works well in urban areas, but not so well in areas
without man-made structures. Why?
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All pixels

Initial Selection

Best candidates
picked
e.g. Amplitude

Bad candidates
rejected using
phase model
for pixel pairs
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Why few pixels picked in rural areas

All pixels Too few “best” Phase model
candidates Inadequate due
to significant atmosphere

 Lowering the bar for candidate pixels also leads to failure:
too many “bad” pixels for network approach.
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Castagnola, Italy

- —__ Scarps

° PS

A iz i1z
: N Slavr Castagnola
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il NGHERNE N 1 1o 20 cm/year
Castagnola, Northern Italy (from Paolo Farina)

» Picks pixels whose phase histories follow a predetermined
model for how deformation varies with time
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Why few pixels picked when
deformation rate is irregular

All pixels Best candidates Phase model
picked Inadequate
e.g. Amplitude due to

deformation
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Long Valley Volcanic Caldera
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A}

Usmg T emporal Model Algorlthm

45"V
%©§Ve loci { Y,
mmlyear - 120

-300 h|h amplltudeper3|stent scatterers
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Alternative PS Approach

For more general applications, we would like a PS method
that works:

In rural areas without b) When the deformation rate is

buildings (low amplitude) very irregular

181.1H ¢ Leveling
GPS

- EDM

o PSInSAR
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180.9
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Year

Vertical Difference (m)
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PS Processing Algorithms

PS
Methods
Temporal Spatial
Model Correlation

» Relying on correlation in space: STAMPS Hooper et al. (2004,
2007)
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Series of single-master interferograms

 Pre-Processing as for Temporal Model Algorothm

4638
04—-JUN—-1992
428.5 m

22016
30—SEP—1995
4368.9 m

16872
12—JUL—1998
—451.5 m

24387
19—-DEC—1999
188.8 m

B141
17-SEP—-1992
572.5 m

2844
05—NOV—-1925
522.0 m

2 4SS
16-JUL—-2000
—399.3 m

111151

D2=SEP— 1993
73.8 m

5850
02—-JUN—-1996
—506.8 m

17874
20—SEP—1998
—2334 m

27894

20—AUG—2000

282.2 m

12153
11—=NOV—-1993
—ERRS

11862
27 =JUk— 1997
1208 m

22383
01-AUG—1999
227.0m

= “Master”

20543

17=JUN—=1995
—-124.7 m

12363
31-AUG—1997
473.7 m

22884
05-=SEP=1999
=56 i

21014

22—JUL—1995
241.9 m

13365
09 —NOV—-1997
—335.5 m

23886
14—NOV-1999
351.6 m

40

UNIVERSITY OF LEEDS



Spatial Correlation PS Algorithm

Exploits spatial correlation of the deformation signal.

Interferometric phase terms as before:

q)int = q)defo T (I)atmos T A(I)(?‘rbit T A(I)topo @

Atmospheric DEM
Delay Error

Deformation Orbit Error “Noise”
in LOS
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Spatial Correlation PS Algorithm

Exploits spatial correlation of the deformation signal.

Interferometric phase terms as before:

q)int = (I)defo T (I)atmos T A(I)orbit T A(I)topo + q)noise

UNIVERSITY OF LEED



Spatial Correlation PS Algorithm

Exploits spatial correlation of the deformation signal.

Interferometric phase terms as before:

+ A(I)UHCOIT
— t
(I)int _ (I)defo + q)atmos + A(I)orbit + A C(greo + (I)noise
q)topo

» Correlated spatially - estimate by iterative spatial bandpass
filtering

43
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Estimation of Spatially Correlated Terms

,‘. = crude low-pass filter
In spatial domain
(Hooper et al., 2004)

Freguency response

Better (Hooper et al., 2007)

 Low frequencies plus
dominant frequencies in
surrounding patch are
passed.

Example frequency response

l.e. low-pass + adaptive filter (Goldstein and Werner, 1998)
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Spatial Correlation PS Algorithm

+ Aq)uncorr
_ t
(I)int — (I)defo + (I)atmos + A(I)orbit + A C(greo
q)topo

» Correlated spatially - estimate by iterative spatial bandpass
filtering

» Correlated with perpendicular baseline - estimate by inversion
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Spatial Correlation PS Algorithm

(I)int B (I)filtered

Perpendicular Baseline (B, )

« 1-D problem (as opposed to 2-D with temporal model approach)

Temporal coherence is then estimated from residuals

Tl
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Re-estimation of Spatially Correlated
Terms

. Contribution of each pixel weighted based
-%<1%| on its estimated tempral coherence

* Followed by restimation of DEM error and
temporal coherence

e |terated several times
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Selecting PS

I PS candidates PDF
Random phase PDF

95% threshold
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Where vy, Is the temporal coherence
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Results 1n Long Valley

A /3
\\‘} Y E a5
. 29 OOO persistent scatterers
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Wrapped PS Phase

iy

05 Noy-1995

"l WL,

» Interferogram phase, corrected for topographic error

i
{«]]
i

UNIVERSITY OF LEEDS



Phase unwrapping

= With temporal model, phase is unwrapped by finding model
parameters that minimise the wrapped residuals between double
difference phase and the model

 If we do not want to assume a temporal model of phase evolution
we need another strategy

UNIVERSITY OF LEEDS



2D phase unwrapping

>

@ (vertices represent pixels)

* Integrate phase differences
between neighboring pixels

P  Avoid paths where phase
difference > half cycle

Residues lie on branch cuts
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2D Inverse Problem

* Connect 1

® ©
®
=
€
-
o
-
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‘esidues to maximise probability or minimis

2 SOmMe norm
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3D Problem (Sparse)
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residues in
space-space

residues in
space-time

UNIVERSITY OF LEEDS



Unwrapped PS Phase

> Not linear in time

UNIVERSITY OF LEEDS



Estimation of Atmospheric Signal
And Orbit Errors

» Filtering in time and space, as for temporal model approach

- ; . . . . 20
17-Sep-1992:02-Sep-1993 . 11-Nov-1993| . 17-Jun-1995| 22-Jul-1995 | 30-Sep-1995  05-Nov-1995
E
02-Jun-1996| 22-Jun-1997 | 27-Jul-1997 31-Aug-1997| .09-Nov-1997| 12-Jul-1998 | 16-Aug-1998 §
g
10 8
93]
o
29 g 2 ‘tﬂt:'." i g L 2
- - -12
Estimate of atmospheric and orbit errors subtracted, leaving deformation
estimate (not necessarily linear).
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Comparison of approaches

> v
EOSWelocity,

mmlyear = 20

Temporal model approach Spatial correlation approach

Long valley caldera
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Validation with Ground Truth
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180.9

Vertical Difference (m)
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Leveling
GPS

- EDM

© PSInSAR

1986 1988 1990 1992 1994 1996

Year

» PS show good agreement

1998 2000
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Eyjafjallajokull PS time series

T132
cumulative
line-of-sight
displacement

eEarthquake
epicentres for each
epoch (Iceland Met
Office)

11.0
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phase difference

Co/Post-eruptive phase
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63.65
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Error estimation

= Because no temporal model was assumed, probability density
functions can be estimated by repeatedly fitting a temporal model
using the percentile bootstrapping method.

0 0.6

Vertical rate (mm year—])
ertical rate (mm year_l)

Standard deviation v

=30 6.0

Subsidence rates in Bangkok  Standard deviations of rates
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Comparison PS Algorithms

PS
Methods
Temporal Spatial
Model Correlation

eSpatial correlation algorithm works in more general case,
but may miss PS with non-spatially correlated deformation

eTemporal model algorithm more rigorous in terms of PS
reliability evaluation, but may not work in rural areas, or
where deformation is irregular in time.
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Comparison PS Algorithms
R 2 R (Sousa et al, 2010)

Temporal model approach
(DePSl, Ketelaar thesis, 2008)

Spatial coherence approach
(StaMPS, Hooper et al, JGR 2007)

Mean LOS velocity [mm/yr]

| _aam— e
-10 -5 0 5

Housing development near Granada, Spain
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High resolution PS Processing

>
w
Q
-
[
-
>

Barcelona Olympic Port (Institut de Geomatica)
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Persistent Scatterer (PS) InSAR

Summary

» Relies on pixels that exhibit low decorrelation with time
and baseline

» Non-deformation signals are reduced by modelling and
filtering

» PS techniques work best in urban environments, but can
also be applied in rural environments
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Interpretation of PS observations

Consider what is actually moving
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