Persistent Scatterer InSAR

Andy Hooper University of Leeds

Synthetic Aperture Radar: A Global Solution for Monitoring Geological Disasters, ICTP, 2 Sep 2013

"Good Interferogram"

2011 Tohoku earthquake

- Good correlation (low noise)
- Signal is dominated by deformation

ALOS data supplied by JAXA: each colour fringe represents 11.6 cm of displacement away from satellite

Typical interferograms

Signal dominated by amosphere, orbit and DEM errors

(larger than deformation for low strains and short intervals)

High Decorrelation

(especially for long intervals)

Time Series Analysis

Motivation!

- Allows better selection of coherent pixels
- DEM error estimation possible
- More reliable phase unwrapping possible (3-D)
- Other errors can be reduced by filtering in space and time

Improvement of coherence

InSAR (80 looks)

UNIVERSITY OF LEEDS

Persistent Scatterer InSAR

After unwrapping and reduction of non-deformation signals

Main Categories of Algorithms

Persistent Scatterer Methods

Cause of Decorrelation

Distributed scatterer pixel

If scatterers move with respect to each other, the phase sum changes

(similar effect if incidence angle changes)

Persistent Scatterer (PS) Pixel

PS Interferogram Processing

- All interferograms with respect to same "master" image
- No spectral filtering applied (maximise resolution)
- Oversampling is preferred to avoid PS at edge of pixel
- Coregistration can be difficult use DEM/orbits or slave-slave coregistration
- Reduction of interferometric phase using *a priori* DEM to minimize ambiguities

Interferograms formed

Example: single-master interferograms

4638	6141	11151	12153	20513	21014
04-JUN-1992	17-SEP-1992	02-SEP-1993	11-N0V-1993	17-JUN-1995	22-JUL-1995
428.5 m	572.5 m	73.8 m	-63.3 m	-124.7 m	241.9 m
22016	2844	5850	11862	12363	13365
30-SEP-1995	05-N0V-1995	02-JUN-1996	27-JUL-1997	31-AUG-1997	09−N0V−1997
436.9 m	522.0 m	-506.8 m	120.9 m	473.7 m	−335.5 m
16872	17373	17874	22383	22884	23886
12-JUL-1998	16-AUG-1998	20-SEP-1998	01-AUG-1999	05-SEP-1999	14-NOV-1999
-451.5 m	-120.4 m	-233.4 m	227.0 m	-358.5 m	351.6 m
24387	27393	27894	= "Master"		
19-DEC-1999	16-JUL-2000	20-AUG-2000			
188.8 m	-399.3 m	282.2 m			

Interferometric Phase

For each pixel in each interferogram:

W{•} = wrapping operator

PS Processing Algorithms

- Relying on model of deformation in time: e.g. "Permanent Scatterers" (Ferretti et al. 2001), Delft approach (Kampes et al., 2005)
- Relying on correlation in space: StaMPS (Hooper et al. 2004)

PS Processing Algorithms

- Relying on model of deformation in time: e.g. "Permanent Scatterers" (Ferretti et al. 2001), Delft approach (Kampes et al., 2005)
- Relying on correlation in space: StaMPS (Hooper et al. 2004)

Ferretti et al, 2004

Double-difference phase

For each pair of pixels in each interferogram:

Double-difference phase

If pixel pairs are nearby:

Double-difference phase

If pixel pairs are nearby:

Preliminary Network

1: SELECTION

Only consider point (-like) scatterers. Select the **best points** (•) in each grid cell (ca. 250x250 m).

Initial selection

- Initial network of nearby likely PS is required
- Initial selection based on amplitude dispersion (Ferretti et al., 2001)

Reasonable proxy for small phase noise (<0.25 rad)

Preliminary Network

1: SELECTION

Only consider point (-like) scatterers. Select the **best points** (•) in each grid cell (ca. 250x250 m).

2: ESTIMATION

Construct a "network" to estimate displacement parameters and DEM error differences **between nearby points** in order to reduce atmospheric signal.

Estimation in Time

(for each arc between 2 points)

- Linear deformation model
- Phase is function of time d(t) = a * t
- Observed is wrapped phase $-\pi < phase < \pi$
- Goal is to unwrap the phase time series, supported by the model
- There are many possibilities.
- A norm must be used to decide which solution best.

Simultaneous Estimation in Baseline

Perpendicular Baseline (B_{\perp})

Preliminary Network

1: SELECTION

Only consider point (-like) scatterers. Select the **best points** (•) in each grid cell (ca. 250x250 m).

2: ESTIMATION

Construct a "network" to estimate displacement parameters and DEM error differences **between nearby points** in order to reduce atmospheric signal.

3: INTEGRATION

Obtain the *parameters at the points* by LS integration w.r.t. a reference point (**X**). Identify incorrect estimates and/or incoherent points using alternative hypothesis tests.

Next steps...

- Estimation and interpolation of atmospheric delay from initial network. This is subtracted from all pixels
- Testing of all other pixels by forming arcs to initial network
- Filtering in time and space to try and separate unmodelled deformation from atmosphere

Corner Reflector Experiment

UNIVERSITY OF LEEDS

Corner Reflector InSAR vs Leveling

Marinkovic et al, CEOS SAR workshop, 2004

Results: Bay Area, California[™]

San Francisco Bay Area (Ferretti et al., 2004)

Works well in urban areas, but not so well in areas without man-made structures. Why?

Initial Selection

Why few pixels picked in rural areas

• Lowering the bar for candidate pixels also leads to failure: too many "bad" pixels for network approach.

Castagnola, Italy

Castagnola, Northern Italy (from Paolo Farina)

Picks pixels whose phase histories follow a predetermined model for how deformation varies with time

Why few pixels picked when deformation rate is irregular

All pixels

Best candidates picked e.g. Amplitude Phase model inadequate due to deformation

Long Valley Volcanic Caldera

Using Temporal Model Algorithm

Alternative PS Approach

For more general applications, we would like a PS method that works:

a) In rural areas without buildings (low amplitude)

b) When the deformation rate is very irregular

PS Processing Algorithms

Relying on correlation in space: STAMPS Hooper et al. (2004, 2007)

Series of single-master interferograms

• Pre-Processing as for Temporal Model Algorothm

4638	6141	11151	12153	20513	21014	
04-JUN-1992	17-SEP-1992	02-SEP-1993	11–NOV–1993	17-JUN-1995	22-JUL-1995	
428.5 m	572.5 m	73.8 m	–63.3 m	-124.7 m	241.9 m	
22016	2844	5850	11862	12363	13365	
30-SEP-1995	05-N0V-1995	02-JUN-1996	27-JUL-1997	31-AUG-1997	09-N0V-1997	
436.9 m	522.0 m	-506.8 m	120.9 m	473.7 m	-335.5 m	
16872	17373	17874	22383	22884	23886	
12-JUL-1998	16-AUG-1998	20-SEP-1998	01-AUG-1999	05-SEP-1999	14-NOV-1999	
-451.5 m	-120.4 m	-233.4 m	227.0 m	-358.5 m	351.6 m	
24387	27393	27894	= "Master"			
19-DEC-1999	16-JUL-2000	20-AUG-2000				
188.8 m	- 399.3 m	282.2 m				

September 2, 2013 UNIVERSITY OF LEEDS

Exploits spatial correlation of the deformation signal.

Interferometric phase terms as before:

Exploits spatial correlation of the deformation signal.

Interferometric phase terms as before:

$$\phi_{\text{int}} = \phi_{\text{defo}} + \phi_{\text{atmos}} + \Delta \phi_{\text{orbit}} + \Delta \phi_{\text{topo}} + \phi_{\text{noise}}$$

Exploits spatial correlation of the deformation signal.

Interferometric phase terms as before:

$$\phi_{\text{int}} = \phi_{\text{defo}} + \phi_{\text{atmos}} + \Delta \phi_{\text{orbit}} + \Delta \phi_{\text{topo}}^{\text{uncorr}} + \phi_{\text{noise}} + \Delta \phi_{\text{topo}}^{\text{corr}} + \phi_{\text{noise}}$$

Correlated spatially - estimate by iterative spatial bandpass filtering

10

Estimation of Spatially Correlated Terms

crude low-pass filter
in spatial domain
(Hooper et al., 2004)

Frequency response

Better (Hooper et al., 2007)

• Low frequencies plus dominant frequencies in surrounding patch are passed.

Example frequency response

i.e. low-pass + adaptive filter (Goldstein and Werner, 1998)

$$\phi_{\text{int}} = \phi_{\text{defo}} + \phi_{\text{atmos}} + \Delta \phi_{\text{orbit}} + \Delta \phi_{\text{topo}}^{\text{uncorr}} + \Delta \phi_{\text{topo}}^{\text{uncorr}}$$

- Correlated spatially estimate by iterative spatial bandpass filtering
- Correlated with perpendicular baseline estimate by inversion

• 1-D problem (as opposed to 2-D with temporal model approach)

Temporal coherence is then estimated from residuals

Re-estimation of Spatially Correlated Terms

Contribution of each pixel weighted based on its estimated tempral coherence

- Followed by restimation of DEM error and temporal coherence
- Iterated several times

Selecting PS

Where γ_x is the temporal coherence

Results in Long Valley

• 29,000 persistent scatterers

Wrapped PS Phase

Interferogram phase, corrected for topographic error

- With temporal model, phase is unwrapped by finding model parameters that minimise the wrapped residuals between double difference phase and the model
- If we do not want to assume a temporal model of phase evolution we need another strategy

3D Problem (Sparse)

Unwrapped PS Phase

Not linear in time

Estimation of Atmospheric Signal And Orbit Errors

Filtering in time and space, as for temporal model approach

Estimate of atmospheric and orbit errors subtracted, leaving deformation estimate (not necessarily linear).

Comparison of approaches

Temporal model approach

Spatial correlation approach

Long valley caldera

Validation with Ground Truth

PS show good agreement

Eyjafjallajökull PS time series

T132

Office)

11.0

UNIVERSITY OF LEEDS

Co/Post-eruptive phase 63.75 63.7 63.65 63.6 0 63.55 -5 -10 -19.3 -19.9 -19.8 -19.7 -19.6 -19.5 -19.4 -15 -20 -25 3-4 -30 -35 -40 -45 -20-Mar 11–Apr 22–Apr 05–Jun 16–Jun 19-Jul 30-Jul 10-Aug 01-Sep Images dates

Error estimation

 Because no temporal model was assumed, probability density functions can be estimated by repeatedly fitting a temporal model using the percentile bootstrapping method.

Comparison PS Algorithms

•Spatial correlation algorithm works in more general case, but may miss PS with non-spatially correlated deformation

•Temporal model algorithm more rigorous in terms of PS reliability evaluation, but may not work in rural areas, or where deformation is irregular in time.

Comparison PS Algorithms

(Sousa et al, 2010)

Temporal model approach (DePSI, Ketelaar thesis, 2008)

Spatial coherence approach (StaMPS, Hooper et al, JGR 2007)

Housing development near Granada, Spain

High resolution PS Processing

Barcelona Olympic Port (Institut de Geomatica)

Persistent Scatterer (PS) InSAR Summary

- Relies on pixels that exhibit low decorrelation with time and baseline
- Non-deformation signals are reduced by modelling and filtering
- PS techniques work best in urban environments, but can also be applied in rural environments

Interpretation of PS observations

Consider what is actually moving

