High-resolution constraints on the response to ice load changes in the Antarctic Peninsula and Iceland, using radar interferometry

Andy Hooper¹, Amandine Auriac², Anneleen Oyen³, Karsten Spaans¹, Freysteinn Sigmundsson², Peter Schmidt⁴, Björn Lund⁴, Matt King⁵

¹University of Leeds ²University of Iceland ³Delft University of Technology ^₄Uppsala University ^₅University of Tasmania

10

20

Motivation

- In regions undergoing present-day ice loss deformation is spatially and temporally variable.
- GNSS sampling is good temporally but limited spatially.
- Combination with InSAR has the potential for better spatial constraint

2000

Icelandic ice caps

- GIA from last glaciation is over.
- Thinning rates of up to ~80 cm/yr since ~1890 cause of present-day GIA.

Stars mark continuous GPS stations

InSAR Frames

Time series InSAR results (2 tracks)

Time series InSAR (east)

Time series InSAR (west)

Data: ERS1/2 Auriac et al, JGR, 2013

Surge of Síðujökull in 1994 led to subsidence which biases mean uplift rate

Time history of uplift

Ice model for surge

TUDelft

Elastic 2-layer model of surge

 1 km layer with Youngs modulus 20-25 GPa overlying 57-59 GPa halfspace

GIA Modelling

- Elastic layer overlying Maxwell viscoelastic halfspace
- Forward model using finite elements

Model results (west)

Model results (probability distribution)

- Assuming multivariate Gaussian distribution of errors
- Better constrained than from GPS alone

Antarctic ice loss

Present-day ice loss can be constrained by satellite gravity measurements, BUT solid Earth response needs to first be subtracted

Antarctic temperature trends

Ongoing temperature change leads to temporally-varying ice mass change

2002 Larsen B ice shelf collapse

17th Feb 2002

5th March 2002

Response to recent ice loss

Thomas et al., GRL, 2011 18

InSAR Challenges in Antarctic

- Few outcrops
- Seasonal snow
- Coregistration of images
- DEM accuracy
- Integrating the phase ("unwrapping") between outcrops
- Strong tropopheric and ionospheric delay variation

Ionosphere

From spectral diversity in azimuth (Scheiber and Moreira, 2000) (also known as MAI)

Coherence

Integrated azimuth offsets (from spectral diversity)

Integration direction

Modelled azimuth offsets

• Azimuth offsets can then be resestimated, and used to correct interferometric phase

ALOS line-of-sight rates

Envisat line-of-sight rates

Envisat time series

TUDelft

Crane Glacier Elevation

Summary

- InSAR is viable for constraining the timevariable solid Earth response to ice mass changes.
- Gives greatly improved spatial resolution over GNSS alone.
- The launch of ESAs Sentinel-1 mission early 2014 will hopefully mark the beginning of a new era for InSAR ice load studies.

