1. Methodology / 2. Processing / 3. Examples

Small Baseline Time Series Method in InSAR

Hua Wang

Guangdong University of Technology

SBAS - Motivations

- Coherence is a key factor for InSAR
- Coherence mainly depends on temporal and perpendicular baselines given the same wavelength

SBAS - Motivations

- Coherence is a key factor for InSAR
- Coherence mainly depends on temporal and perpendicular baselines given the same wavelength

SBAS - Motivations

- Coherence is a key factor for InSAR
- Coherence mainly depends on temporal and perpendicular baselines given the same wavelength
- Smaller baseline gives higher coherence and more accurate phase

SBAS - Essentials

- Forming differential interferograms using small temporal and spatial baseline subsets
- Taking use of all coherent pixels (temporal vs persistent)
- Mitigating artifacts (e.g. atmosphere, orbit, DEM errors etc) by time series analysis (similar to PSInSAR)
- Usually starting from, but are not limited to, unwrapped interferograms

SBAS - Methodology

- System of equations
$\mathbf{G m}=\mathbf{d}$,
$\mathbf{G}_{i, j}=[\underbrace{\mathbf{0}}_{i-1} \underbrace{\Delta t_{i} \cdots \Delta t_{j-1}}_{j-i} \underbrace{\mathbf{0}}_{n-j}]$, $\mathbf{m}=\left[\begin{array}{llll}v_{1} & v_{2} & \cdots & v_{n-1}\end{array}\right]^{T}$,

where $\Delta t_{i}=t_{i+1}-t_{i}, t$ is the acquisition date, n is the total number of the acquisitions, $\mathbf{0}$ is a zero vector indicating acquisitions which are not covered by the interferogram $I_{i, j}, v_{i}$ is the velocity of the i th time-span. Here, the acquisitions must be chronologically ordered

SBAS - Methodology

- System of equations
$\mathbf{G m}=\mathbf{d}$,

$$
\begin{aligned}
& \mathbf{G}_{i, j}=[\underbrace{\mathbf{0}}_{i-1} \underbrace{\Delta t_{i} \cdots \Delta t_{j-1}}_{j-i} \underbrace{\mathbf{0}}_{n-j}], \\
& \mathbf{m}=\left[\begin{array}{llll}
v_{1} & v_{2} & \cdots & v_{n-1}
\end{array}\right]^{T},
\end{aligned}
$$

- Unknown parameters
- Berardino et al. (2002): velocity of each epoch
- Schmidt and Burgmann (2003): incremental displacement
- Pi-RATE (above): velocity of each interval

SBAS - Methodology

- System of equations
$\mathbf{G m}=\mathbf{d}$,

$$
\left.\begin{array}{l}
\mathbf{G}_{i, j}=[\underbrace{\mathbf{0}}_{i-1} \underbrace{\Delta t_{i} \cdots \Delta t_{j-1}}_{j-i} \underbrace{\mathbf{0}}_{n-j}
\end{array}\right],
$$

- Some isolated subsets exit, G is rank deficit
- All epochs are connected in a network, G is full rank
- Solution is not stable due to noise in d

SBAS - Methodology

- System of equations

$\mathbf{G m}=\mathbf{d}$,

- Solution
- SVD

$$
\mathbf{m}=\mathbf{G}^{+} \mathbf{d}
$$

- Laplacian smoothing

$$
\left[\begin{array}{l}
\mathbf{G} \\
\kappa \nabla^{2}
\end{array}\right] \mathbf{m}=\left[\begin{array}{l}
\mathbf{d} \\
\mathbf{0}
\end{array}\right]
$$

SBAS - Methodology

- System of equations

$\mathbf{G m}=\mathbf{d}$,

- Considering DEM errors

$$
\left[\begin{array}{ll}
\mathbf{G} & \mathbf{B}
\end{array}\right]\left[\begin{array}{l}
\mathbf{m} \\
\Delta h
\end{array}\right]=\mathbf{d}
$$

$$
\mathbf{B}=\left[\begin{array}{ccc}
-\frac{B_{\perp}^{1}}{\rho \sin \vartheta} & & \\
& \ddots & \\
& & -\frac{B_{\perp}^{m}}{\rho \sin \vartheta}
\end{array}\right]
$$

SBAS - Processing

Interferogram Selection

Components of interferometric phase

- Spatial low frequency
- Temporal low frequency
- Random noise
- unw errors
- Spatial low frequency
- Temporal high frequency
- Spatial low frequency
- Temporal high frequency
- Constant for a pixel in all the interferograms
- Proportional to perpendicular baseline

Phase unwrapping errors

- In theory, the sum of phase in a closure is zero.
- Jump exists once phase unwrapping is wrong.
- Mask or correct phase unwrapping errors after detection

Biggs et al., 2007

Initial models

- Why do we use initial model?
spatial low frequency: deformation, atmosphere, orbit

Geophysical models

Velocity field

Garthwaite, Wang, Wright, 2013

Orbital error correction

- Polynomial fitting

Orbital error correction

- Polynomial fitting
- GPS time series calibration

Atmospheric delay errors

- External calibration (GPS, MODIS, MERIS, Metrological data)

Jolivet et al., 2011

Atmospheric delay errors

- External calibration
- Empirical Estimation
- Topo-correlated (stratified)

$$
\Delta \phi=a \cdot\left(H-H_{0}\right)+b
$$

- APS estimation (turbulent)

Atmospheric delay errors

- External calibration
- Empirical Estimation
- Topo-correlated (stratified)
- APS estimation (turbulent)
- Raw time series inversion
- Sudden deformation removal
- Temporal low-pass filter
- Spatial high-pass filter

Atmospheric delay errors

- External calibration

$$
c_{j k}=\sigma^{2} e^{-d_{j k} / \alpha}
$$

- Empirical Estimation
- Topo-correlated (stratified)
- APS estimation (turbulent)
- Raw time series inversion
- Sudden deformation removal
- Temporal low-pass filter
- Spatial high-pass filter
\square Advantage: only depends on InSAR dataDisadvantages: (1) non-linear relationship exists between topography and delay; (2) how to determine smoothing windows for APS estimation

Wang et al., 2012

Atmospheric delay errors

Atmospheric delay errors

- External calibration
- Empirical Estimation
- Topo-correlated (stratified)
- APS estimation (turbulent)
- Raw time series inversion
- Sudden deformation removal
- Temporal low-pass filter
- Spatial high-pass filter

VCM estimation

- VCM in space (for initial model inversion)

$$
c_{j k}=\sigma^{2} e^{-d_{j k} / \alpha}
$$

VCM estimation

- VCM in space (for initial model inversion)

VCM estimation

- VCM in time (for time series and rate map inversion)
$C_{l m, n q}= \begin{cases}1 & (l=n, m=q) \\ -0.5 & (l=q \text { or } m=n) \\ 0.5 & (l=n \text { or } m=q) \\ 0 & (\text { otherwise })\end{cases}$

Biggs et al., 2007

Final products estimation

- Rate map
- Error map
- DEM errors
- Time series

$$
\begin{aligned}
& \mathbf{G m}=\mathbf{d} \\
& \mathbf{m}=\left(\mathbf{G}^{T} \mathbf{C}^{-1} \mathbf{G}\right)^{-1} \mathbf{G}^{T} \mathbf{C}^{-1} \mathbf{d} \\
& \mathbf{C}_{\mathbf{m}}=\left(\mathbf{G}^{T} \mathbf{C}^{-1} \mathbf{G}\right)^{-1}
\end{aligned}
$$

Wang et al., 2012

Final products estimation

- Rate map
- Error map
- DEM errors
- Time series

$$
\begin{aligned}
& \mathbf{G m}=\mathbf{d} \\
& \mathbf{m}=\left(\mathbf{G}^{T} \mathbf{C}^{-1} \mathbf{G}\right)^{-1} \mathbf{G}^{T} \mathbf{C}^{-1} \mathbf{d} \\
& \mathbf{C}_{\mathbf{m}}=\left(\mathbf{G}^{T} \mathbf{C}^{-1} \mathbf{G}\right)^{-1}
\end{aligned}
$$

By-products

- Amplitude
- Coherence
- ...

By-products

- Amplitude
- Coherence

Examples: Eastern Tibet (XSH)

- Consistent interseismic deformation measured by InSAR and GPS
- Improvement on the constraint of locking depth using InSAR and GPS
- Slip rate: 9-12 mm/yr; locking depth: 3-6 km.

Examples: Western Tibet

- InSAR reveals internal deformation in western Tibet

Examples: Central Tibet

- InSAR reveals vertical deformation in central Tibet

Beng Co and Yadong-Gulu Rift

- Postseismic deformation following the 1951/1952 earthquakes
- Viscoelastic stress relaxation in the lower crust (viscosity $=3 \mathrm{e} 19$)

Ryder et al., in prep

Examples: Afar-wide swath rate map

Examples: PRD subsidence

InSAR - Leveling: $0.2 \mathrm{~mm} / \mathrm{yr}$

Conclusions and future work

- SBAS method has been widely used for measuring deformation due to its easy realization.
- No general method can reliably correct atmospheric delay errors.
- Phase unwrapping is challenging and time consuming in SBAS.
- Spatial resolution is usually limited due to multi-look processing for phase unwrapping.
- Extraction of different components in InSAR time series.
- New satellites with shorter revisit time will increase coherence, thus make phase unwrapping much easier.

Thank You!

