1. Methodology / 2. Processing / 3. Examples

Small Baseline Time Series Method in InSAR

Hua Wang

Guangdong University of Technology

1

SBAS - Motivations

- Coherence is a key factor for InSAR
- Coherence mainly depends on temporal and perpendicular baselines given the same wavelength

SBAS - Motivations

- Coherence is a key factor for InSAR
- Coherence mainly depends on temporal and perpendicular baselines given the same wavelength

SBAS - Motivations

- Coherence is a key factor for InSAR
- Coherence mainly depends on temporal and perpendicular baselines given the same wavelength
- Smaller baseline gives higher coherence and more accurate phase

SBAS - Essentials

- Forming differential interferograms using small temporal and spatial baseline subsets
- Taking use of all coherent pixels (temporal vs persistent)
- Mitigating artifacts (e.g. atmosphere, orbit, DEM errors etc) by time series analysis (similar to PSInSAR)
- Usually starting from, but are not limited to, unwrapped interferograms

System of equations

where $\Delta t_i = t_{i+1} - t_i$, t is the acquisition date, n is the total number of the acquisitions, **0** is a zero vector indicating acquisitions which are not covered by the interferogram $I_{i,j}$, v_i is the velocity of the *i*th time-span. Here, the acquisitions must be chronologically ordered

• System of equations

- Unknown parameters
 - Berardino et al. (2002): velocity of each epoch
 - o Schmidt and Burgmann (2003): incremental displacement
 - Pi-RATE (above): velocity of each interval

• System of equations

- Some isolated subsets exit, G is rank deficit
- All epochs are connected in a network, G is full rank
- Solution is not stable due to noise in d

- System of equations
 - $\mathbf{Gm} = \mathbf{d},$
- Solution
 - SVD m = G⁺d
 - Laplacian smoothing

$$\begin{bmatrix} \mathbf{G} \\ \kappa \nabla^2 \end{bmatrix} \mathbf{m} = \begin{bmatrix} \mathbf{d} \\ \mathbf{0} \end{bmatrix}$$

• System of equations

 $\mathbf{Gm} = \mathbf{d},$

• Considering DEM errors

$$\begin{bmatrix} \mathbf{G} & \mathbf{B} \end{bmatrix} \begin{bmatrix} \mathbf{m} \\ \Delta h \end{bmatrix} = \mathbf{d}$$

SBAS - Processing

Interferogram Selection

Components of interferometric phase

Phase unwrapping errors

- In theory, the sum of phase in a closure is zero.
- Jump exists once phase unwrapping is wrong.
- Mask or correct phase unwrapping errors after detection

Biggs et al., 2007

Initial models

• Why do we use initial model? spatial low frequency: deformation, atmosphere, orbit

Orbital error correction

Wang et al., 2012

Orbital error correction

- Polynomial fitting
- GPS time series calibration

- External calibration (GPS, MODIS, MERIS, Metrological data)
- Advantage: independent of InSAR
 Disadvantage: spatial and temporal resolution discrepancies, GPS data availability

Phas

- External calibration
- Empirical Estimation
 - Topo-correlated (stratified)

$$\Delta \phi = a \cdot (H - H_0) + b$$

- APS estimation (turbulent)

- External calibration
- Empirical Estimation
 - Topo-correlated (stratified)
 - APS estimation (turbulent)
 - Raw time series inversion
 - Sudden deformation removal
 - Temporal low-pass filter
 - Spatial high-pass filter

- External calibration
- Empirical Estimation
 - Topo-correlated (stratified)
 - APS estimation (turbulent)
 - Raw time series inversion
 - Sudden deformation removal
 - Temporal low-pass filter
 - Spatial high-pass filter

 Advantage: only depends on InSAR data
 Disadvantages: (1) non-linear relationship exists between topography and delay; (2) how to determine smoothing windows for APS estimation

- External calibration
- Empirical Estimation
 - Topo-correlated (stratified)
 - APS estimation (turbulent)
 - Raw time series inversion
 - Sudden deformation removal
 - Temporal low-pass filter
 - Spatial high-pass filter

VCM estimation

• VCM in space (for initial model inversion)

$$c_{jk} = \sigma^2 e^{-d_{jk}/\alpha}$$

VCM estimation

• VCM in space (for initial model inversion)

VCM estimation

• VCM in time (for time series and rate map inversion)

Final products estimation

- Rate map
- Error map
- DEM errors
- Time series

 $\mathbf{Gm} = \mathbf{d}$ $\mathbf{m} = (\mathbf{G}^T \mathbf{C}^{-1} \mathbf{G})^{-1} \mathbf{G}^T \mathbf{C}^{-1} \mathbf{d}$ $\mathbf{C}_{\mathbf{m}} = (\mathbf{G}^T \mathbf{C}^{-1} \mathbf{G})^{-1}$

Wang et al., 2012

Final products estimation

Rate map

By-products

- Amplitude
- Coherence

By-products

- Amplitude
- Coherence

. . .

Examples: Eastern Tibet (XSH)

- Consistent interseismic deformation measured by InSAR and GPS
- Improvement on the constraint of locking depth using InSAR and GPS
- Slip rate: 9-12 mm/yr; locking depth: 3-6 km.

Examples: Western Tibet

• InSAR reveals internal deformation in western Tibet

Wang and Wright, 2012, GRL

Examples: Central Tibet

• InSAR reveals vertical deformation in central Tibet

Beng Co and Yadong-Gulu Rift

- Postseismic deformation following the 1951/1952 earthquakes
- Viscoelastic stress relaxation in the lower crust (viscosity = 3e19)

Ryder et al., in prep

Examples: Afar-wide swath rate map

Examples: PRD subsidence

Conclusions and future work

- SBAS method has been widely used for measuring deformation due to its easy realization.
- No general method can reliably correct atmospheric delay errors.
- Phase unwrapping is challenging and time consuming in SBAS.
- Spatial resolution is usually limited due to multi-look processing for phase unwrapping.
- Extraction of different components in InSAR time series.
- New satellites with shorter revisit time will increase coherence, thus make phase unwrapping much easier.

Thank You!

