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Plan

• Symmetric /skew symmetric patterned random matrices.

• Limiting spectral distribution (LSD).

• Extensions (joint convergence, free limit, half independence).

• Some questions.
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Example: Wigner matrix

Symmetric matrix with i.i.d. entries.

Wn =





x1,1 x1,2 x1,3 . . . x1,(n−1) x1,n
x1,2 x2,2 x2,3 . . . x2,(n−1) x2,n

...
...

...
...

...
...

x1,(n−1) x2,(n−1) x3,(n−1) . . . . . . . . .
x1,n x2,n x3,n . . . . . . . . .




. (1)



PLAN LSD Patterned matrix Moment Prop. B Words Limits Jt. conv. Collaborators Q. Supp. Ref.

Example: Toeplitz matrix

Tn =





x0 x1 x2 . . . xn−2 xn−1
x1 x0 x1 . . . xn−3 xn−2
x2 x1 x0 . . . xn−4 xn−3
...

...
...

...
...

...
xn−2 xn−3 xn−4 . . . x0 x1
xn−1 xn−2 xn−3 . . . x1 x0





.

(i , j)th entry is x|i−j|.

Toeplitz operator... Bai (1999).
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Example: Hankel matrix

Hn =





x0 x1 x2 . . . xn−2 xn−1
x1 x2 x3 . . . xn−1 xn
x2 x3 x4 . . . xn xn+1
...

...
...

...
...

...
xn−2 xn−1 xn . . . x2n−4 x2n−3
xn−1 xn xn+1 . . . x2n−3 x2n−2





.

(i , j)th entry is xi+j−2.

Hankel operator... Bai (1999).
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Example: Reverse Circulant and Symmetric Circulant

Rn =





x2 x3 x4 . . . x0 x1
x3 x4 x5 . . . x1 x2
x4 x5 x6 . . . x2 x3
...

...
...

...
...

...
x0 x1 x2 . . . xn−2 xn−1
x1 x2 x3 . . . xn−1 x0





.

(i , j)th entry is x(i+j) mod n.

This is the only k -(left shift) Circulant (k = n − 1) matrix which
is symmetric (for arbitrary input sequences).

Symmetric circulant SCn: this is the usual circulant, that is the
1-Circulant, with symmetry imposed on the matrix/sequence.
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Example: Triangular matrices

Triangular versions of the matrices. For example, the Triangular
Wigner matrix:

W u
n =





x1,1 x1,2 x1,3 . . . x1,(n−1) x1,n
x1,2 x2,2 x2,3 . . . x2,(n−1) 0

...
...

...
...

...
...

x1,(n−1) x2,(n−1) 0 . . . 0 0
x1,n 0 0 . . . 0 0




. (2)

Useful in operator theory (Dykema..).

Shall not discuss Band matrices and r -diagonal matrices.
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Other symmetries

Hadamard products of (symmetric) matrices.

Skew symmetric matrices.
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Examples: covariance, autocovariance and XX T

Sample covariance matrix (S matrix). n−1Xp×nX T
n×p, where X

is an IID matrix. So S is unadjusted. Here p, n both tend to ∞.
[More generally, the columns of X are i.i.d. p-dimensional with
dispersion matrix Σp].

n−1Xp×nX T
n×p matrices, where X is not necessarily IID but has

some specific pattern: signal processing and wireless
communication.

Sample autocovariance matrix. For any time series xt ,
1 ≤ t ≤ n,

Γn(X ) = ((γ|i−j|)) where γ(k) = n−1
n−k�

j=1

xjxk+j .

Crucial in time series analysis. It has the Toeplitz structure.
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Empirical and limiting spectral distributions:
ESD, LSD

ESD:

Fn(x) = n−1
n�

i=1

I{λi ≤ x}.

Random probability distribution with mass 1/n at each λi .

How does it behave as n → ∞?

Limiting spectral distribution (LSD): the weak limit of ESD either
almost surely or in probability.
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Assumption on entries

Any one:

1. For simplicity assume that it is uniformly bounded.

2. Entries are i.i.d. with finite second or some 4 + δ moment
(truncation).

3. Entries are independent with mean zero and variance one
with uniformly bounded moment of all orders (joint
convergence)
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Input, link and patterned matrices

Input sequence. The sequence of variables used to construct
the matrix: independent with mean zero and variance one.

Patterned matrix:

Pn = ((xL(i,j))), 1 ≤ i , j ≤ n.

Link function: L. L(i , j) = L(j , i) (implies symmetry).

Interested in LSD of n−1/2Pn. More generally in joint
convergence (limit for traces of polynomials).

When do they exist? Can we have a unified approach? What
are the nature of the limits?

Many researchers have established the LSD and its properties
for specific matrices.
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Link functions of the matrices

Wigner: L(i , j) = (min(i , j),max(i , j)).

Toeplitz: L(i , j) = |i − j |.

Hankel: L(i , j) = i + j .

Reverse Circulant: L(i , j) = (i + j) mod n, 1 ≤ i , j ≤ n.

Symmetric Circulant: L(i , j) = n/2 − |n/2 − |i − j ||, 1 ≤ i , j ≤ n.

S: L(i , j) = (i , j), LT (i , j) = (j , i).
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Wigner
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15 (scaled) Wigner matrices of order 400 with Bernoulli entries.
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Toeplitz
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normal(0, 1).
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Hankel
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15 scaled Hankel matrices of order 400 with Bernoulli entries.
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Digression to CLT: moment method and pair-partition

{xi} are independent uniformly bounded with mean zero and
variance one. Let

Yn = n−1/2(x1 + x2 + . . .+ xn).

Hence
E[Yn]

h =
1

nh/2

�

1≤i1,i2,...,ih≤n

E[xi1xi2 · · · xih ].

Taking expectation and using elementary order calculations,

E[Yn]
2k+1 = o(1)

E[Yn]
2k =

(2k)!
2kk !

+ o(1).

(2k)!
2kk !

= Total number of pair-partitions of {1, 2, . . . 2k}.

(ab....a..b..c..c...) (k letters, introduced alphabetically)
.
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Moment Method

The h-th moment of the ESD has the following nice form:

1
n

n�

i=1

λh
i =

1
n

tr(Ah) = βh(A) (say).

If

(M1) E [βh(An)] −→ βh (convergence of the average ESD).

(M2) V [βh(An)] −→ 0 (relatively easier than (M1)).

(C) {βh} satisfies Carleman’s condition:
∞�

h=1

β−1/2h
2h = ∞.

Then LSD of {An} exists (in probability).

We will focus mainly on condition (M1).
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Property B: subsequential limits, Gaussian
domination, Carleman condition

Property B: ∆, the maximum number of times any variable
appears in any row remains finite as dimension increases.

∆ = 1: Wigner and Reverse Circulant.
∆ = 2: Toeplitz, Hankel and Symmetric Circulant.

Result 1

Suppose Property B holds. Then the ESD of {n−1/2Pn} is
tight a.s.. Any subsequential limit G satisfies,

(i) β2k (G) ≤ (2k)!∆k

k!2k (implies Carleman’s condition).

(ii) β2k+1(G) = 0 (implies symmetry of G)

(iii) LSD exists for {n−1/2Pn} iff for every h,

lim E[βh(n−1/2Pn)] = βh (say). (3)
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Circuit

h-th moment of n−1/2Pn is:

1
n

Tr
�

Pn√
n

�h
=

1
n1+h/2

�

1≤i1,i2,...,ih≤n

xL(i1,i2)xL(i2,i3) · · · xL(ih−1,ih)xL(ih,i1).

(4)
Circuit π : {0, 1, 2, · · · , h} → {1, 2, · · · , n} with π(0) = π(h).

E[βh(n−1/2Pn)] =
1

n1+h/2

�

π: π circuit

EXπ

where

Xπ = xL(π(0),π(1))xL(π(1),π(2)) · · · xL(π(h−2),π(h−1))xL(π(h−1),π(h)).
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Matched and pair-matched circuits

Matched circuit: For any i , there is at least one j �= i such that

L(π(i − 1), π(i)) = L(π(j − 1), π(j)).

Pair-matched circuit: such values occur only in pairs.

π non-matched implies E(Xπ) = 0. Hence

E[βh(n−1/2Pn)] =
1

n1+h/2

�

π: π matched circuit

EXπ.

Only matched circuits matter .
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Equivalence of circuits: words

π1 and π2 are equivalent if they match at the same positions.

Equivalence class ↔ partition of {1, 2, · · · , h} ↔ word w of
length h of letters where the first occurrence of each letter is in
alphabetical order.

Example: h = 5. {{1, 3, 5}, {2, 4}} ↔ ababa.

Π(w) = Equivalence class corresponding to w .

Then
E[βh(n−1/2Pn)] =

1
n1+h/2

�

w

�

π∈Π(w)

EXπ.
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Limit moments: pair-matched words

• The first sum is a finite sum.

• EXπ = 1 for pair-matched words.

Let (for w of length h),

p(w) = lim
n

1
n1+h/2#Π(w) whenever the limit exists.

• Only pair-matched words survive if we assume Property B:

p(w) = 0 if w is not pair-matched.

Hence β2k+1 = 0 for all k .

IF p(w) exists for each pair-matched word, then

β2k =
�

w pair-matched

p(w)

(w is of length 2k ).
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The five matrices

Result 2
LSD exists for Wigner, Toeplitz, Hankel, Symmetric Circulant
and Reverse Circulant.

Wigner matrix: Wigner (1955, 1958).....

Toeplitz (and Hankel): Bryc, Dembo and Jiang (2006);
Hammond and Miller (2005).

Symmetric circulant: Bose and Mitra (2002); Bose and Sen
(2008).

Reverse circulant: Bose and Mitra (2002); Bose and Sen
(2008); Bose, Hazra and Saha (2011).
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Symmetric Circulant, Gaussian limit

• Recall that Guassian is an “upper bound”.

• For Symmetric Circulant, p(w) = 1 for all (pair-matched) w .
Hence the LSD is standard Gaussian.

• Not so for other link functions.

• Guassian limit is an “exception”.

Highly palindromic Toeplitz (symmetric) circulant. Miller,
Jackson and Pham (2012).
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Symmetric words and Reverse Circulant

Symmetric word: each letter appears exactly once in an odd
and exactly once in an even position.

abcabc is symmetric while abab is not.

There are k ! symmetric words of length 2k .

For Reverse Circulant, p(w) = 1 for all symmetric words (and 0
otherwise). Hence the LSD is

fR(x) = |x |e−x2
, −∞ < x < ∞.

This is the distribution of the symmetrized square root of
chi-square two distribution.
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Catalan words, Wigner matrix and Semi Circle law

Catalan: a symmetric word where sequentially deleting all
double letters leads to the empty word.

abcabc is symmetric but not Catalan. abccba is Catalan.

Catalan words
�

non-crossing pair-partitions
�

SRW paths, origin to origin, on or above the axis.

There are (2k)!
k!(k+1)! Catalan words of length 2k .

For the Wigner matrix p(w) = 1 if w is Catalan (and 0
otherwise). Hence the LSD is the semicircle law

fw (x) =
1

2π

�
4 − x2, −2 ≤ x ≤ 2.
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Toeplitz and Hankel

For both, p(w) = 1 if w is Catalan (Bose and Sen, 2008).

For symmetric words pT (w) = pH(w) (Bose and Sen,2008).

LSD are unbounded (Bryc, Dembo and Jiang, 2006, Hammond
and Miller, 2005).

Hankel LSD is not unimodal (Bryc, Dembo and Jiang, 2006).

Toeplitz LSD has a density which is bounded (Sen and Virag,
2011). Also, almost sure behavior of Max eval.
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Word contribution

Table : Pair-matched words and moments, X symmetric.

MATRIX w Cat. w sym.
not cat. Other w β2k or LSD

SC 1 1 1 (2k)!
2k k! , N(0, 1)

R 1 1 0 k !, ±
�

χ2
2

T 1 pT (w) �= 0, 1 pT (w) �= 0, 1 (2k)!
k!(k+1)! ≤ β2k ≤ (2k)!

k!2k

H 1 pH(w) = pT (w) 0 (2k)!
k!(k+1)! ≤ β2k ≤ k !

W 1 0 0 (2k)!
k!(k+1)! , semicircle
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Triangular matrices

Result 3 (Basu, Bose, Ganguly and Hazra, 2012)
LSD exists for triangular versions of Wigner, Toeplitz, Hankel,
Symmetric Circulant and Reverse Circulant. The LSD is
symmetric.

Moments of LSD not known except for the triangular Wigner.
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Triangular Wigner

Only Catalan words contribute but not equally.

LSD is supported in [−
√

e,
√

e] with density unbounded at 0.

β2k =
kk

(k + 1)!
.

Word pu(w)
aa 1/2

aabb 1/3
abba 1/3

aabbcc 1/4
abbcca 1/4
abbacc 5/24
aabccb 5/24
abccba 5/24
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Triangular Wigner
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Triangular Wigner. Similar distributions for other matrices.
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S matrix and XX T matrix limits

S matrix: Marčenko-Pastur (1967), Bai.....
XX T : Bose, Gangopadhyay and Sen (2010).

MATRIX w Cat. w sym.
not cat. Other w βk or LSD

p/n → 0

�
n
p (S − Ip), 1 (in p) 0 0 (2k)!

k!(k+1)! , semicircle

�
n
p (n

−1XX T − Ip),
X = T , H, R, C LT

p/n → y �= 0,∞

S 1 0 0
k−1�

t=0

1
t + 1

�
k
t

��
k − 1

t

�
yt

n−1XX T different, but universal
X = T ,H,R,C



PLAN LSD Patterned matrix Moment Prop. B Words Limits Jt. conv. Collaborators Q. Supp. Ref.

Autocovariance function and autocovariance matrix

X = {Xt}: weakly stationary process;

E(Xt) = 0 and E(X 2
t ) < ∞.

Autocovariance function (ACVF) γ(·) and the autocovariance
matrix (ACVM) Σn of order n are:

γ(k) = cov(X0,Xk ), k = 0, 1, . . . and Σn = ((γX (i − j)))1≤i,j≤n.

Σn is a Toeplitz matrix. By Szego’s theorem, its LSD is given by
f (U) where U is a uniform random variable and f (assume�

|γ(k)| < ∞) is given by

f (t) =
∞�

k=−∞
exp (−2πitk)γ(k), t ∈ (0, 1]. (5)
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Assumptions

X = {Xt}t∈Z is a linear (MA(∞)) process

Xt =
∞�

k=0

θkεt−k (6)

where {εt , t ∈ Z} is a sequence of random variables which are
either

(a) {εt} are i.i.d. with E[εt ] = 0 and E[ε2
t ] = 1.

OR
(b) {εt} are independent, uniformly bounded with E[εt ] = 0 and
E[ε2

t ] = 1.

Further, assume
�∞

j=0 |θj | < ∞.
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LSD of sample autocovariance matrix

γ(k) are estimated by γ̂(k) = n−1
n−|k |�

i=1

XiXi+|k |.

The corresponding Sample autocovariance matrix is given by

Γn = ((γ̂(i − j)))1≤i,j≤n. (7)

Result 4 (Basak, Bose and Sen, 2013)
(i) The LSD of Γn exists.

(ii) The LSD is unbounded.

(iii) The LSD is never equal to f (U) (inconsistency).

Tapering or banding alleviates this problem.
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Skew symmetric

Wigner, Toeplitz and Symmetric circulant–remain unchanged.

Hankel and reverse circulant–changes , no closed form,
(unimodal?).
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Joint convergence: non-commutative prob. space

Non-commutative probability space: (A, φ). A is a unital
algebra, φ : A → C is a linear functional satisfying φ(1) = 1.

An = n × n real symm. random matrices, φn = 1
n [Tr(·)].

A = algebra of polynomials in J non-commutative variables
a1, . . . , aJ .

Result 7 (Bose, Hazra and Saha, 2011)
Consider J (indices) sequences of independent matrices
{Ai,n, 1 ≤ i ≤ J} where the link function L satisfies Property B.
If p(w) exists, then for any k and any monomial,

lim Tr
�1
n

Ai1,n√
n

. . .
Aik ,n√

n
�
= limφn(ai1 . . . aik ) = φ(ai1 . . . aik ) (say)

exists almost surely. (An, φn) → (A, φ).
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Joint convergence: total, free and half independence

• Symmetric Circulants commute.
Each index pair-matched word contributes 1: totally indept.

• The Wigner limit.
Each indexed Catalan word contributes 1: free independent.

• The Reverse Circulants satisfy ABC = CBA (half commute).
Each indexed symmetric word contributes 1: half independent.

It is not known what type of dependence is exhibited by Toeplitz
and Hankel matrices.
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Colors and indices

Different patterns: colors. So we have five colors (Wigner,
Toeplitz, Hankel, Symmetric Circulant and Reverse Circulant).

Multiple copies: indices.

Result 8 (Basu, Bose, Ganguly and Hazra, 2012)

(i) Joint convergence holds if we have several indices of all the
five colors.

(ii) The Wigner matrices are free of any of the other matrices
(one color at a time).
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Remarks

(i) Property B implies convergence of the moments ↔
existence of LSD. Subsequential limits always exist. What
further restrictions on the link function implies the convergence
of moments?

(ii) Under what conditions on the link does the LSD have
bounded or unbounded support? Density? One mode?

(iii) Classes of limits possible under Property B ?

(iv) More on classes of contributing words and link functions?

(v) More about the LSD of T, H ?

(vi) More about the LSD of triangular T, H, ...?

(v) Further properties of joint convergence?
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Half independence

Symmetric elements. {ai}i∈J ⊂ A. For any {ij} ⊂ J, let
a = ai1ai2 · · · aik .

Let Ei(a) and Oi(a) = the number of times ai has occurred in
the even/odd positions in a.

a is symmetric (wrt {ai}i∈J ) if Ei(a) = Oi(a) for all i ∈ J.

Half independent elements. Suppose {ai}i∈J half commute
(that is aiajak = akajai for all i , j , k ).

{ai} are half independent if the following conditions are
satisfied.

1. {a2
i }i∈J are independent (joint moment splits).

2. For all non-symmetric a, φ(a) = 0.
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Boundedness assumption

kn = #{Lk (i , j) : 1 ≤ i , j , k ≤ n},
αn = max

k
#{(i , j) : Ln(i , j) = k , 1 ≤ i , j ≤ n}.

αn = 2 for Wigner and αn = O(n) for Symmetric Circulant,
Reverse Circulant, Toeplitz and Hankel.

kn = O(n2) for Wigner and kn = O(n) for Symmetric
Circulant, Reverse Circulant, Toeplitz and Hankel.

Result
(The i.i.d. case): if αnkn = O(n2), kn → ∞, then it is enough to
restrict to bounded inputs among finite variance inputs.

Alternate assumption: (The non-i.i.d. case) Any power of the
input sequence is uniformly integrable.
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