

2484-13

ICTP-IAEA Joint Workshop on Nuclear Data for Science and Technology: Medical Applications

30 September - 4 October, 2013

Molecular Imaging Part I: SPECT

H. Herzog Institute of Neuroscience and Medicine - 4 Forschungszentrum Juelich Germany

Molecular Imaging Part I: SPECT

Hans Herzog

Institute of Neuroscience and Medicine - 4

Forschungszentrum Jülich

Nuclear Medicine

 Planar Scintigraphy: Imaging of Metabolism

 SPECT(omography): same + spatial localisation

PET(omography)
same + quantitative

Bone Scans with ⁹⁹mTc-MDP

R 6206

Rheumatic Arthritis

Normal

Chondrosarcoma

Using the Dynamics: Kidney Function

The Tomographic Approach

The Tomographic Approach

Three SPECT projections angled by 120°

Reconstructed SPECT image

Image Reconstruction: Backprojection of the Measured Projections and Superposition

Filtered Backprojetion

Analytic Reconstruction by Reprojection and Superposition

Algebraic Reconstruction by Iterative Solution of a Matrix Equation

 $P_i = S_{ij} A_j$

i = 1 , ... , 288 x 144 j = 1 , ... , 128 x 128 l x J = 679.477.248

Analytic Reconstruction by Reprojection and Superposition

Algebraic Reconstruction by Iterative Solution of a Matrix Equation

Requirements to Images

- Optimal Resolution
- Minimal Artifacts
- Linearity
- (Quantification)

Viewing Single Photons with a Gamma Camera

Scintillation Detector and Gamma Camera

Collimation and Multiple Head Camera

Projection Equation for SPECT

Term of attenuation not extractable:

No analytic solution of projection equation

Absorption Artifact in Heart-SPECT

without

Attenuation correction

with

Attenuation Correction before Reconstruction (pre-processing) (Sörensen, 1971; Larsson,1980)

Prerequisites:

- •Conjugate measurement: Geometric mean of opposite projections
- •Homogenous attenuation
- Homogenous radioactivity

$$c_1 = k A e^{-\mu l_1}$$
 $c_2 = k A e^{-\mu l_2}$

 $\begin{array}{l} \mathsf{AF} = (1 - e^{-\mu l}) / \mu l \\ (c_1 c_2)^{1/2} = k \ A \ e^{-\mu \ (l_1 + l_2)/2} \\ \mathsf{P}^{\mathrm{corr}}(\mathbf{r}, \alpha) &= \mathsf{P}^{\mathrm{geo}}(\mathbf{r}, \alpha) / \mathsf{AF} = \int \mathsf{A}(\mathbf{x}, \mathbf{y}) \ \mathsf{d}l(\mathbf{r}, \alpha) \end{array}$

Attenuation Correction after Reconstruction (post-processing) (Chang, 1978)

- Reconstruction of projection data recorded over 360°
- Calculation of correction matrix:

$$K(x,y) = \left[\frac{1}{M}\sum_{i=1}^{M} e^{-\mu L_i(x,y,\theta)}\right]^{-1}$$

• Multiplication of reconstructed image with *K*(*x*,*y*)

Inclusion of Attenuation Correction into the Iterative Reconstruction

Calculation of Attenuation Map Using a Transmission Scan by CT

Emission Scan

 $\ln \frac{I_o}{I} = \int \mu (x,y) dI, \implies CT$: Image of Hounsfield Units (HU)

HU = μ (X-Ray) \Rightarrow μ (140 keV)

Institut für Medizin Forschungszentrum Jülich

Measured Attenuation at 140 keV:

Using Transmission Sources

Hendel et al., (3) 2002, JNM

Determination of Attenuation

External Radiation Source

- true measure of patient-specific attenuation
- CT approach to measure density distribution within patient

Unique Iterative Pre-Correction

- convergence achieved faster than conventional approaches
- improved accuracy over conventional filtered backprojection

"Profile" Attenuation Correction by SIEMENS

Attenuation Images

Single Photon Emitters Used for SPECT

Radionuclide	Gamma Energy (keV)	Half-life (h)
99mTc	140	6.1
123	159	13.2
201 TI	70/169	72
¹¹¹ In	171/245	67
⁶⁷ Ga	93/185/300	

Three SPECT projections angled by 120°

The rotation of a SPECT camera may last for many minutes.

During the rotation the distribution of the SPECT tracer must not change.

Institut für Medizin Forschungszentrum Jülich

SPECT: Myocardial Perfusion with ²⁰¹TI-Chloride

Exercise Rest

Ischemia

Exercise Rest

Infarction

Diabetes: Disturbed Cardial Autonomic Innervation

Automatic Determination of the Heart Ejection Fraction with ^{99m}Tc-Sestamibi-Perfusion-SPECT

Germano et al., JNM 2138ff (1995)

Cerebral Perfusion with ^{99m}**Tc-HMPAO**

Normal

Malignant Tumor

Cerebral Perfusion with ¹²³I-IMP

Yokoi et al., JNM 1993

Dopamine Transporter: ¹²³I-ß-CIT

Kuikka et al., EJNM 783ff (1993)

Morbus Parkinson

SPECT Imaging in Parkinson`s Disease

Focus of Seizure

Hypoperfusion SISCOM

Perfusion SPECT with ^{99m}Tc-ECD or ¹²³**I-HMPAO** O'Brien, Neurology, 1999, 137pp

Imaging of Brain Tumours with ¹²³I-α-methyl-tyrosine (¹²³I-IMT)

Imaging of Brain Tumours with ¹²³I-2-iodo-tyrosine (¹²³I-2IT)

Keyrarts, EJNMMI, 2007, 994pp

Regional Ventilation of Lunge: dynamic SPECT with ¹³³Xe

Combined Ventilation/Perfusion SPECT of Lung with ^{81m}Kr and ^{99m}Tc-MAA

Superimposed with CT by software

Ohno et al., Acad Radiol, 2007

а.

Bone SPECT with ^{99m}**Tc-MDP**

Tahmasebi et al., BMC Nuclear Medicine, 2007

Dual Isotope SPECT with Model-Based Crosstalk Compensation

SPECT/CT SPECT CT.

http://www.medical.siemens.com

Highlight Lecture SNM-Meeting 2012:

SPECT/CT is increasingly becoming the standard of care over simple planar imaging for many clinical nuclear medicine imaging applications.

All the major camera manufacturers are now involved in production and marketing.

SPECT/CT

Siemens: Symbia

Philips: BrightView XCT

Mediso: AnyScan SC

GE: Discovery NM/CT 670

SPECT/CT with [^{99m}Tc]nanocolloid for Sentinal Node Imaging in Prostate Cancer

SPECT

SPECT/CT

Vermeeren L et al., J Nucl Med 2009

SPECT/CT with [¹²³I]

Lingual ectopic thyroid tissue

Vercellino L et al., EJNMMI 2011

SPECT/CT with ^{99m}**Tc-MDP**

Suspicion of iliosacral joint arthritis

Scheyerer MJ et ak., EJNMMI 2013 (in press)

Animal Multipinhole SPECT

Thank you

Institut für Medizin Forschungszentrum Jülich

Appendix

Institut für Medizin Forschungszentrum Jülich

What about

Quantitation

Using SPECT ??

To quantify radioactivity using SPECT you must do scatter correction in addition to attenuation correction

Very Simple Scatter Correction

Use µ = 0.12 cm⁻¹ instead of 0.154 cm⁻¹,

so that the attenuation correction becomes less

> Institut für Medizin Forschungszentrum Jülich

Scatter Correction Using a Double Window Method

Institut für Medizin Forschungszentrum Jülich

Locally Variable Scatter-Correction Using the Klein-Nishina-Formula

(Jonsson, 2001)

 $P^{scatt} = S_A + S_B = \int [t_A(E) - t_B^*(E) + 2Fm KN(E)] dE$

Institut für Medizin Forschungszentrum Jülich

