

2484-12

ICTP-IAEA Joint Workshop on Nuclear Data for Science and Technology: Medical Applications

30 September - 4 October, 2013

Compilation and standardization of data

TARKANYI Ferenc Tibor Institute of Nuclear Research, Hungarian Academy of Sciences Debrecen Hungary

Compilation and standardization of data

Workshop on Nuclear Data for Science and Technology: Medical Applications 30 September to 04 October 2013, Miramare – Trieste, Italy

F. Tárkányi-ATOMKI HUNGARY

- Applied nuclear data users seldom rely on numerical data extracted directly from original publications. Instead, they utilize evaluated (recommended) data. These are values distilled from consideration by experienced evaluators of the body of existing experimental and theoretical numerical results. Evaluators strive to produce the most reliable possible recommendations, based on critical assessments of the quality of data available from the reported scientific studies. This applies to both nuclear structure and nuclear reaction data (*e.g.*, reaction cross sections).
- In earlier times, the evaluation of nuclear reaction data often involved drawing smooth eye guides through plots of measured experimental data extracted from the literature. The "error" bars (uncertainties) shown in these plots inevitably influenced evaluators, but only subjectively. This approach is no longer viewed as acceptable. More sophisticated and objective data evaluation procedures have evolved during the last several decades. Weights are assigned to nuclear reaction data sets, according to their perceived quality. Judgments on quality are based on both the uncertainties quoted by authors and evaluator impressions as to the reliability of these estimates.
- It is important for experimenters to provide reasonable and well-documented uncertainty data for their reported results, regardless of which physical parameters are measured.

Nuclear Data Sheets 113 (2012) 3006–3053

Topics

Workshop on Nuclear Data for Science and Technology: Medical Applications 30 September to 04 October 2013, Miramare – Trieste, Italy

- Flow chart of measurement, processing and application of nuclear data
- Why not only model results?
- Nuclear data in nuclear medicine
- Nuclear data needs in medical applications
- Present work: nuclear reaction data for production of medical radioisotopes and CP beam monitoring
- The data evaluation process
 Status of experimental database
 Compilation of experimental data
 Correction and selection of th experimental data
 Fitting methods
- Development and status of the evaluated nuclear reaction database for production of diagnostic and therapeutic radioisotopes and charged particle monitor reactions

Flow chart of measurement, processing and application of nuclear data

Workshop on Nuclear Data for Science and Technology: Medical Applications 30 September to 04 October 2013, Miramare – Trieste, Italy

- Data measurement
- Compilation
- Critical analysis
- Selection
- Model calculation
- Evaluation
- Application

Nuclear reaction theory and model calculations

Workshop on Nuclear Data for Science and Technology: Medical Applications 30 September to 04 October 2013, Miramare – Trieste, Italy

- Application field (complementary to experiments) Many CPND to evaluate Very difficult to measure Unpredictable time delay Expensive, manpower
- A priory model calculations

•

To show the tendencies To filter the controversial data To make more realistic estimations To make quick estimations *Very limited accuracy, "approximately*"

- Models with appropriate parameters based on experimental data
- The present power:

For extrapolation and interpolation of experimental data To predict unknown nuclear data like cross section, angular and energy distribution, double differential cross sections To check inconsistencies between measurements

alomki.

Nuclear data needs for medical applications

Workshop on Nuclear Data for Science and Technology: Medical Applications 30 September to 04 October 2013, Miramare – Trieste, Italy

Field of	Type of nuclear data			
application				
	Decay	Reaction	Structure	
Diagnostics				
SPECT	yes	yes	(th)	
PET	yes	yes	(th)	
Therapy				
endo	yes	yes	(th)	
tele				
Χ	no	no	no	
γ	yes	yes	(th)	
e	yes	yes	(th)	
р	yes	yes	(th)	
n	yes	yes	(th)	
HI	yes	yes	(th)	
Others	yes	yes	(th)	

Other medical related nuclear data needs

Workshop on Nuclear Data for Science and Technology: Medical Applications 30 September to 04 October 2013, Miramare – Trieste, Italy

- Standard data for monitoring beam parameters
- Standard data for dosimetry
- Radiation safety

Present lecture

Workshop on Nuclear Data for Science and Technology: Medical Applications 30 September to 04 October 2013, Miramare – Trieste, Italy

F. Tárkányi-ATOMKI HUNGARY

Cross section data related to medical isotope production:

production cross sections

production yields

CP monitor reactions

Radioisotope production

Workshop on Nuclear Data for Science and Technology: Medical Applications 30 September to 04 October 2013, Miramare – Trieste, Italy

- Nuclear reaction data in radioisotope production are needed mainly for optimization of production routes
- Selection of the optimal production route
- Selection of the projectile energy range
- Minimize the radioactive impurities
- Real practical importance:
 - Few hundred cyclotrons
 - Many nuclear reactors

Data evaluation

Workshop on Nuclear Data for Science and Technology: Medical Applications 30 September to 04 October 2013, Miramare – Trieste, Italy

- Before being used in applications, the experimental and theoretical data must pass through an evaluation stage.
- Detailed compilation and critical review of experimental and theoretical data to make the necessary corrections and to select the best data.
- Derivation of preferred values by appropriate combination of different processes (fitting, theory, systematics).
- Recommended data are generated in different ways dependent on the available experimental data, on the capability of the model codes, on the requested accuracy of the application.

Process of data evaluation

Workshop on Nuclear Data for Science and Technology: Medical Applications 30 September to 04 October 2013, Miramare – Trieste, Italy

Definition of (ND) Evaluation

Workshop on Nuclear Data for Science and Technology: Medical Applications 30 September to 04 October 2013, Miramare – Trieste, Italy

F. Tárkányi-ATOMKI HUNGARY

A properly weighted combination (usually by GLSQ fit) of selected experimental data (and nuclear reaction modeling results).

"Non-model"; GLSQ fit: standards

Model prior + GLSQ fit

R. Capote EFNUDAT Workshop, Paris

Overview of Nuclear Data Evaluation Methods

Workshop on Nuclear Data for Science and Technology: Medical Applications 30 September to 04 October 2013, Miramare – Trieste, Italy

- Selection of experimental data and EXFOR
- Experimental uncertainties and correlations
- Modeling uncertainties

Model defects

Model parameters

- GLSQ
- UMC formulation
- UMC+TMC

R. Capote EFNUDAT Workshop, Paris

Main steps of the evaluation

Workshop on Nuclear Data for Science and Technology: Medical Applications 30 September to 04 October 2013, Miramare – Trieste, Italy

· Evaluation of experimental data

Collection Data analysis Comparison Correction Analysis of existing model results and syst. New measurements Critical assessment and selection

Experimental data processing

Data fit Legendre polynomials Orthogonal polynomials Spline functions Rational functions Fitted model results Eye guide

• Experiment based model calculations

Different models, different capabilities for different parameters for different energy ranges Adjusted model input parameters to agree with experimental results

Collection of experimental data

Workshop on Nuclear Data for Science and Technology: Medical Applications 30 September to 04 October 2013, Miramare – Trieste, Italy

- Scientist, specialist in the field!!!
- Collection
 - Full use of all available data
 - Importance of original publications
 - Database bibliography
- Data analysis
 - Method of measurements
 - Experimental technique
 - **Error calculation**
 - Nuclear data
 - Laboratory
 - Definitions
 - Purpose
 - Data evaluation
- Correction for misrepresentation of experimental technique
- Correction according to new standard data
- Comparison
- The data are plotted to compare with other experimental results
- Analysis of existing model results and systematics for orientation (threshold, magnitude, shape)
- New measurements Dedicated, if necessary

Critical analysis and selection

Workshop on Nuclear Data for Science and Technology: Medical Applications 30 September to 04 October 2013, Miramare – Trieste, Italy

- Necessary corrections, if the data are important and the correction is reasonable
- Single and simultaneous evaluation and selection process
- Equal weight selection or deselecting of minority data sets
- Normalization of systematically amplitude shifted data to fill the gaps
- Main problem: lack of information in the publications

Experimental data processing

Workshop on Nuclear Data for Science and Technology: Medical Applications 30 September to 04 October 2013, Miramare – Trieste, Italy

F. Tárkányi-ATOMKI HUNGARY

• Data fit

Legendre polynomials Orthogonal polynomials Spline functions Rational functions Fitted model results (ALICE, GNASH, EMPIRE, TALYS) Eye guide

- Problems
- Realistic uncertainties

 Covariances
 Scattered points
 Not existing resonances
 Existing resonances
 Energy scale problems

IAEA CRP for standardization of cross section databases for medical radioisotope production and beam monitoring

Workshop on Nuclear Data for Science and Technology: Medical Applications 30 September to 04 October 2013, Miramare – Trieste, Italy

- Charged Particle Cross-Section Database for Medical Radioisotope Production: Diagnostic Radioisotopes and Monitor Reactions (1996-2001) CRP-I
- <u>IAEA-TECDOC-1211</u>
- Nuclear Data for the Production of Therapeutic Radionuclides (2003-2007) CRP-II
- TECHNICAL REPORTS SERIES NO. 473 STI/DOC/010/473
- Nuclear Data for Charged-particle Monitor Reactions and Medical Isotope Production (2012-2016) CRP-III

Workshop on Nuclear Data for Science and Technology: Medical Applications 30 September to 04 October 2013, Miramare – Trieste, Italy

Charged Particle Cross-Section Database for Medical Radioisotope Production: Diagnostic Radioisotopes and Monitor Reactions (1996-2001) CRP-I

CRP-I Monitor Reactions

Workshop on Nuclear Data for Science and Technology: Medical Applications 30 September to 04 October 2013, Miramare – Trieste, Italy

F. Tárkányi-ATOMKI HUNGARY

Protons	Deuterons	³ He-particles	Alpha- particles
$\frac{^{27}\text{Al}(p,x)^{22}\text{Na}}{}$	$\frac{2^{7}\mathrm{Al}(\mathrm{d},\mathrm{x})^{22}\mathrm{Na}}{2}$	$\frac{27}{\text{Al}(^{3}\text{He},x)^{22}\text{Na}}$	$\frac{{}^{27}\text{Al}(\alpha,x){}^{22}\text{Na}}{}$
$\frac{27}{\text{Al}(p,x)^{24}\text{Na}}$	$\frac{27}{\text{Al}(d,x)^{24}\text{Na}}$	$\frac{27\text{Al}(^{3}\text{He},\text{x})^{24}\text{Na}}{2}$	$\frac{{}^{27}\text{Al}(\alpha,x){}^{24}\text{Na}}{}$
$\frac{^{nat}Ti(p,x)^{48}V}{}$	$\frac{^{nat}Ti(d,x)^{48}V}{}$	$\frac{\text{nat}}{\text{Ti}(^{3}\text{He,x})^{48}\text{V}}$	$\frac{^{nat}Ti(\alpha,x)^{51}Cr}{}$
^{nat} Ni(p,x) ⁵⁷ Ni	$\frac{^{nat}Fe(d,x)^{56}Co}{}$		$\frac{^{na}tCu(\alpha,x)^{66}Ga}{}$
$\frac{^{nat}Cu(p,x)^{56}Co}{}$	$\frac{^{nat}Ni(d,x)^{61}Cu}{^{10}Cu}$		$\frac{^{nat}Cu(\alpha,x)^{67}Ga}{}$
$\frac{^{nat}Cu(p,x)^{62}Zn}{^{nat}Cu(p,x)^{62}Zn}$			$\frac{^{nat}Cu(\alpha,x)^{65}Zn}{}$
$\frac{^{nat}Cu(p,x)^{63}Zn}{^{10}}$			

 $^{nat}Cu(p,x)^{65}Zn$

CRP-I Gamma emitters

Workshop on Nuclear Data for Science and Technology: Medical Applications 30 September to 04 October 2013, Miramare – Trieste, Italy

⁶⁷ Ga	¹²³ I	⁸¹ Rb	²⁰¹ Pb
$\frac{^{67}}{\text{Zn}(p,n)}^{67}\text{Ga}$	$\frac{123}{123}$ Te(p,n) ¹²³ I	$\frac{^{82}\text{Kr}(p,2n)^{81}\text{Rb}}{2}$	$\frac{203}{10}$ Tl(p,3n) ²⁰¹ Pb
$\frac{^{68}\text{Zn}(p,2n)^{67}\text{Ga}}{}$	$\frac{124}{124}$ Te(p,2n) ¹²³ I	$\frac{^{nat}Kr(p,x)^{81}Rb}{^{10}}$	$\frac{203}{203}$ Tl(p,2n) 202m Pb
	$\frac{124}{124}$ Te(p,n) ¹²⁴ I		$\frac{203}{10}$ Tl(p,4n) ²⁰⁰ Pb
¹¹¹ In	¹²³ Xe	¹²³ Cs	
$\frac{111}{110}$ Cd(p,n) ¹¹¹ In	$\frac{127}{1}$ I (p,5n) ¹²³ X e	$\frac{124}{2}$ Xe(p,2n) ¹²³ Cs	
$\frac{112}{112}$ Cd(p,2n) ¹¹¹ In	127 I(p,3n) 125 Xe	124 Xe(p,pn) 123 Xe	

CRP-I- Positron emitters

Workshop on Nuclear Data for Science and Technology: Medical Applications 30 September to 04 October 2013, Miramare – Trieste, Italy

Typical example (all data)

Workshop on Nuclear Data for Science and Technology: Medical Applications 30 September to 04 October 2013, Miramare – Trieste, Italy

Selected data and fitted curves

Workshop on Nuclear Data for Science and Technology: Medical Applications 30 September to 04 October 2013, Miramare – Trieste, Italy

Workshop on Nuclear Data for Science and Technology: Medical Applications 30 September to 04 October 2013, Miramare – Trieste, Italy

Nuclear Data for the Production of Therapeutic Radionuclides CRP-II

CRP-II Production by reactors

Workshop on Nuclear Data for Science and Technology: Medical Applications 30 September to 04 October 2013, Miramare – Trieste, Italy

- Evaluation of fission yields for production of ⁹⁰Y,¹³¹I and ¹³⁷Cs radionuclides.
- Nuclear data for the production of ⁶⁴Cu, ^{114m}In, ¹⁶⁶Ho, ¹⁶⁹Yb, ¹⁷⁷Lu, ¹⁸⁶Re and ¹⁸⁸Re radionuclides through capture channels and decay.
- Nuclear data for the production of ³²P, ⁶⁴Cu, ⁶⁷Cu,⁸⁹Sr, ⁹⁰Y and
 ¹⁵³Sm radionuclides through the charge-exchange (n, p) channel.

Example ¹⁸⁶W neutron capture cross-section.

Workshop on Nuclear Data for Science and Technology: Medical Applications 30 September to 04 October 2013, Miramare – Trieste, Italy

74-W-186(N,G),SIG 10-10 10-8 10-6 10-4 10-2 10² nW-186_CRP 10⁵ 105 🗆 2004 Karadag 🔷 2004 Vuong Huu Tan 🔺 2001 Guohui Zhang o 1992 Voignier 1987 Knopf 🕂 1907 Trofimov 104 104 🙁 1986 Bokhovko 🛛 1983 Macklin 🕺 1981 Anufriev 1989, Magnusson = 1979 Bradley 10³ 10³ \ 1977 Gleason 🕹 1976 Lindner 👃 1976 Schwerer 🕸 1976 Valkonen § 1974 Siddappa 10² 0 1970 Hogg 10² 🗅 1970 Diksic (barns) 🤝 1968 Zaikin 🛛 1967 Damle 1966 Friesenhahn 1966 Kapchigashev section 10 - 0 1966 Block 10 🕺 1965 Chaubey ♦ 1962 Miskel Cross 1960 Lyon 🔺 1960 Stavisskii 👳 1959 Johnsrud 📐 1959 Lyon **1958 Booth** 1958 Kononov 📏 1958 Leipunskij 4 1958 Pasechnik 10-1 10-1 🐨 1958 Perkin 💊 1957 Macklin 1952 Pomerance 🛯 1949 Beghian 1947 Seren 10-2 10-2 10⁻³ 10-3 10-10 10^{-8} 10-6 10^{-4} 10-2 10^{2} 1 E (MeV)

CRP-II Production by accelerators-I

Workshop on Nuclear Data for Science and Technology: Medical Applications 30 September to 04 October 2013, Miramare – Trieste, Italy

F. Tárkányi-ATOMKI HUNGARY

 $\frac{{}^{103}\text{Pd}}{{}^{103}\text{Rh}(p,n){}^{103}\text{Pd}}$ $\frac{{}^{103}\text{Rh}(p,pn){}^{102}\text{Rh}}{{}^{103}\text{Rh}(d,2n){}^{103}\text{Pd}}$ $\frac{{}^{103}\text{Rh}(d,p2n){}^{102}\text{Rh}}{{}^{103}\text{Rh}(d,p2n){}^{102}\text{Rh}}$

 $\frac{{}^{186}\text{Re}}{{}^{186}\text{W}(p,n){}^{186}\text{Re}}}{{}^{186}\text{W}(d,2n){}^{186}\text{Re}}$

 $\frac{{}^{192}\text{Ir}}{{}^{192}\text{Os}(p,n){}^{192}\text{Ir}}}{{}^{192}\text{Os}(d,2n){}^{192}\text{Ir}}$

CRP-II Production by accelerators-II

Workshop on Nuclear Data for Science and Technology: Medical Applications 30 September to 04 October 2013, Miramare – Trieste, Italy

$ \frac{{}^{64}Cu}{{}^{64}Ni(p,n)}{}^{64}Cu} \\ \frac{{}^{64}Ni(d,2n)}{{}^{64}Cu}} \\ \frac{{}^{68}Zn(p,x)}{{}^{64}Cu} \\ \frac{{}^{nat}Zn(d,x)}{}^{64}Cu} $	$\frac{{}^{67}Cu}{{}^{68}Zn(p,2p)}^{67}Cu}{{}^{70}Zn(p,\alpha)}^{67}Cu}$	$ \frac{{}^{67}Ga}{{}^{67}Zn(p,n)}{}^{67}Ga}{{}^{68}Zn(p,2n)}{}^{67}Ga} $	⁸⁶ Y ⁸⁶ Sr(p,n) ⁸⁶ Y
$\frac{{}^{111}\text{In}}{{}^{111}\text{Cd}(p,n)^{111}\text{In}}}{{}^{112}\text{Cd}(p,2n)^{111}\text{In}}$	$\frac{{}^{114m}In}{{}^{114}Cd(p,n)^{114m}In}$ $\frac{{}^{114}Cd(p,2n)^{114m}In}{{}^{116}Cd(p,3n)^{114m}In}$	$\frac{{}^{124}\mathrm{I}}{{}^{124}\mathrm{Te}(\mathrm{p},\mathrm{n}){}^{124}\mathrm{I}}$ $\frac{{}^{125}\mathrm{Te}(\mathrm{p},2\mathrm{n}){}^{124}\mathrm{I}}{{}^{124}\mathrm{Te}(\mathrm{d},2\mathrm{n}){}^{124}\mathrm{I}}$	$\frac{{}^{125}I}{{}^{125}Te(p,n){}^{125}I}}{{}^{124}Te(d,n){}^{125}I}$
$\frac{{}^{169}\text{Yb}}{{}^{169}\text{Tm}(p,n)}{}^{169}\text{Yb}}{{}^{169}\text{Tm}(d,2n)}{}^{169}\text{Yb}}$	$\frac{{}^{177}Lu}{{}^{176}Yb(d,n){}^{177}gLu}}{\frac{{}^{176}Yb(d,p){}^{177}Yb}}{{}^{176}Yb(d,x){}^{177}gLu}}$	$\frac{{}^{211}At}{{}^{209}Bi(\alpha,2n)^{211}At}}$ $\frac{{}^{209}Bi(\alpha,3n)^{210}At}{{}^{209}Bi(\alpha,3n)^{210}At}$	$\frac{^{225}Ac}{^{226}Ra(p,2n)^{225}Ac}$

Workshop on Nuclear Data for Science and Technology: Medical Applications 30 September to 04 October 2013, Miramare – Trieste, Italy

F. Tárkányi-ATOMKI HUNGARY

Nuclear Data for Charged-particle Monitor Reactions and Medical Isotope CRP-III

CRP-III Monitor reaction

Workshop on Nuclear Data for Science and Technology: Medical Applications 30 September to 04 October 2013, Miramare – Trieste, Italy

 $\frac{\text{nat}}{Mo(p,x)}^{96g+m}Tc$

Protons	Deuterons	³ He-particles	Alpha- particles
$\frac{^{27}\text{Al}(p,x)^{22}\text{Na}}{}$	$\frac{^{27}\text{Al}(d,x)^{22}\text{Na}}{}$	$\frac{27}{\text{Al}(^{3}\text{He,x})^{22}\text{Na}}$	$\frac{27}{\text{Al}(\alpha,x)^{22}\text{Na}}$
$\frac{27}{\text{Al}(p,x)^{24}\text{Na}}$	$\frac{27}{\mathrm{Al}(\mathrm{d},\mathrm{x})^{24}\mathrm{Na}}$	$\frac{27\text{Al}(^{3}\text{He,x})^{24}\text{Na}}{}$	$\frac{27}{\text{Al}(\alpha,x)^{24}\text{Na}}$
$\frac{^{nat}Ti(p,x)^{48}V}{}$	$\frac{\operatorname{nat}\operatorname{Ti}(d,x)^{48}\mathrm{V}}{48}$	$\frac{^{nat}\text{Ti}(^{3}\text{He,x})^{48}\text{V}}{}$	$\frac{^{nat}Ti(\alpha,x)^{51}Cr}{}$
$^{nat}Cu(p,x)^{56}Co$	$\frac{^{nat}Ni(d,x)^{61}Cu}{^{nat}Ni(d,x)^{61}Cu}$		$\frac{^{nat}Cu(\alpha,x)^{67}Ga}{^{10}}$
$^{nat}Cu(p,x)^{62}Zn$	$\frac{^{nat}Ti(d,x)^{46}Sc}{}$		$\frac{^{nat}Cu(\alpha,x)^{65}Zn}{^{10}}$
$^{nat}Cu(p,x)^{63}Zn$	^{nat} Ni(d,x) ^{56,58} Co		
$^{nat}Cu(p,x)^{65}Zn$	$\frac{^{nat}Cu(d,x)^{62,63,65}Zn}{^{nat}Cu(d,x)^{62,63,65}Zn}$		

alomki.

CRP-III- Gamma Emitters

Workshop on Nuclear Data for Scie 30 September to 04 October 2013,	F. Tárkányi-ATOMKI HUNGARY	alomki.				
	⁶⁷ Ga	¹²³ I	⁸¹ Rb	²⁰¹ Pb		
	$\frac{67}{2n(p,n)}^{67}Ga$	$\frac{123}{123}$ Te(p,n) $\frac{123}{123}$ I	$\frac{^{82}\text{Kr}(p,2n)^{81}\text{Rb}}{}$	$\frac{203}{10}$ Tl(p,3n) ²⁰¹ Pb		
	$\frac{68}{2n(p,2n)}$ Constant $\frac{67}{63}$ Constant \frac	$\frac{124}{124}$ Te(p,2n) ¹²³ I	$\frac{^{nat}Kr(p,x)^{81}Rb}{^{1}}$	$\frac{20}{3}$ Tl(p,2n) ^{202m} Pb		
		$\frac{124}{124}$ Te(p,n) ¹² 4I		$\frac{203}{10}$ Tl(p,4n) ²⁰⁰ Pb		
	¹¹¹ In	¹²³ Xe	¹²³ Cs	⁹⁹ Mo		
	$\frac{111}{Cd(p,n)}$ ¹¹¹ In	$\frac{127}{I(p,5n)^{123}Xe}$	$\frac{124}{2}$ Xe(p,2n) ¹²³ Cs	¹⁰⁰ Mo(n,2n) ⁹⁹ Mo		
	$\frac{112}{112}$ Cd(p,2n) ¹¹¹ In	$\frac{12}{7}I(p,3n)^{125}Xe$	¹²⁴ Xe(p,pn) ¹²³ Xe	¹⁰⁰ Mo(p,pn) ⁹⁹ Mo		
			¹²⁴ Xe(p,x) ¹²¹ I	¹⁰⁰ Mo(d,p2n) ⁹⁹ Mo		
				¹⁰⁰ Mo(γ,n) ⁹⁹ Mo		
				$\frac{^{238}\mathrm{U}(\gamma,f)^{99}\mathrm{Mo}}{}$		
	^{99m} Tc	⁵¹ Cr				
	¹⁰⁰ Mo(p,2n) ^{99g+m} Tc	^{nat} Fe(p,x) ⁵¹ Cr				
	¹⁰⁰ Mo(d,3n) ^{99g+m} Tc	⁵¹ V(p,n) ⁵¹ Cr				
		${}^{51}V(d,2n){}^{51}Cr$				

 $^{nat}Ti(\alpha,x)^{51}Cr$

CRP-III Positron emitters-I

Workshop on Nuclear Data for Science and Tech 30 September to 04 October 2013, Miramare – T	F. Tárkányi-ATOMKI HUNGARY	alomki				
	¹¹ C	¹³ N	¹⁵ O	¹⁸ F		
	$\frac{14}{N(p,\alpha)^{11}C}$	$\frac{^{16}O(p,\alpha)^{13}N}{^{16}O(p,\alpha)^{13}N}$	$\frac{15}{N(p,n)^{1}50}$	$\frac{^{18}O(p,n)^{18}F}{^{18}O(p,n)^{18}F}$		
			$\frac{14}{N(d,n)^{15}O}$	$\frac{^{nat}Ne(d,x)^{18}F}{}$		
	⁶⁸ Ge/ ⁶⁸ Ga	⁸² Sr	⁵² Fe	⁵⁵ Co		
	⁶⁹ Ga(p,2n) ⁶⁸ Ge	⁸⁵ Rb(p,4n) ⁸² Sr	⁵⁵ Mn(p,4n) ⁵² Fe	⁵⁸ Ni(p,α) ⁵⁵ Co		
	^{nat} Ga(p,x) ⁶⁸ Ge	$^{\text{nat}}\text{Rb}(p,x)^{82}\text{Sr}$	^{nat} Ni(p,x) ⁵² Fe	⁵⁴ Fe(d,n) ⁵⁵ Co		
	⁷¹ Ga(p,4n) ⁶⁸ Ge		⁵² Cr(³ He,3n) ⁵² Fe	⁵⁶ Fe(p,2n) ⁵⁵ Co		
				^{nat} Fe(p,x) ⁵⁵ Co		
	⁶¹ Cu	⁶⁶ Ga	⁶⁸ Ga	⁹⁰ Nb		
	⁶¹ Ni(p,n) ⁶¹ Cu	66Zn(p,n)66Ga	⁶⁸ Zn(p,n) ⁶⁸ Ga	⁹³ Nb(p,x) ⁹⁰ Nb		
	64 Zn(p, α) 61 Cu	63 Cu(α ,n) 66 Ga	65 Cu(α ,n) 68 Ga	89 Y(α ,x) 90 Nb		
	⁸⁹ Zr	⁸² As	⁷³ Se	⁷⁶ Br		
	$^{nat}Y(\alpha,x)^{89}Zr$	^{nat} Ge(p,xn) ⁷² As	⁷⁵ As(p,3n) ⁷³ Se	⁷⁶ Se(p,n) ⁷⁶ Br		
	⁸⁹ Y(p,n) ⁸⁹ Zr		72 Ge(α ,3n) 73 Se	⁷⁷ Se(p,2n) ⁷⁶ Br		
	⁸⁹ Y(d,2n) ⁸⁹ Zr			$^{75}\mathrm{As}(\alpha,3n)^{76}\mathrm{Br}$		

CRP-III-Positron emitters- II

Workshop on Nuclear Data for Science and Technology: Medical Applications 30 September to 04 October 2013, Miramare – Trieste, Italy

^{110m}In ¹²⁰I ^{94m}Tc ⁸⁶Y ${}^{86}Sr(p,n){}^{86}Y$ $^{94}Mo(p,n)^{94m}Tc$ 110 Cd(p,n) 110m In 120 Te(p,n) 12 OI ${}^{86}Sr(p,n){}^{86}Y$ 92 Mo(α .x) 94m Tc 122 Te(p,3n) 120 I 85 Rb(α .3n) 86 Y ¹⁴⁰Nd/¹⁴⁰Pr $^{62}Zn/^{62}Cu$ 72 Se/ 72 As ¹⁴⁰Nd/¹⁴⁰Pr generator generator generator generator ${}^{63}Cu(p,2n){}^{62}Zn$ 75 As(p,4n) 72 Se $^{nat}Br(p,x)^{72}Se$ ¹²⁸Ba/¹²⁸Cs ¹¹⁸Te/¹¹⁸Sb ¹¹⁰Sn/¹¹⁰In^m 122 Xe/122 Igenerator generator. generator generator ⁴⁴Ti/⁴⁴Sc

generator

CRP-III Therapeutic radioisotopes

Workshop on Nuclear Data for Science and Technology: Medical Applications 30 September to 04 October 2013, Miramare – Trieste, Italy

⁶⁷ Cu	^{90g+m} Y	⁶⁴ Cu	^{186,188} Re
68 Zn(γ ,p) 67 Cu	90 Zr(n,p) $^{90g+m}$ Y	64 Zn(n,p) 64 Cu	^{nat} W(α ,x) ^{186,188} Re
⁶⁷ Zn(n,p) ⁶⁷ Cu			
68 Zn(n,x) 67 Cu			

CRP-III Summary

Workshop on Nuclear Data for Science and Technology: Medical Applications 30 September to 04 October 2013, Miramare – Trieste, Italy

- 26 monitor reactions
- 18 reactions for *γ*-emitters
- 39 reactions for positron emitters (+ generators)
- 39 reactions to remeasure

Missing points and problems

Workshop on Nuclear Data for Science and Technology: Medical Applications 30 September to 04 October 2013, Miramare – Trieste, Italy

- Logical sequence
 - -Decay data
 - -Monitor reactions
 - **–**Production reaction
- Missing the validation of recommended data
- Standard monitors need for absolute measurement and intercomparison
- Problem of inclusion of new, low quality data measured at low technical and expertise.
- Too large number of reactions

Conclusions on data evaluation

Workshop on Nuclear Data for Science and Technology: Medical Applications 30 September to 04 October 2013, Miramare – Trieste, Italy

- Experimental data play a key role in evaluation of nuclear reaction data.
- The prediction capabilities of the nuclear reaction model codes is limited.
- Evaluation of light charged particle induced data is not well established.
- The requirements on the quality and on the uncertainties are lower compared to other nuclear applications.
- To keep the data base in good shape, continuous evaluation.
- The evaluation and the upgrading requires detailed information on the used nuclear data, the experimental parameters and the uncertainty of the parameters contributing to the measured value and the way of the contribution!!!
- The list of the radioisotopes used in nuclear medicine and biological research is continuously changing.