

2484-1

ICTP-IAEA Joint Workshop on Nuclear Data for Science and Technology: Medical Applications

30 September - 4 October, 2013

Introduction to Nuclear Data for Medical Applications

Syed M. Qaim Forschungszentrum Jülich GmbH Germany

Introduction to Nuclear Data for Medical Applications

Syed M. Qaim

INM-5: Nuklearchemie Forschungszentrum Jülich GmbH D-52425 Jülich, Germany

Opening lecture delivered during the Workshop on Nuclear Data for Science and Technology: Medical Applications, Abdus Salam ICTP, Trieste, Italy, 30 September to 4 October 2013

Topics

- Historical development
- General considerations
- Nuclear data related to medical radionuclides
 - decay data
 - nuclear reaction data
- Nuclear data for radiation therapy
- Motivations for nuclear data measurements
- Interdisciplinary nuclear data activities
 - development of data libraries
 - coordination of international efforts
- Useful literature

Radionuclides for Medical Applications (Historical Development)

1920s Biological experiments with natural radioactivity (*Tracer principle*) G. v. Hevesy

Use of Ra/Be-Source

- 1935 O. Chievitz, G. v. Hevesy Phosphorus metabolism in rats (³²P)
- 1938 S. Hertz, A. Roberts, R.D. Evans *Physiology of thyroid (*¹²⁸*I)*

Cyclotron Era

- 1937 J.G. Hamilton, R.S. Stone Studies with ²⁴Na
- 1942 J.G. Hamilton, M.H. Soley *Therapeutic applications of radiophosphorus and radioiodine*
- 1945 C.A. Tobias, J.H. Lawrence, F. Roughton Inhalation of ¹¹CO

Reactor Era

since 1946 Availability of many long-lived radionuclides, e.g. ³H, ¹⁴C, ³²P, ⁶⁰Co, ^{125,131}I for

- in-vitro studies
- biochemistry, pharmacology, therapy

Renaissance of Cyclotron

since 1960 Production of large number of short-lived radionuclides for in-vivo studies

Several types of cyclotrons have been developed, the smallest one with $E_d = 3$ MeV to produce ¹⁵O and the largest ones delivering protons of several hundred MeV

TodayBoth reactors and cyclotrons are extensively used in
production of medical radionuclides

Criteria for the Choice of a Radionuclide for Medical Application

- Physical properties
 - detection efficiency
 - radiation dose
- Biochemical properties
 - selectivity
 - suitable kinetics

Factors Contributing to Recent Progress in the Medical Application of Radionuclides

- New efficient automated production methods
- High intensity dedicated accelerators
- Fast labelling, separation and purification methods (GC, HPLC)
- High resolution emission tomographs (SPECT, PET)

Radionuclides for Diagnostic Studies

Requirements

- Short half-life
- Suitable radiation (no α or β⁻ emitter; only EC or β⁺ emitter)
- High specific activity

Advantages

- Dynamic studies
- Biological equilibrium undisturbed
- Repeated investigations possible

γ -emitters for SPECT

 E_γ should be 70 – 250 keV (overcoming body barrier, high detection efficiency)

Examples: ^{99m}Tc, ⁶⁷Ga, ¹²³I, ²⁰¹TI

β⁺-emitters for PET

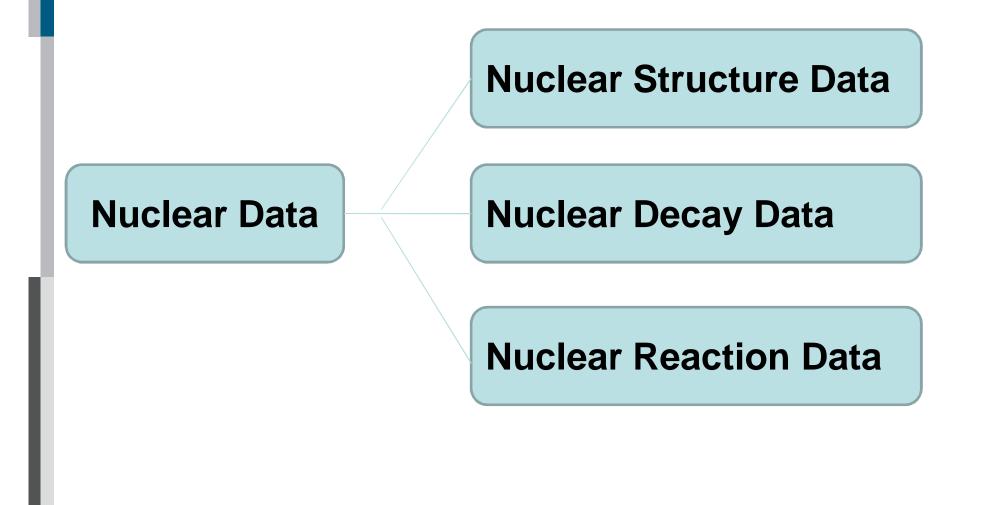
 Specific detection of 511 keV annihilation radiation in coincidence

```
Examples: <sup>11</sup>C, <sup>18</sup>F, <sup>124</sup>I
```

Radiation dose should be minimum

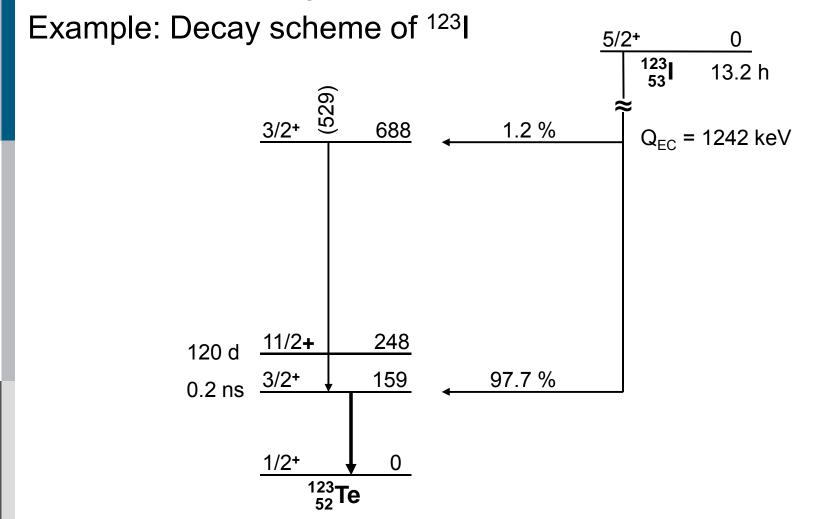
Radionuclides for Therapeutic Studies

Requirements


- Medium half-life (7 h 7 d)
- Suitable radiation
 - corpuscular radiation of suitable LET (linear energy transfer)
 value and range (β⁻, e⁻, α)
 - low intensity γ -radiation (~ 10 % per decay, $E_{\gamma} \approx 150 \text{ keV}$)
- Chemical reactivity; stability of therapeutical

Radiation dose should be compatible with therapy requirement

Nuclear Data



The term "nuclear data" is very broad; it includes all data which describe the characteristics of nuclei as well as their interactions.

Radioactive Decay Data

• Complete knowledge of decay scheme is needed, including information on conversion and Auger electrons

Radioactive Decay Data

Radiation dose calculation

According to Medical Internal Radiation Dose Committee (MIRD), the internal radiation dose (\overline{D}) is determined via the expression:

$$\overline{D} = 2.13 \cdot \overline{c} \cdot \sum_{i} n_{i} \cdot \overline{E}_{i} \cdot \varphi_{i}$$

where

n_i E_i

 Φ_{i}

 $\mathsf{T}_{\mathsf{eff}}$

- \overline{c} is the cumulative concentration of activity $\left(Bq \cdot \frac{T_{eff}}{ln2} / kg\right)$
 - the number of emitted particles or photons per decay,
 - the average energy of the emitted radiation,
 - the part of the radiation absorbed in the organ,
 - the effective half-life of the radioisotope in the organ.
- Short-lived single photon and β⁺ emitters preferred for diagnostic investigations
 Corpuscular radiation required in endotherapeutic studies

Nuclear Reaction Data

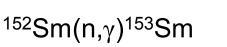
Neutron data for production in a nuclear reactor

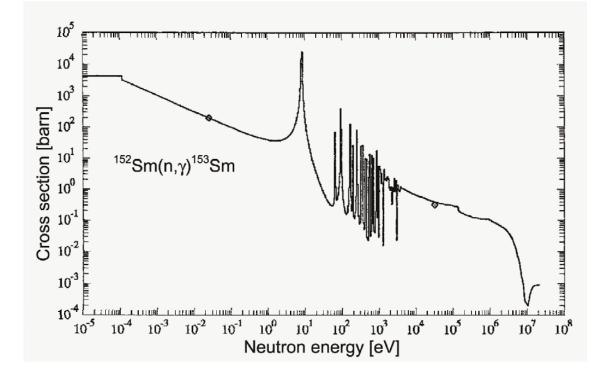
Production of neutron excess radionuclides
 Major reactions: (n,γ); (n,f); (n,p)

Generated Activity A =
$$\frac{\mathbf{m} \cdot \mathbf{N}_{Av}}{\mathbf{M}} \cdot \phi \sigma (1 - e^{-\lambda t})$$

Charged particle data for production at a cyclotron

- Production of neutron deficient radionuclides
- Crucial role of nuclear data in check of impurity

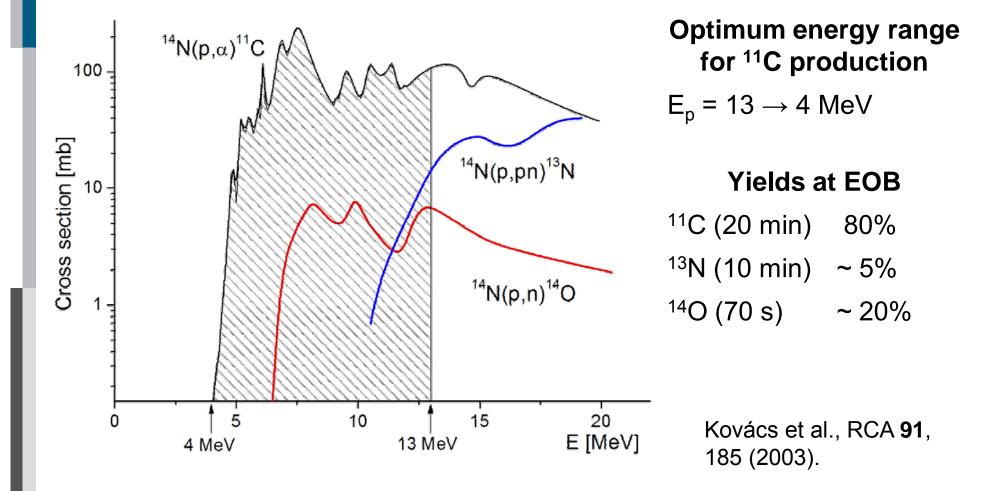

Major reactions: (p,xn); (d,xn); (³He,xn); (α,xn)


Generated Activity A = $\frac{N_{Av}}{M} \cdot I \left(1 - e^{-\lambda t}\right) \cdot \int_{E_2}^{E_1} \frac{\sigma(E)}{(dE/d\rho x)} \cdot dE$

Nuclear reaction data are needed for optimization of a production route

Solution Via (n,γ)-Process

Example:



- Neutron capture in thermal region is most important for production in a nuclear reactor
- Double neutron capture possible in high flux reactors, e.g.
 ¹⁸⁶W(n,γ)¹⁸⁷W(n,γ)¹⁸⁸W
- Low specific activity overcome via generator systems (e.g. ⁹⁹Mo → ^{99m}Tc; ¹⁸⁸W → ¹⁸⁸Re)

Formation of Short-Lived β⁺ Emitters via Protons on Nitrogen

Radiation Therapy

- Biological changes under the impact of radiation
- Of significance is linear energy transfer (LET) to tissue

Types of Therapy

- **Photon therapy**: use of ⁶⁰Co or linear accelerator (*low-LET radiation*)
- *Fast neutron therapy*: accelerator with E_p or E_d above 50 MeV (*high-LET radiation*)
- **Proton beam therapy**: accelerators with E_p = 70 -250 MeV (treatment of deep-lying, rather resistant tumours)
- *Heavy-ion beam therapy* (*rather specialized; limited application*)
- **Boron neutron capture therapy** (BNCT): use of low energy neutrons (still at development stage; *pharmacological problem*)

Radiation Therapy (Cont´d)

Atomic and nuclear data required to

- calculate radiation transport
- calculate the absorbed dose at a point in the tissue
- optimise the design of the treatment delivery system

Data Needs (up to 250 MeV)

- Total and non-elastic cross sections
- Production yields and average energies of emitted n, p, d, α, γ
- Double differential cross sections at various incident energies
- Excitation functions for the formation of radioactive products

Atomic data are of more significance than nuclear data

Motivations

Reaction data

- Search for alternative route of production of an established radionuclide
 - jeopardy in supply
 - demand for higher purity
- Development of novel radionuclides for medical applications

Decay data

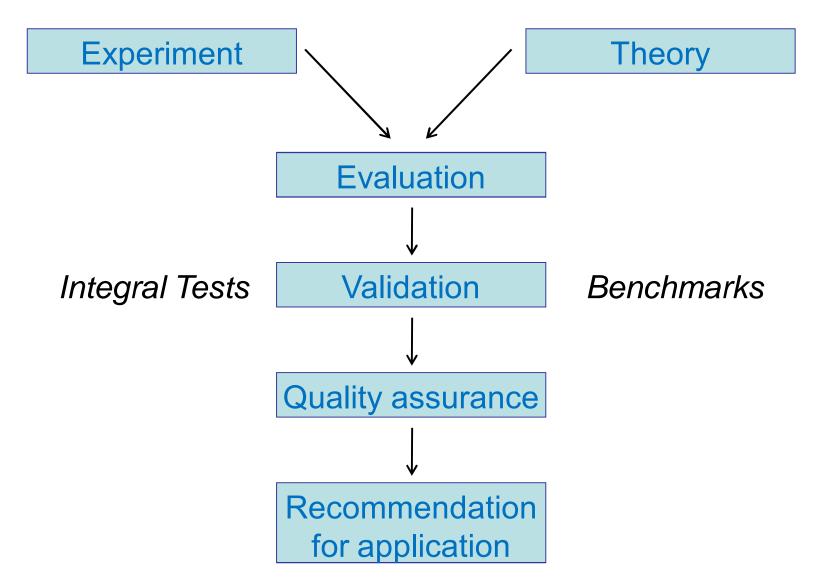
- Removal of discrepancies and uncertainties, e.g. in
 - β^+ branching in ¹²⁰I, ¹²⁴I, ⁷⁶Br, etc.
 - intensities of γ -rays
 - end point energies of β^- and β^+ emitters
 - intensities of low energy conversion and Auger electrons

Interdisciplinary Nuclear Data Activities

• Experimental measurements

- on-line and off-line methods
- interdisciplinary techniques
- detailed description of experiment, uncertainties and their correlations

Compilation and standardization


- collection of data in a uniform format (EXFOR)
- standardization of data (development of a reliable data file)

• Nuclear theory

- improvement of known models and parameters
- development of new models of high predictive values

Nuclear Data Development for Applications

Nuclear Data Centres

- NNDC, Brookhaven, USA
- OECD-NEA Data Bank, Paris, France
- IAEA Nuclear Data Section, Vienna, Austria
- Nuclear Data Centre, Obninsk, Russia

International Co-ordinating Bodies

IAEA (INDC)

- Energy related applications
- Non-energy related applications

Functions

- EXFOR
- Coordinated Research Projects
- Special Data Files
- Training (together with ICTP)

NEA

(NSC)

- Energy related applications
- Spin-off effects of nuclear energy
- Nuclear sciences
 Functions
- JEFF
- Data Bank
- Conferences

Observations Regarding Nuclear Data for Medical Applications

Radioactive decay data

generally well characterised and well documented; some deficiencies (Table of Isotopes; Decay Data Sheets; Nuklidkarte; MRID Compilation)

Nuclear reaction data

mostly available in the context of energy research *Much less effort has been devoted to medically oriented data.*

Radionuclide production: High accuracy data needs (uncertainty ≤ 10 %)

Radiation therapy : Extensive data needs, though not with high accuracy (uncertainty $\leq 25 \%$)

Several coordinated efforts are underway, mostly under the auspices of IAEA

Useful Literature

Monographs

- 1. S.M. Qaim (Editor) Nuclear Data for Medical Applications Special issue of Radiochimica Acta **89** (2001), pages 189-355
- IAEA-CRP on "Charged Particle Cross Section Database for Medical Radioisotope Production: Diagnostic Radioisotopes and Monitor Reactions", IAEA-TECDOC-1211 (2001), pages 1-285
- S.M. Qaim, F. Tárkányi, R. Capote (Editors): IAEA-CRP on "Nuclear Data for the Production of Therapeutic Radionuclides", IAEA-Technical Reports Series No. 473 (2011), pages 1-377
- K.F. Eckerman, A. End (Editors): MIRD: Radionuclide Data and Decay Schemes, 2nd Edition, Society of Nuclear Medicine, Reston, VA, USA (2011), pages 1-671

Reviews

5. S.M. Qaim

Decay data and production yields of some non-standard positron emitters used in PET Quarterly J. Nucl. Med. **52** (2008), pages 111-120

6. S.M. Qaim

Development of novel positron emitters for medical applications nuclear and radiochemical aspects Radiochimica Acta **99** (2011), pages 611-625

7. S.M. Qaim

The present and future of medical radionuclide production Radiochimica Acta **100** (2012), pages 635-651

8. A.L. Nichols

Radioactive decay data: powerful aids in medical diagnosis and therapy, analytical sciences and other applications Radiochimica Acta 100 (2012), pages 615-634