



2484-4

#### ICTP-IAEA Joint Workshop on Nuclear Data for Science and Technology: Medical Applications

30 September - 4 October, 2013

Formation of Activation Products in Radiation Therapy

Syed M. Qaim Forschungszentrum Jülich GmbH Jülich Germany



## Formation of Activation Products in Radiation Therapy

#### Syed M. Qaim

INM-5: Nuklearchemie Forschungszentrum Jülich GmbH D-52425 Jülich, Germany

Lecture delivered during the Workshop on Nuclear Data for Science and Technology: Medical Applications, Abdus Salam ICTP, Trieste, Italy, 30 September to 4 October 2013



## **Topics**

- General considerations
- Activation products in photon therapy
- Activation products in fast neutron therapy
- Activation products in proton therapy
  - short-lived  $\beta^+$  emitters formed in human tissue
  - activation of beam collimators
- Conclusions



## **Materials of Interest in Radiation Therapy**

Composition of main materials

| Material      | Elements (mass %)                                     |       |      |       |       |      |      |     |       |
|---------------|-------------------------------------------------------|-------|------|-------|-------|------|------|-----|-------|
|               | Н                                                     | С     | Ν    | 0     | Р     | S    | Mg   | K   | Са    |
| Muscle tissue | 10.06                                                 | 10.78 | 2.77 | 75.48 | 0.20  | 0.24 | 0.2  | 0.3 |       |
| Cortical bone | 4.72                                                  | 14.43 | 4.20 | 44.61 | 10.50 | 0.32 | 0.22 |     | 20.99 |
| Collimators   | Ti, Cu, Zn, brass, W, Pb, etc. (varying compositions) |       |      |       |       |      |      |     |       |



## **Activation Cross Section Needs**

- Formation of short-lived  $\beta^+$  emitters in human tissue
- Estimation of long-lived activation products in biologically relevant elements
  - formation of tritium
  - formation of <sup>7</sup>Be
  - formation of <sup>22,24</sup>Na and other medium mass products
- Estimation of collimator activation in therapy facilities



## **Some Possible Activation Products**

| Material             | Activation product                                                                                                                                                                              |                                                                                                            |
|----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|
|                      | Short-lived β <sup>+</sup> emitters                                                                                                                                                             | others                                                                                                     |
| Tissue               | <sup>10</sup> C (19.3 s); <sup>11</sup> C (20.3 min);<br><sup>13</sup> N (10 min); <sup>14</sup> O (70.6 s);<br><sup>15</sup> O (2 min); <sup>17</sup> F (64.8 s);<br><sup>18</sup> F (110 min) | <sup>3</sup> H (12.3 a); <sup>7</sup> Be (53.3 d);<br><sup>14</sup> C (5730a), etc.                        |
| Bone                 | above mentioned nuclides;<br>additionally<br><sup>30</sup> S (1.18 s); <sup>31</sup> S (2.58 s);<br><sup>30</sup> P (2.5 min); <sup>38</sup> K (7.6 min)                                        | <sup>22</sup> Na (2.6 a); <sup>24</sup> Na (15.0 h);<br><sup>42</sup> K (12.4 h); <sup>43</sup> K (22.2 h) |
| Trace elements       |                                                                                                                                                                                                 | <sup>51</sup> Cr (27.7 d); <sup>52</sup> Mn (5.6 d);<br><sup>55</sup> Co (17.5 h), etc.                    |
| Collimator materials |                                                                                                                                                                                                 | <sup>54</sup> Mn (312 d); <sup>58</sup> Co (71 d)<br><sup>204</sup> Tl (3.8 a), etc.                       |



## **Types of Radiation Therapy**

## • Photon therapy

- using  $\gamma$ -rays emitted from radionuclides (<sup>60</sup>Co, <sup>137</sup>Cs, <sup>192</sup>Ir, etc.) - using high energy photons from accelerators

#### Fast neutron therapy

- using p(Be) or d(Be) neutrons (at  $E_p$  or  $E_d$  above 50 MeV)

#### Charged particle therapy

- proton therapy with  $E_p = 70 250 \text{ MeV}$
- heavy-ion beam therapy (rather specialized)

## **Photon Therapy**

- Most common form of radiotherapy
- Due to very high thresholds of photonuclear reactions, formation of activation products in tissue is negligible.

**Example:** <sup>12</sup>C(γ,n)<sup>11</sup>C (T<sub>1/2</sub> = 20 min)



IAEA-TECDOC-1178 (2001).

Only very high-energy bremsstrahlung could produce some positron emitter.



# Photon Therapy (cont'd)



The activation of collimator material is also expected to be low, because the thresholds of photonuclear reactions are rather high.

**Example:**  ${}^{66}Zn(\gamma,n){}^{65}Zn(T_{\frac{1}{2}} = 244.3 \text{ d})$ 



IAEA-TECDOC-1178 (2001).

## **Fast Neutron Therapy**



- Many nuclear reactions are possible, e.g. (n,γ), (n,xn), (n,xp), (n,xα), (n,t), etc.
- Kinetic energy released in matter (KERMA factor) makes LETvalue of neutrons high.
- Several activation products are formed.
- Activation of medium and heavy mass elements is much stronger than that of light elements.
- Activation data needs in fast neutron therapy are extensive, but this therapy mode is being abondoned.

## **Fast Neutron Activation**



#### **Examples of Excitation Functions**





## **Tritium Formation in Neutron Interactions**



Qaim and Wölfle, NP **A295**, 150 (1978).

- 53 MeV d(Be) neutrons on elements
- Tritium formation cross section is fairly high in light mass region.
- In heavier mass region the formation of activation product via (n,p2n) process is much stronger than via (n,t) reaction

## **Charged-Particle Therapy**



• Charged particles used: p,  $\alpha$ , <sup>12</sup>C, <sup>14</sup>N, etc.



#### **Depth-dose relationship**

- Charged-particle dose increases with the penetration depth, reaching a maximum in the Bragg peak area.
- Major advantage of chargedparticle therapy is the capability to treat deep-lying tumours, close to critical structures (due to highselectivity of the Bragg peak).
- Heavy-ion therapy is specialized; proton therapy is more common and cheaper.



## Formation of Short-Lived β<sup>+</sup> Emitters in Human Tissue in Proton Therapy

| Short-lived β <sup>+</sup> emitters generated:                                                                                                                            | E  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| <sup>11</sup> C ( $T_{\frac{1}{2}} = 20 \text{ min}$ ), <sup>13</sup> N ( $T_{\frac{1}{2}} = 10 \text{ min}$ ), <sup>14</sup> O ( $T_{\frac{1}{2}} = 1.15 \text{ min}$ ), | 12 |
| <sup>15</sup> O (T $_{\frac{1}{2}}$ = 2 min), <sup>18</sup> F (T $_{\frac{1}{2}}$ = 110 min), etc.                                                                        | 14 |
|                                                                                                                                                                           | 1  |

#### Examples of nuclear reactions

<sup>12</sup>C(p,pn)<sup>11</sup>C

<sup>4</sup>N(p,pn)<sup>13</sup>N

<sup>14</sup>N(p,n)<sup>14</sup>O

<sup>18</sup>O(p,n)<sup>18</sup>F

 $^{14}N(p,\alpha)^{11}C$ 

 $^{16}O(p,\alpha)^{13}N$ 

 $^{15}N(p,n)^{15}O$ 

<sup>16</sup>O(p,pn)<sup>15</sup>O

### Significance of data

- a) Estimation of extra dose due to activation products
- b) PET investigation of the patient after proton therapy (utilizing the <sup>11</sup>C formed in the tissue); localises dose distribution in the treated area

#### Formation of Short-Lived β<sup>+</sup> Emitters <sup>J</sup> JÜLICH (Protons on human tissue) **Examples :** Kettern et al, ARI 60, 939 (2004). <sup>nat</sup>N(p,x)<sup>11</sup>C $^{nat}O(p,x)^{13}N$ 80 This work itwanga et al., 1989 70 Fassbender et al., 1997 ajjad et al., 1986 Cross section [mb] 100 urukawa et al., 1960 Kovács et al., 2003 lbouv et al., 1962 IAEA-TECDOC-1211 Cross section [mb] 60 120 Maxson, 1961 AEA-TECDOC-1211 ALICE-IPPE Cross section [mb] 50 40 30 E<sub>p</sub> [MeV] This work 20 ALICE-IPPE 10

200

0

0

50

100

E<sub>p</sub> [MeV]

150

200

Improved data base > 50 MeV

150

0

50

100

E<sub>p</sub> [MeV]



## Estimated Activity in Bragg Peak Region as a Result of Proton Therapy

Assumption: 200 MeV proton, 2 nA, 2 min irradiation

| Radionuclide    | Activity      | / (MBq)      |
|-----------------|---------------|--------------|
|                 | Muscle tissue | Cortial bone |
| <sup>11</sup> C | 6.5           |              |
| <sup>13</sup> N | 3.9           |              |
| <sup>15</sup> O | 121           | 22           |

Total activity of  $\beta^+$  emitters

Other activities

| <sup>7</sup> Be (in muscle tissue) | : | 40 kBq   |
|------------------------------------|---|----------|
| <sup>22,24</sup> Na (in bone)      | : | < 250 Bq |

- : 131 MBq (in muscle tissue)
- : 22 MBq (in cortial bone)

# Systematics of Excitation Functions



 Probability of <sup>7</sup>Be emission decreases with increasing mass of the target nucleus

Scholten et al., RCA **65**, 81 (1994).

## **Activation of Beam Collimators**



- Proton therapy demands high quality beams
- Tailoring of energy and homogenisation of intensity are achieved through collimators
- Activation of collimators is of some concern
- Commonly used collimators include titanium, brass, tungsten, etc.

## **Results for an Element as Collimator UULICH** (Easily detectable products)

**Example:** <sup>nat</sup>Cu(p,x)<sup>55,56,58</sup>Co processes



## **Results for an Element as Collimator JÜLICH** (Products difficult to detect)

**Example:**  $^{nat}Ti(p,x)^{45}Ca (T_{\frac{1}{2}} = 163 d)$ 



## Products difficult to detect (cont'd)



**Example:**  $^{nat}Pb(p,x)^{204}TI(T_{\frac{1}{2}} = 3.78 a)$ 



Qaim et al., RCA **98**, 447 (2010).

- Radiochemical measurement
- Good agreement between experiment and model calculations up to 60 MeV; at higher energies TALYS results are closer to experiment

## **Results for an Alloy as Collimator**



#### **Example: Formation of** <sup>52,54</sup>Mn from brass





## **Activation of Brass Collimator**



Proper shielding of therapy facilities is mandatory

## Conclusions



- Activation products formed in human tissue during photon and neutron therapy can be regarded as negligible.
- Formation of short-lived β<sup>+</sup> emitters is of some significance in proton therapy. The total activity (~ 120 MBq) is sufficient for dose localisation via PET studies; the extra dose from β<sup>+</sup> emitters is, however, negligible (< 1 %).</li>
- Activation of beam collimators (both at neutron and proton therapy facilities) is of some concern regarding the therapy personnel.