

2484-15

ICTP-IAEA Joint Workshop on Nuclear Data for Science and Technology: Medical Applications

30 September - 4 October, 2013

Molecular Imaging Part IIIa: PET-MR

H. Herzog Institute of Neuroscience and Medicine - 4 Forschungszentrum Juelich Germany

Molecular Imaging Part Illa: PET-MR

Hans Herzog

Institute of Neuroscience and Medicine - 4

Forschungszentrum Jülich

MR Compared to PET

Parameter	MR	PET
Anatomical Detail	Excellent	Poor
Spatial Resolution	Excellent	Gets better
Clinical Penetration	Excellent	Improving
Sensitivity	Poor	Excellent
Molecular Imaging	Limited	Excellent

MR-PET >> MR + PET

Today's Commonly Combined Use of PET and MRI

Combing Anatomy and Function with PET/CT

D.Townsend 1995

Metastasis of a malignent melanoma

MR instead of CT in PET/CT ?

Siemens (2008): 3TMR-BrainPET only prototype

Siemens (2010): Biograph mMR commercial product

Philips (2010): Ingenuity TF PET/MR commercial product

Siemens (2008): 3TMR-BrainPET only prototype

Siemens (2010): Biograph mMR commercial product

Philips (2010): Ingenuity TF PET/MR commercial product

3TMR-BrainPET

Avalanche Photo Diodes (APD) vs. Photo Multiplier Tubes (PMT)

	PMT	APD
Magnetically	sensitive	insensitive
Size	10-52 mm dia.	5x5 mm
Gain	Up to 10 ⁶	Up to 200
Risetime	~1 ns	~5 ns

Future : SiPMT / GM-APD ?

Gain: similar to PMT

Journal of Nuclear Medicine, April 2011 Sun II Kwon et al: Development of Small-Animal PET Prototype Using Silicon Photomultiplier (SiPM): Initial Results of Phantom and Animal Imaging Studies

3TMR-BrainPET:

APD-based PET Detector Cassette

Consists of:

- Six 12 x 12 arrays of 2.5 x 2.5 x 20 mm³ LSO crystals read out by 9 APDs (Hamamatsu)
- Preamplifiers & driver electronics
- Temperature stability with compressed air

3MR-BrainPET:

The Head Coils

Technical Challenges by Possible Interferences between PET and MR

- Minimal susceptibility (< 0.25 ppm local distortion) to avoid homogeneity distortion</p>
- No generation of time varying fields
- Tolerate vibration due to current changes in the gradient coil in the range of 1-10 μm in the kHz range
- Temperature changes due to average current changes in the gradient coil from 20-70 °C
- There should be no loss in sensitivity

Some Technical Parameters

Resolution (FWHM, mm) § :

	r = 0 cm	2.5 cm	5 cm	7.5 cm	10 cm
Tangential:	3.0	3.0	3.1	3.0	3.8
Radial	2.9	3.0	3.9	4.5	4.9
Z-Direction	3.0		3.6		

Scatter fraction: 27%

Point source sensitivity: 6%

[§] reconstructed with 3DFBP (STIR)

Simultaneous MR-PET in a Brain Tumor

HR+: 40 - 50 min p.i.

studied

with

[¹⁸F]-fluoro-ethyl-tyrosine (FET)

Simultaneous MRI

A Prerequisite for Quantitation: Attenuation Correction

the detector measures:

 $P_{E} = \int A(x,y) dl * exp(-\int \mu(x,y) dl') \qquad AF = exp(-\int \mu(x,y) dl')$

the detector measures:

$$P_E^{Korr} = P_E / AF = \int A(x,y) dx$$

Attenuation Correction No Longer Based on Transmission Measurement !!

Rota Kops et al., IEEE 2006

Determination of Attenuation Map

MR-Based Attenuation Correction

Using UTE Sequences

FET- Dynamics Recorded in the 3TMR-BrainPET

MR-FDG-BrainPET

Clinical Applications

FET- Dynamics Measured with 3TMR-BrainPET

BrainPET: 0 - 50 min p.i.

Cerebral Gliomas: PET with O-(2-[¹⁸F]fluoroethyl)-L-tyrosine (FET) Completes MRI Based Diagnosis

Hybrid MR-PET imaging

Neuroactivation by Finger Tapping EPI-Study for 12 min

MR-PET in a Patient with Epilepsy

HR+: 10 - 25 min p.i.

BrainPET: 30-50 min p.i. and simultaneous:

PET after injection of the GABAnergic receptor ligand ¹¹C-flumazenil: Looking for the epileptical focus

MR-PET in a Patient with Parkinson's Disease

BrainPET: 120 - 150 min p.i.

and simultaneous:

PET after injection of the dopaminergic transporter ligand ¹⁸F-FP-CIT

Dynamic MR-FDGPET Aim: to measure cerebral glucose consumption

Measurement of Cerebral Glucose Consumption

Activity Image

Measurement of Cerebral Glucose Consumption without Blood Sampling

Activity Images = f(Time)

0

Research Applications

The Two Parts of Cerebral Communication

Chemical interface at the synapses modulated by internal neurotransmitters or drugs

Domain of PET

Centers of cerebral data processing Domain of fMRI

fMRI and Receptor-PET with a Pharmaco-Challenge

Centers of increased alertness after 1mg nicotine

Distribution volume of [¹⁸F]-2-A-85830:

Smokers minus nosmokers

Herzog et al., 2006

Now such studies can be combined with PET/MRI !!

PET bolus-Infusion

fMRI-1

oharmaco-challenge

Timing of a Combined PET-MRI-fMRI Study

Timing of a Combined PET-MRI-fMRI Study

Combined PET-MRI-fMRI Study

First Truly Simultaneous Comparison of CBF Assessed by ¹⁵O-Water PET and ASL

Siemens Biograph mMR

Courtesy of Siemens, S. Ziegler and C. Catana

Some Technical Parameters

Detector ring diameter	65.6 cm
Bore diameter	60 cm
Axial FOV	25.8 cm
Crystal	4 x 4 x 20 mm ³ LSO
Concidence window	6 ns
Energy window	430 – 610 keV

Resolution (FWHM, mm) § :		
r =	1 cm	10 cm
Tangential:	4.3	4.8
Radial	4.3	5.2
Z-Direction	4.3	66

Scatter fraction: 36.7%

[§] reconstructed with 3D-FRP

Courtesy of G. Delso and S. Ziegler Forschungszentrum Jülich

MR-Based AC: Dixon Imaging for Fat/Water Separation

The method based on segmentation is fast and reliable. Some bias (5-13%) for osseous lesions due to neglecting bone.

Martinez-Möller A et al., JNM 2009

¹⁵O-Water-PET vs. PWI-MRI

in Acute Ischemic Stroke

Courtesy of H. Barthel Mol Imaging Biol (2013) DOI: 10.1007/s11307-013-0623-1

Ingenuity TF PET/MRI

Some Technical Parameters

Detector ring diameter	90.3 cm
Bore diameter	60 cm (PET 70.7 cm)
Axial FOV	18.0 cm
Crystal	4 x 4 x 22 mm ³ LYSO
Concidence window	6 ns
Energy window	460 – 665 keV
TOF capability	

Resolution (FW	HM, mm) § :	
r =	1 cm	10 cm
Tangential:	4.7	5.3
Radial	4.7	5.0
Z-Direction	4.6	5.0

Scatter fraction: 26% - 35%

[§] reconstructed with 3D-FRP

Zaidi H, Phys Med Biol, 2011

46

CT and PET/MR in a Patient

with Ewing Sarkoma

Courtesy of O. Ratib, 2nd Juelich MR-PET Workshop 2010

Patient with Head/Neck Cancer

T1-weightedTSE **STIR TSE** b d **PET max. Intensity** Fusion

I. Platzek et al., EJNMMI 2013

Multiparametric Imaging

Thank you

for

your attention

