

2484-2

ICTP-IAEA Joint Workshop on Nuclear Data for Science and Technology: Medical Applications

30 September - 4 October, 2013

Overview of Diagnostic and Therapeutic Radionuclides

Syed M. Qaim Forschungszentrum Jülich GmbH Germany

Overview of Common Diagnostic and Therapeutic Radionuclides (Nuclear Data and Production Technology)

Syed M. Qaim

INM-5: Nuklearchemie Forschungszentrum Jülich GmbH D-52425 Jülich, Germany

Lecture delivered during the Workshop on Nuclear Data for Science and Technology: Medical Applications, Abdus Salam ICTP, Trieste, Italy, 30 September to 4 October 2013

Topics

- General considerations about nuclear data related to production of radionuclides
 - in a nuclear reactor
 - at a cyclotron
- Production of diagnostic radionuclides
 - SPECT radionuclides
 - PET radionuclides
- Production of therapeutic radionuclides
- Summary

Nuclear Data for Radionuclide Production in a Nuclear Reactor

- Contribution of thermal neutrons to product formation is most important.
- Radioactive product is of low specific activity.

Other Production Reactions

Fission Process

Examples:	²³⁵ U(n,f) ⁹⁰ Sr	(28.6 a)	FY = 5.8 %
	²³⁵ U(n,f) ⁹⁹ Mo	(66.0 h)	FY = 6.2 %
	²³⁵ U(n,f) ¹³¹ I	(8.0 d)	FY = 2.9 %

Fission yields

Mass distribution in fission of ²³⁵U (n,z) Process

Examples: ⁶ Li(n,α) ³ H	(12.3 a)	σ = 940 b
¹⁴ N(n,p) ¹⁴ C	(5730 a)	σ = 1.8 b
³² S(n,p) ³² P	(14.3 d)	σ = 31.0 mb
⁶⁷ Zn(n,p) ⁶⁷ Cu	(61.9 h)	σ = 1.07 mb
⁸⁹ Y(n,p) ⁸⁹ Sr	(50.5 d)	σ = 0.3 mb

- Production yield with reactor neutrons is high only for light mass target nuclei.
- Process is applied only in special cases in the medium mass region.
- Specific activity of product is high.
- Extensive radiochemical work is involved.
- Product is of high specific activity.

Nuclear Data Relevant to Cyclotron Production of Radionuclides

- Due to rapid energy loss of charged particles in target, knowledge of excitation function is essential
- Data needed for optimisation of production process
 - maximise yield of product
 - minimise impurity level
- The higher the projectile energy, the more are data needs
- Often many production routes are possible. However, major criteria for choice are yield and purity

Role of Nuclear Data in Optimisation of a Production Route using Charged Particles

Radionuclides for Modern Nuclear Medicine

Diagnostic Radionuclides

For SPECT

γ-emitters (100 – 250 keV) ^{99m}Tc, ¹²³I, ²⁰¹TI

For PET

β⁺ emitters
¹¹C, ¹³N, ¹⁵O, ¹⁸F,
⁶⁸Ge (⁶⁸Ga), ⁸²Sr (⁸²Rb)

Therapeutic Radionuclides (in-vivo)

- β⁻-emitters (⁶⁷Cu, ⁹⁰Y, ¹³¹I, ¹⁵³Sm)
- α -emitters (²¹¹At, ²²⁵Ac, etc.)
- Auger electron emitters (⁵¹Cr, ⁷⁵Se, ⁷⁷Br, ¹²⁵I, ^{193m}Pt)
- X-ray emitters (¹⁰³Pd, ¹³¹Cs, etc.)

Routine Methods of Production of Some Commonly Used Photon Emitters

Radionuclide	T _{1/2}	Main γ-ray energy in keV (%)	Production route	Energy range (MeV)
⁶⁷ Ga	3.26 d	93 (37) 185 (20)	⁶⁸ Zn(p,2n)	26 → 18
⁹⁹ Mo ↓ (generator)	2.75 d	181 (6) 740 (12)	²³⁵ U(n,f) ⁹⁸ Mo(n,γ)	
^{99m} Tc	6.0 h	141 (87)		
¹¹¹ In	2.8 d	173 (91) 247 (94)	¹¹² Cd(p,2n)	25 → 18
¹²³	13.2 h	159 (83)	¹²³ Te(p,n) ¹²⁴ Te(p,2n) ¹²⁷ I(p,5n) ¹²³ Xe ^{a)} ¹²⁴ Xe(p,x) ¹²³ Xe ^{a)}	$\begin{array}{c} 14 \rightarrow 10 \\ 26 \rightarrow 23 \\ 65 \rightarrow 45 \\ 29 \rightarrow 23 \end{array}$
²⁰¹ TI	3.06 d	69 – 82 (X-rays) 166 (10.2)	²⁰³ TI(p,3n) ²⁰¹ Pb ^{b)}	28 → 20

a) ¹²³Xe decays by EC (87%) and β^+ emission (13%) to ¹²³I

b) ²⁰¹Pb decays by EC to ²⁰¹Tl

Wet Chemical Process for Separation of JÜLICH ⁹⁹Mo from Neutron Irradiated (²³⁵UAI₃)-Alloy

Preparation of Generator

- Selection of the adsorbent that will
 - bind the long-lived parent
 - allow removal of the short-lived daughter in an easy and
 - reproducible manner
- Factors requiring systematic evaluation include
 - nature of the adsorbent
 - oxidation state of parent
 - chemical form of parent
 - pH

- chemical nature and complexing character of the elution solution

Example: ⁹⁹Mo (66 h) / ^{99m}Tc (6 h) Generator

- Fission ⁹⁹Mo adsorbed on Al₂O₃
- Elution with normal saline removes daughter as Na^{99m}TcO₄

Structure of some Tc-complexes

Important Nuclear Processes for the Production of ¹²³I

Indirect Methods

¹²⁷ I(p,5n) ¹²³ Xe	$E_p = 70 \rightarrow 50 \text{ MeV}$	
⁻¹²⁷ I(d,6n) ¹²³ Xe	$E_d = 78 \rightarrow 64 \text{ MeV}$	123V EC,β ⁺ 1231
Cs, La(p,spall) ¹²³ Xe	$E_p = 590 \rightarrow 200 \text{ MeV}$	2.0 h
¹²⁴ Xe(p,x) ¹²³ Xe*	$E_p = 30 \rightarrow 25 \text{ MeV}$	

Major impurity ¹²⁵

Direct Methods*

¹²⁴ Te(p,2n) ¹²³ I	$E_p = 30 \rightarrow 20 \text{ MeV}$
¹²³ Te(p,n) ¹²³ I	$E_p = 15 \rightarrow 10 \text{ MeV}$
¹²² Te(d,n) ¹²³ I	$E_d = 16 \rightarrow 8 \text{ MeV}$

Several impurities

* These methods demand highly enriched isotopes as target materials.

The major criteria for choice of a production process are *yield and purity*.

Production of ¹²³I via the ¹²⁴Xe(p,x)¹²³I-Process

Excitation Function

Routes

This is the method of choice; leads to the highest purity product.

Gas Targetry

Example: Production of alkali metal or radiohalogen via irradiation of an enriched rare gas

- Removal of radioactivity (e.g. ^{82m}Rb, ¹²³I) by rinsing the inner walls of the target
- Batch yield ≤ 100 GBq

Blessing et al., ARI **48**, 37 (1997).

Sample preparation: electrolysis, alloy formation, pellet

Heat dissipation: 2π or 4π cooling, slanting beam **Example:** Use of slanting beam

 Standard technology used in large scale production of several radionuclides (⁶⁷Ga, ¹¹¹In, ²⁰¹TI, etc.)

Spellerberg et al., ARI **49**, 1519 (1998).

Radiochemical Separation of $^{201}TI_{(T_{1/2} = 73 h)}$ via the $^{203}TI(p,3n)^{201}Pb \xrightarrow{EC,\beta^+}{9.4 h} \xrightarrow{201}TI-Process$

Commonly Used SPECT Radiopharmaceuticals

Radiopharmaceutical	Function
	а. 19
IC-HMPAO	Brain blood flow
^{99m} Tc – ECD	Brain blood flow
^{99m} Tc – sestamibi	Heart blood flow
^{99m} Tc – tetrofosmin	Heart blood flow
^{99m} Tc – DMSA	Renal function
^{99m} Tc – TRODAT	Dopamin-transporter
¹¹¹ In – DTPA-D-Phe-1-octreotide	Somatostatin receptor ligand
¹¹¹ In – pentetreotide	Somatostatin receptor ligand
$^{123}I - IMP$	Brain blood flow
$^{123}I - IBZM$	Dopamin2-receptor-ligand
¹²³ I – iomazenil	Benzodiazepine receptor ligand
¹²³ I – epidepride	Dopamin2-receptor-ligand
$^{123}I - \beta - CIT$	Dopamin-transporter
²⁰¹ TlCl	Heart blood flow

Common Methods of Production of Short-lived Organic Positron Emitters

Radionuclide	T _{1/2}	Mode of decay			data		
			Nuclear reaction	Energy range	Calculated yield MBq/µA· h	Target	In-target product
¹¹ C	20 min	β ⁺ (99.8) EC (0.2)	¹⁴ N(p,α)	$13 \rightarrow 3$	3820	N ₂ (O ₂)	¹¹ CO, ¹¹ CO ₂
^{13}N	10 min	β+ (100)	¹⁶ O(p,α)	$16 \rightarrow 7$	1665	H ₂ ¹⁶ O	¹³ NO ₂ ⁻ , ¹³ NO ₃ ⁻
¹⁵ O	2 min	β ⁺ (99.9) EC (0.1)	¹⁴ N(d,n) ¹⁵ N(p,n)	$\begin{array}{c} 8 \rightarrow 0 \\ 10 \rightarrow 0 \end{array}$	2368 2220	$N_2(O_2)$ $^{15}N_2(O_2)$	¹⁵ OO ¹⁵ OO
¹⁸ F	110 min	β ⁺ (97) EC (3)	$^{18}O(p,n)$ $^{20}Ne(d,\alpha)$	$16 \rightarrow 3$ $14 \rightarrow 0$	2960 1110	$H_2^{18}O_{18}O_2/(F_2)$ Ne(F ₂)	$^{18}F_{aq}^{-}$ [^{18}F]F ₂ [^{18}F]F ₂

• All radionuclides are almost pure β^+ emitters.

• Large quantities can be produced at a small-sized two particle cyclotron.

Chemical form of radioactive product depends on target filling.

Gas Target

- **Target:** suitable construction material; conical shape; target dimensions and gas pressure dependent on excitation function
- **Example:** Production of ${}^{11}CO_2$ via ${}^{14}N(p,\alpha){}^{11}C$ reaction

- Removal of radioactivity by expansion
- Batch yield (13 MeV p, 30 µA, 40min) ≈ 100 GBq

Qaim et al., in PET Radiopharmaceuticals, Kluwer, 1993, 1 - 42.

Excitation Function of ¹⁸O(p,n)¹⁸F Reaction

- Optimum energy range: $E_P = 16 \rightarrow 3 \text{ MeV}$

- Excitation function rather unique and shows strong fluctuations
- For a (p,n) reaction, both neutron counting and activation measurement possible; the latter is more relevant
- Theory cannot reproduce the excitation function

Liquid Targetry

Example: Production of ¹⁸F from liquid $H_2^{18}O$

- 4 π cooling, simple and remote controlled recovery of product
- Product ready for use without further processing

Water target at the BC 1710, Jülich

Qaim et al., in PET Radiopharmaceuticals, Kluwer, 1993, 1 - 42.

Flow Sheet of Production of Short-lived PET Radiopharmaceuticals

Fast, automated methods of production are absolutely necessary

Synthesis of 2-[¹⁸F]FDG

Major PET Radiodiagnostics

	Neurology	
$[^{15}O]O_2$ $[^{15}O]H_2O$ $[^{15}O]Butanol$ 2- $[^{18}F]FDG$ L-6- $[^{18}F]FDOPA$ $[^{18}F]N-Methyl-$ spiperone	Oxygen consumption Blood flow Blood flow Glucose metabolism Presynaptic dopa- minergic function D ₂ -receptor density or occupancy	dementia, ischemia, stroke parkinsonism schizophrenia therapy contro
	Cardiology	
 [¹³N]NH₃ 2-[¹⁸F]FDG [¹¹C]Acetate [¹¹C] or [¹⁸F]Fatty acids 	Blood flow Glucose metabolism Oxidative metabolism (Oxygen consumption) β-Oxidation	
	Oncology	
[¹⁵ O]H ₂ O 2-[¹⁸ F]FDG [¹¹ C]Methionine	Blood flow Glucose metabolism Amino acid metabolism and transport	

Production of Positron Emitters via Generator Systems

- Two standard positron emitters, namely ⁶⁸Ga (T_{1/2} = 68 min) and ⁸²Rb (T_{1/2} = 1.3 min) are routinely obtained via the generator systems ⁶⁸Ge (271 d) / ⁶⁸Ga and ⁸²Sr (25.3 d) / ⁸²Rb.
- For production of the two parent radionuclides, high intensity intermediate energy cyclotrons are needed.
- Presently, supply of ⁸²Sr appears to be adequate.
- Due to enhancing interest in ⁶⁸Ga-radiopharmaceuticals, more efforts related to ⁶⁸Ge production and efficient generator column preparation are called for. Some discrepancy in data recently removed.

Excitation Function of natGa(p,xn)⁶⁸Ge Process

Adam-Rebeles et al., RCA 101, 481 (2013).

- Discrepancy in data removed
- Optimum energy range for production

 E_p = 30 \rightarrow 15 MeV

Due to low m.p. of Ga, use of alloy as target material is preferable

Needs

- Study of slow metabolic processes, e.g. protein synthesis, cell proliferation, etc. (satellite concept)
- Analogue approach
 - Quantification of SPECT-radiopharmaceuticals
 - Therapy planning, exact dosimetry

Detailed treatment in lecture on novel medical radionuclides

Production Methods of Important Therapeutic Radionuclides (β⁻ Emitters)

Production is done using both nuclear reactors and cyclotrons

Radionuclide Production via (n,p)-Process

- Statistical model incorporation precompound effects reproduces (n,p) excitation function well (codes STAPRE and EMPIRE)
- Fission neutron spectrum averaged cross section is low (0.3 mb); nonetheless, the reaction is used for production of no-carrier-added ⁸⁹Sr.

Production Methods of Important Therapeutic Radionuclides (cont'd)

Nuclide	T _{1/2}	Production route	Nuclide	T _{1/2}	Production route
β+ <i>Emitters</i>		X-Ray/Auger Electron Emitters			
⁶⁴ Cu	12.7 h	⁶⁴ Ni(p,n)	⁷⁷ Br	2.4 d	⁷⁵ As(α,2n)
⁷⁶ Br	16.0 h	⁷⁶ Se(p,n)	¹⁰³ Pd	17.0 d	¹⁰³ Rh(p,n)
124	4.2 d	¹²⁴ Te(p,n)	¹¹¹ In	2.8 d	¹¹² Cd(p,2n)
α <i>Emitters</i>		125	60.0 d	124 Xe(n, γ) 125 Xe \rightarrow	
²¹¹ At	7.2 h	²⁰⁹ Bi(α,2n)			
²¹³ Bi	46 min	²²⁵ Ac/ ²¹³ Bi			
		(Generator)			
²²⁵ Ac	10.0 d	from nuclear waste			
		²²⁶ Ra(p,2n)			

Increasing use of cyclotrons in production of therapeutic radionuclides

Summary

- Technology for production of standard radionuclides using reactors and cyclotrons is well established.
 Status of data is fairly good.Yet some standardization and development work is constantly needed.
- Development work calls for interdisciplinary approach.
- Demand on quality assurance is stringent.