



2484-10

#### ICTP-IAEA Joint Workshop on Nuclear Data for Science and Technology: Medical Applications

30 September - 4 October, 2013

The radionuclides and their particles: their origin, character, and fate

F. Roesch Institute of Nuclear Chemistry University of Mainz Germany

# The radionuclides and their particles: their origin, character, and fate

#### Their fate:

- 1. PARTICLE INTERACTION WITH MATTER (WATER)
- 2. IONIZATING WATER MOLECULES, THERBY CREATING REACTIVE RADICALS:  $H_2O$  ->->->  $OH^\circ$ ,  $H^\circ$ , etc.



- 3. DNA DOUBLE-BOND BREAKS
- 4. RADIATION DOSE PER VOLUME IN GY

5. RADIATION DOSE ≈ THERAPY RESPONSE"



IG

#### therapeutic radiation dose: EXTERNAL IRRADIATION



#### therapeutic radiation dose: INTERNAL IRRADIATION

|   | factors                                  | influenced by                   |                               |
|---|------------------------------------------|---------------------------------|-------------------------------|
| 1 | how long is                              | radiopharmacology BIOLt1/2      | time integral of the activity |
| 2 | the target organ (tumour)                | source (s) and target (t) organ |                               |
| 3 | exposed to what absolute radioactivity A |                                 |                               |
| 4 | of a certain radionuclide                |                                 |                               |
| 5 | of physical-half-life PHYSt1/2           |                                 |                               |
| 6 | of radiation characteristics             | MIRD S-factors                  |                               |





## Radionuclides of different kinds of particle emission and varying particle energies / ranges



## quantification of radiation doses in vivo

IF NO RADIATION CAN BE MEASURED

OUTSIDE THE HUMAN BODY?

## BRT 90V / 177Lu / ...

particle emission ( $\alpha$ ,  $\beta^{-}$ , Ae<sup>-</sup>)

(without) γ-component





#### quantification of radiation doses in vivo





## (pre-therapeutic) determination of radiation doses: The impact of PECT / CT





## quantification of radiation doses in vivo

## ERT <sup>90</sup>Y/<sup>177</sup>Lu/...

particle emission ( $\alpha$ ,  $\beta^-$ , Ae<sup>-</sup>) (without)  $\gamma$ -component



**"BLACK BOX"** 



JGU

(pre-therapeutic) determination of radiation doses: The impact of PECT / CT



## **Choice of PET nuclide:** t<sup>1</sup>/<sub>2</sub> vs. positron branching (%)



#### (pre-therapeutic) determination of radiation doses

+

=

| PRE-therapeutic organ and tum                                                       | Targeting vectors                                                                        |                                                                      |  |  |  |
|-------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|----------------------------------------------------------------------|--|--|--|
| Choice of positron emitter:                                                         | <sup>68</sup> Ga<br><sup>44</sup> Sc                                                     | "small" molecules:<br>peptides,<br>amino acids,<br>inorganic ligands |  |  |  |
| match physical half-life t <sup>1</sup> / <sub>2</sub><br>with biological half-life | <sup>90</sup> Nb, <sup>86</sup> Y, <sup>64</sup> Cu                                      | antibody fragments<br>micro-bodies                                   |  |  |  |
|                                                                                     | <sup>89</sup> Zr,<br><sup>124</sup> J<br><sup>68</sup> Ga,<br><sup>18</sup> F<br>PRE-TAR | monoclonal antibodies,<br>nano-particles<br>drug carriers            |  |  |  |
| POST-therapeutic evaluation via PET/CT                                              |                                                                                          |                                                                      |  |  |  |
| individual treatment of a patient ("personalized medicine")                         |                                                                                          |                                                                      |  |  |  |



68Ga

β<sup>+</sup> 0.74 67.7 m

44Sc

β<sup>+</sup> 0.60 3.92 h

86Y

β<sup>+</sup> 0.21 33.0% 14.70 h

90Nb

β<sup>+</sup> 0.35 53.0% 14.60 h

<sup>89</sup>Zr

β<sup>+</sup> 0.09

23.0% 3.268 d

18F

β<sup>+</sup> 0.6 96.0%



#### (pre-therapeutic) determination of radiation doses:



$$\overline{D}_{t \leftarrow s} = S_{t \leftarrow s} \int A_s \exp(\lambda_{phys} + \lambda_{biol}) t dt$$

$$PET-ICAL \lambda_{biol} = THERAPEUTICAL \lambda_{biol}$$



## PET vs. ERT: homologous couplings

| ER                | RT       | PET                                    |                                                                  |  |
|-------------------|----------|----------------------------------------|------------------------------------------------------------------|--|
| <sup>89</sup> Sr  | (50.4 d) | <sup>83</sup> Sr                       | (1.35 d, 24% β⁺)                                                 |  |
| 90Y               | (3.19 d) | 86 <b>Y</b>                            | (14.7 h, 33% β⁺)                                                 |  |
| <sup>153</sup> Sm | (1.95 d) | <sup>142</sup> Sm<br><sup>142</sup> Pm | (72 min, 5.7% β <sup>+</sup> )<br>(0.6 min, 78% β <sup>+</sup> ) |  |
| 131               | (8.02 d) | 124<br>120                             | (4.18 d, 63% β <sup>+</sup> )<br>(1.35 h, 46% β <sup>+</sup> )   |  |

Individual Radiation Dosimetry: The Concept of THERANOSTICS:

> **Biological target: Bone metastases**



how to quantify organ radiation doses of <sup>90</sup>Y-radiotherapeutics *in vivo* using <sup>86</sup>Y-surrogates ?

## 1. "bone affine" radiometals (Ca-analogues) [<sup>90</sup>Y]citrate vs. [<sup>90</sup>Y]EDTMP

 $\approx$  80% of patients with prostatic carcinoma

- develop metastatic bone disease
- $\approx 50\%$  of them experience bone pain

## [<sup>86</sup>Y]EDTMP-PET: imaging of bone metastases



EDTMP

(Ethylenediamine tetramethylene phosphonic acid)





#### median section





## [<sup>86</sup>Y]Citrate-PET: imaging of bone metastases







median section



(2-Hydroxipropane tricarbonic acid)

. ٠







[<sup>90</sup>Y]Citrate vs. [<sup>90</sup>Y]EDTMP mean radiation doses (n = 5) [mGy / MBq <sup>90</sup>Y injected]

| <sup>90</sup> Y<br>complex | bone<br>metastases<br>(per cc) | red bone<br>marrow<br>(total) | liver<br>(total) |
|----------------------------|--------------------------------|-------------------------------|------------------|
| Citrate                    | 25.5 <sup>10.6</sup>           | 2.5 0.4                       | 1.8 0.3          |
| EDTMP                      | 17.8 1.7                       | $1.8^{0.6}$                   | _                |
|                            |                                |                               | IG               |

Individual Radiation Dosimetry: The Concept of THERANOSTICS:

> **Biological target: Neuroendocrine tumours**

## Somatostatin receptor expressing tumors



## Somatostatin: tumor membrane receptors receptor ligand: octreotide analogues



## Somatostatin: tumor membrane receptors receptor ligand: octreotide analogues

![](_page_24_Picture_1.jpeg)

## Peptide receptor radionuclide therapy with the somatostatin analogue [<sup>90</sup>Y]DOTATOC in neuroendocrine tumours

[<sup>111</sup>In]DTPA-octreotide SPECT

CT

![](_page_25_Picture_3.jpeg)

## [<sup>86</sup>Y]DOTA-DPhe<sup>1</sup>-Tyr<sup>3</sup>-octreotide in patients

[<sup>90</sup>Y]DOTATOC used for treatment of patients with neuroendocrine tumors - usually with standard doses -

an accurate pretherapeutic dosimetry would allow for an individual planning of the optimal therapeutic strategy

compare the biodistribution and resulting dosimetric calculations for therapeutical exposure of normal tissue and tumor masses based on

- [<sup>86</sup>Y]DOTATOC-PET
- [<sup>111</sup>In]DTPA-octreotide SPECT

![](_page_26_Figure_6.jpeg)

Departments of Nuclear Medicine Endocrinology and Metabolism Institute of Nuclear Chemistry

![](_page_26_Picture_8.jpeg)

## [<sup>86</sup>Y]DOTA-DPhe<sup>1</sup>-Tyr<sup>3</sup>-octreotide in patients

[<sup>111</sup>In]DTPAoctreotide SPECT [<sup>86</sup>Y]DOTA-DPhe<sup>1</sup>-Tyr<sup>3</sup>octreotide PET

![](_page_27_Picture_3.jpeg)

Scintigraphic abdominal images acquired 24 h after injection affected by carcinoid with extensive hepatic and paraaortal metastases.

#### Patients:

- 3 patients with metastases of carcinoid tumor (histologically confirmed)
- No therapy with unlabeled somatostatin > 4 weeks
- Age: 46 67 years, male
- All were candidates for a possible <sup>90</sup>Y-DOTATOC therapy

#### 86Y-DOTATOC-PET

![](_page_28_Figure_1.jpeg)

## estimated organ doses for <sup>90</sup>Y-DOTATOC

| Source/Target organs        | t <sub>orga<b>(</b>h)</sub>  | <i>D</i> organ(mGy/MBq) | t <sub>orgal</sub> (h)    | <i>D</i> organ(mGy/MBq) |
|-----------------------------|------------------------------|-------------------------|---------------------------|-------------------------|
|                             | based on <sup>111</sup> In-D | <b>TPAoctreotide</b>    | based on <sup>86</sup> Y- | DOTATOC                 |
| Intestine wall              | 0.47±0.1                     | 0.6 <b>2±</b> 0.43      | -                         | 0.0 <b>5±</b> 0.002     |
| Kidneys                     | 1.67±0.45                    | 3.0世0.81                | 1.5 <b>1±0</b> .78        | 2.7 <b>3</b> ±1.41      |
| Liver                       | 2.11±0.53                    | 0.59±0.15               | 2.33±0.53                 | 0.6 <b>6±</b> 0.15      |
| Other tissue                | -                            | 0.04±0.01               | -                         | 0.0 <b>5</b> ±0.002     |
| Red marrow                  | 0.04±0.01                    | 0.04±0.01               | 0.0 <b>4</b> ±0.01        | 0.0 <b>5</b> ±0.002     |
| Spleen                      | 0.9 <b>5</b> ±0.52           | 2.79±1.54               | 0.79±0.67                 | 2.3 <b>2</b> ±1.97      |
| Urinary bladder wall        | 0.87±0.004                   | 0.76±0.5                | 0.78±0.17                 | 1.03±0.23               |
| Remainder of the body       | 5.39±1.05                    | -                       | 6.3 <b>6±</b> 0.21        | -                       |
| Total body                  | -                            | 0.09±0.01               | -                         | 0.08±0.01               |
| Effective Dose<br>(mSv/MBq) |                              | 0.3 <b>5</b> 20.17      |                           | 0.22±0.07               |

#### **Estimated organ doses for [90Y]DOTATOC therapy**

(based on [86Y]DOTATOC-PET)

![](_page_30_Figure_2.jpeg)

estimated organ doses for kidneys, liver, spleen: comparable for both approaches

## **Estimated tumour doses for [90Y]DOTATOC therapy**

![](_page_31_Figure_1.jpeg)

## Individual Radiation Dosimetry: The Concept of THERANOSTICS:

## **Biological target: Neuroendocrine tumours**

![](_page_32_Picture_2.jpeg)

#### (pre-therapeutic) determination of radiation doses:

The non-ideal situation

![](_page_33_Figure_2.jpeg)

![](_page_33_Figure_3.jpeg)

![](_page_33_Picture_4.jpeg)

#### (pre-therapeutic) determination of radiation doses:

68Ga 44Sc 177Lu 90**Y** The non-ideal situation β<sup>+</sup> 0.74 β<sup>+</sup> 0.60 and a solution ... β<sup>-</sup> β- 2.3 MeV 89.1% 94.3% 6.71 d 64.1 h 67.7 m 3.93 h К  $D_{\text{THERAPEUTICAL}} = \frac{1}{1000} S D_{\text{PET-ICAL}}$ CORRECT FOR DEVIATIONS **IN PHARMACOLOGY**  $\overline{D}_{t \leftarrow s} = S_{t \leftarrow s} \int A_s \exp(\lambda_{phys} + \lambda_{biol}) t dt$ 

![](_page_34_Figure_2.jpeg)

![](_page_34_Picture_3.jpeg)

## <sup>68</sup>Ga-BFC+targeting vector

![](_page_35_Picture_1.jpeg)

![](_page_35_Figure_2.jpeg)

![](_page_35_Picture_3.jpeg)

![](_page_36_Figure_0.jpeg)

## <sup>68</sup>Ga-DOTA-Tyr<sup>3</sup>-octreotides

#### Uptake kinetics

![](_page_37_Picture_2.jpeg)

![](_page_37_Figure_3.jpeg)

0:20 p.i.

![](_page_37_Figure_5.jpeg)

1:00 p.i.

1:20 p.i.

1:40 p.i.

already at 20 min. p.i. all tumours localised, at 40 min. p.i. any disturbing activity in the urea tubes

![](_page_37_Picture_10.jpeg)

## <sup>68</sup>Ga-DOTA-Tyr<sup>3</sup>-octreotides vs. PRRT

![](_page_38_Picture_1.jpeg)

<sup>68</sup>Ga SUV<sub>max</sub> and therapy response

![](_page_38_Picture_3.jpeg)

before PRRT-13-mo after4 GBq Y-90PRRT-1SUV 15.8SUV 8.4

![](_page_38_Picture_6.jpeg)

## **Radiolanthanides for Therapy**

![](_page_39_Figure_1.jpeg)

![](_page_39_Picture_2.jpeg)

## <sup>68</sup>Ga-DOTA-Tyr<sup>3</sup>-octreotides vs. PRRT

![](_page_40_Picture_1.jpeg)

#### <sup>68</sup>Ga SUV<sub>max</sub> and therapy response

![](_page_40_Picture_3.jpeg)

## <sup>68</sup>Ga-DOTA-Tyr<sup>3</sup>-octreotides vs. PRRT

#### $^{68}\text{Ga}~\text{SUV}_{\text{max}}$ and the rapy response

|    |    | SUVmax_Ga          |                    |                     |                   |         |
|----|----|--------------------|--------------------|---------------------|-------------------|---------|
|    |    | Pre_PRRT           | Post_PRRT          | n                   |                   |         |
|    |    | Mean ± SD (Median) | Mean ± SD (Median) | P                   |                   |         |
| Ga |    | PR + MR            | 45                 | 27.2 ± 14.8 (22.9)* | 16.4 ± 9.6 (14.1) | <0.0001 |
|    | Ga | SD                 | 22                 | 17.6 ± 9.9 (14.6)*  | 16.9 ± 9.5 (14.1) | n.s.    |
|    |    | PD                 | 10                 | 12.9 ± 5.6 (14.6) * | 19.9 ± 7.5 (22.3) | 0,002   |
|    |    |                    |                    |                     |                   |         |

![](_page_41_Figure_3.jpeg)

| 1) | PR + MR | n=45; 27.2 ± 14.8 |
|----|---------|-------------------|
| 2) | SD      | n=22; 17.6 ± 9.9  |
| 3) | PD      | n=10; 12.9 ± 5.6  |

![](_page_41_Picture_6.jpeg)

68Ga

 $\beta^{+} 0.74$ 

67.7 m

JGU

#### **Peptide Receptor Radionuclide Therapy**

## Treatment With the Radiolabeled Somatostatin Analog [<sup>177</sup>Lu-DOTA<sup>0</sup>,Tyr<sup>3</sup>]Octreotate: Toxicity, Efficacy, and Survival

Dik J. Kwekkeboom, Wouter W. de Herder, Boen L. Kam, Casper H. van Eijck, Martijn van Essen, Peter P. Kooij, Richard A. Feelders, Maarten O. van Aken, and Eric P. Krenning

![](_page_42_Figure_3.jpeg)

JOURNAL OF CLINICAL ONCOLOGY

VOLUME 26 · NUMBER 13 · MAY 1 2008

Median OS from diagnosis was 128 months.

Compared with historical controls, there was <u>a survival benefit of 40 to 72 months.</u>

predictors of success: uptake of Octreoscan (and Karnofsky index)

## <sup>68</sup>Ga-DOTA-non-peptides

Target: bone metastases Vector: DOTA-conjugated bisphosphonates

#### $^{\rm 68}{\rm Ga}~{\rm SUV}_{\rm max}$ and the rapy response

![](_page_43_Figure_3.jpeg)

![](_page_43_Picture_4.jpeg)

Baum RP. Dept. of Nuclear Medicine/P.E.T. Center, Zentralklinik Bad Berka

JGU

![](_page_43_Picture_6.jpeg)

10th thoracic vertebra [<sup>68</sup>Ga]BPAMD **77.1** / <sup>18</sup>F<sup>-</sup> 39.1 L2 vertebra [<sup>68</sup>Ga]BPAMD **62.1** / <sup>18</sup>F<sup>-</sup> 39.2

Different uptake mechanisms

![](_page_43_Picture_9.jpeg)

## <sup>68</sup>Ga-DOTA-bisphosphonates

Target: bone metastases Vector: DOTA-conjugated bisphosphonates

#### <sup>68</sup>Ga SUV<sub>max</sub> and therapy response

![](_page_44_Figure_3.jpeg)

**68** 

**Ta** 

β<sup>+</sup> 0.74

67.7 m

## The <sup>44</sup>Ti/<sup>44</sup>Sc generator

44Sc β<sup>+</sup> 0.60 3.92 h

![](_page_45_Figure_2.jpeg)

![](_page_45_Picture_3.jpeg)

## <sup>44</sup>Ti/<sup>44</sup>Sc generator: Post-processing

Challange: many years stability !

Elution strategies: STANDARD: usual, uni-directional elution, vs REVERSE: usual elution + backward after the elution using identic eluent

<sup>44</sup>Sc yield: >90 % (160 MBq)
<sup>44</sup>Ti breakthrough: < 1.10<sup>-6</sup> % (<10 Bq)</li>

After 6 years of regular elution: performance stable, breakthrough of <sup>44</sup>Ti very low (<4.8×10<sup>-7</sup>)

![](_page_46_Figure_5.jpeg)

![](_page_46_Picture_6.jpeg)

![](_page_46_Picture_8.jpeg)

## <sup>44</sup>Sc-DOTA-Tyr<sup>3</sup>-octreotides PET/CT vs. PRRT

44Sc β<sup>+</sup> 0.60 3.92 h

![](_page_47_Picture_2.jpeg)

![](_page_47_Picture_4.jpeg)

Rösch F, Baum RP. Generator-based PET radiopharmaceuticals for molecular imaging of tumours: On the way to THERANOSTICS. Dalton Transitions 40/23 (2011) 6104-6111

## <sup>44</sup>Sc-DOTA-Tyr<sup>3</sup>-octreotides PET/CT vs. PRRT

#### 44Sc β<sup>+</sup> 0.60 3.92 h

#### <sup>44</sup>Sc-DOTA-TOC 40 min. p.i.

![](_page_48_Picture_3.jpeg)

![](_page_48_Picture_6.jpeg)

## <sup>44</sup>Sc-DOTA-Tyr<sup>3</sup>-octreotides PET/CT vs. PRRT

![](_page_49_Picture_1.jpeg)

44Sc

β+ 0.60

3.92 h

![](_page_49_Picture_4.jpeg)

![](_page_50_Figure_0.jpeg)

## Production of <sup>89</sup>Zr

![](_page_51_Picture_1.jpeg)

![](_page_51_Figure_2.jpeg)

- Nuclear reaction <sup>89</sup>Y(p,n)<sup>89</sup>Zr
- Target: <sup>89</sup>Y disk (mono-isotopic !)
- Separation: dissolve in 6 M HCI,
- affinity chromatography

![](_page_51_Figure_7.jpeg)

*IT= isomeric transition* 

![](_page_51_Picture_9.jpeg)

Nuclear Medicine & PET research, VU University Medical Center, Amsterdam Otolaryngology/Head and Neck Surgery,

## **Production of <sup>90</sup>Nb**

![](_page_52_Picture_1.jpeg)

| <b>89Nb</b><br>66 m 2.0 h | <b>90Nb</b><br>18.8 s 14.6 h | (p,n)   |
|---------------------------|------------------------------|---------|
| 88Zr                      | <b>89Zr</b>                  | 90Zr    |
| 83.4 d                    | 4.16 m 78.4 h                | 51.45 % |

- Nuclear reaction <sup>90</sup>Zr (p,n) <sup>90</sup>Nb
- obtained as <sup>90</sup>Nb in Zirconium foil
- Work up: dissolve in conc. HF
- Multistep separation procedure (extraction + anion exchange)

![](_page_52_Picture_8.jpeg)

# Production and specifications of 90 Nb and 89Zr90 NbParameters90 Nbβ\* 0.3551.0%90 Nb89Zr14.6 hProduction

| Energy (MeV)                 | 17.5                                             | <13                                         | β <sup>+</sup> 0.09 |
|------------------------------|--------------------------------------------------|---------------------------------------------|---------------------|
| Beam current (µA)            | Up to 10                                         | Up to 50                                    | 23.0%               |
| Yield (MBq/µah)              | ~ 150 (290*)                                     | 38-42                                       | <b>3.268 d</b>      |
| Typical bombardment          | 1 h<br>yield ~725 MBq                            | 4-6 h<br>yield ∼6000 MBq                    |                     |
| Purification (%)             | 76-81                                            | 95                                          |                     |
|                              | Specification                                    | าร                                          |                     |
| Chemical form                | Nb <sup>∨</sup> in 6 M HCl/0.01 M<br>oxalic acid | Zr <sup>Ⅳ</sup> in 1 M oxalic acid          |                     |
| Specific activity (MBq/g)    | no carrier added<br>8.82 · 10 <sup>10</sup>      | no carrier added<br>1.66 · 10 <sup>10</sup> |                     |
| Radioactivity conc. (MBq/ml) |                                                  | > 740                                       |                     |
| Radionuclide purity (%)      | > 97                                             | > 99.9                                      |                     |

Redionacide punty (70)Testing batchesCatalogue productAvailability(DKFZ Heidelberg)(IBA Moleculare)

## Nb(V) / Zr(IV)-Df-proteins

conjugation chemistry: NCS-Df

![](_page_54_Figure_2.jpeg)

![](_page_54_Figure_3.jpeg)

3 eq. NCS-Df used = 1-1.5 Df per mAb

Nuclear Medicine & PET research, VU University Medical Center, Amsterdam Danielle Vugts Otolaryngology/Head and Neck Surgery,

## Nb(V) / Zr(IV)-Df-peptides

Proof-of-principle chemistry: Df-(D)Phe<sup>1</sup>-Octreotide

![](_page_55_Figure_2.jpeg)

![](_page_55_Figure_3.jpeg)

![](_page_55_Picture_4.jpeg)

#### (pre-therapeutic) determination of radiation doses

![](_page_56_Figure_1.jpeg)

## Immuno-PET: Application of <sup>89</sup>Zr-labeled monoclonal antibodies

Confirmation lymphoma targeting with <sup>89</sup>Zr-N-suc-Df-rituximab

1 day p.i. 3 days p.i. 6 days p.i. <sup>18</sup>FDG

89Zr

β<sup>+</sup> 0.09

23.0% 3.268 d

Collaboration: Kristoff Muylle, Patrick Flamen, Brussels

## Immuno-PET: Application of <sup>89</sup>Zr-labeled monoclonal antibodies

From 'one size fits all' to 'personalized therapy'

<sup>18</sup>FDG PET-CT before <sup>89</sup>Zr-rituximab before

![](_page_58_Picture_4.jpeg)

![](_page_58_Picture_5.jpeg)

<sup>90</sup>Y-rituximab treatment

![](_page_58_Picture_7.jpeg)

Nuclear Medicine & PET research, VU University Medical Center, Amsterdam Otolaryngology/Head and Neck Surgery, Danielle Vugts

odies <sup>β+</sup> 0.09 23.0% 3.268 d

Collaboration: Kristoff Muylle, Patrick Flamen, Brussels

#### (pre-therapeutic) determination of radiation doses

![](_page_59_Figure_1.jpeg)

![](_page_59_Picture_2.jpeg)

## **PRE-TARGETING**

![](_page_60_Figure_1.jpeg)

O C Boerman, R Schoffelen, G Franssen, W McBride, R M Sharkey, D M Goldenberg, W J Oyen Radboud University Nijmegen Medical Center, The Netherlands / Immunomedics, Morris Plains, NJ / Garden State Cancer Center, Belleville, NJ

![](_page_61_Picture_0.jpeg)

![](_page_61_Picture_1.jpeg)

O C Boerman, R Schoffelen, G Franssen, W McBride, R M Sharkey, D M Goldenberg, W J Oyen Radboud University Nijmegen Medical Center, The Netherlands / Immunomedics, Morris Plains, NJ / Garden State Cancer Center, Belleville, NJ

## Conclusion

Short-lived generator-derived <sup>68</sup>Ga and <sup>44</sup>Sc and longer-lived cyclotron-produced <sup>90</sup>Nb and <sup>89</sup>Zr positron emitters:

**Availability, labelling and directions of applications** 

![](_page_62_Figure_4.jpeg)

# Summary: (pre-therapeutic) determination of radiation doses

![](_page_63_Picture_1.jpeg)

adequate positron emitters available apply them in clinical (routine)

![](_page_63_Picture_3.jpeg)