

2484-9

ICTP-IAEA Joint Workshop on Nuclear Data for Science and Technology: Medical Applications

30 September - 4 October, 2013

Internal radionuclide therapy: Part II

F. Roesch Institute of Nuclear Chemistry University of Mainz Germany

Internal radionuclide therapy: Part II (α, β, Auger therapy; dose quantification)

The wapons: particles ... about their origin, character, and fate

Frank Roesch Institute of Nuclear Chemistry, University of Mainz, D-55128 Mainz, Germany

Workshop on Nuclear Data for Science and Technology: Medical Applications 30 September to 04 October 2013 Miramare – Trieste, Italy

PRIMARY & SECONDARY TRANSFORMATIONS + POST-EFFECTS

RELEVANT TO ENDORADINUCLIDE THERAPY

$K1 \rightarrow K2 + \alpha + \Delta E$

JGL

$K1 \rightarrow K2 + \alpha + \Delta E$

$K1 \rightarrow K2 + \alpha + \Delta E$

Nuclide	t½	Production	E _α (MeV)
²²⁵ Ac	10 d	²³³ U-chain, ²²⁹ Th-chain, ²²⁶ Ra(p,2n) ²²⁵ Ac	5.830, 5.793, 5.732,
²²⁴ Ra	3.66 d	²²⁸ Th	5.686, 5.449,
²²³ Ra	11.4 d	²²⁷ Ac-chain, ²²⁷ Th-chain, ²²⁶ Ra(n, γ) ²²⁷ Ac	5.716, 5.607,
²¹³ Bi	45.6 m	²²⁵ Ac-chain, ²²⁵ Ac/ ²¹³ Bi-generator	5.87,
²¹² Bi	60 m	²²⁴ Ra-chain, ²¹² Bi/ ²¹² Pb-Generator	6.051, 6.090
²¹¹ At	7.2 h	²⁰⁹ Bi(α,2n) ²¹¹ At	5.867,
¹⁴⁹ Tb	4.1 h	Ta(p,spall), ¹⁵² Gd(p,4n) ¹⁴⁹ Tb	3.49

$K1 \longrightarrow K2 + \beta^- + \overline{\nu}_e + \Delta E$

 $K1 \longrightarrow K2 + \beta^- + \overline{\nu}_e + \Delta E$

 $E_{\beta}^{\max(mean)}$ = 2.28 (0.9) MeV Electron range (water) = 12 (5) mm

 $K1 \longrightarrow K2 + \beta^- + \overline{\nu}_e + \Delta E$

JG

PRIMARY & SECONDARY TRANSFORMATIONS + POST-EFFECTS

Electron capture ...

From electron capture ... to electron vacancies

 $K1 + e^- \rightarrow K2 + v_e + \Delta E$

From electron vacancies ... to X-ray emission

$$K1 + e^- \rightarrow K2 + v_e + \Delta E$$

From electron vacancies ... to emissions of AUGER electrons

_MN

$$K1 + e^- \rightarrow K2 + v_e + \Delta E$$

Κ

L M

Ν

From electron vacancies ... to emissions of AUGER electrons

between different main electron shells (e.g. K / M)

E_{KOSTER-KRONIG-e}

within one main shell between sub-shells (z.B. L1 / L2 / ...)

 $K1 + e^- \rightarrow K2 + v_e + \Delta E$

From electron vacancies ... to emissions of cascades of AUGER electrons

 $K1 + e^- \rightarrow K2 + v_e + \Delta E$

PRIMARY & SECONDARY TRANSFORMATIONS + POST-EFFECTS

SECONDARY TRANSFORMATIONS AND POST-EFECTS

K2 $\rightarrow \odot^{i}$ K2 + y + ΔE^{}

From excited nuclear states to inner conversion (IC)

SECONDARY TRANSFORMATIONS AND POST-EFECTS

From inner conversion (IC) to emission of "conversion electrons"

 E_{β}

JG

PRIMARY & SECONDARY TRANSFORMATIONS + POST-EFFECTS

Internal radionuclide therapy: Part II (α , β , Auger therapy; dose quantification)

The wapons: particles ... about their origin, character, and fate

Their fate:

1. PARTICLE INTERACTION WITH MATTER (WATER)

Internal radionuclide therapy: Part II (α, β, Auger therapy; dose quantification)

The wapons: particles about their origin, character, and fate							
PARTICLE	ENERGY	ENERGY	RANGE	LET			
	MAX	MEAN	MEAN	(keV/μm)			
	(MeV)	(MeV)	(mm)				
β -transformation end α ron em	lons Issioi≈ 4-8		< 0.01 – 0.1	≈ 100			
β-	≈ 0.2 -2.5	0.1 -1.0	0.4 - 4	≈ 0.1-0.2			
IC-electrons	≈ 0.1	- N	< 0.1	≈ 1-2			
AUGER	< 0.0005		< 0.000025	≈ 20			
electrons	(< 0.5 keV)		(< 28 nm)				
INNER ^{discreto}	SION:		AUGER PROCESSES: = ELECTRON EMISSION				

Internal radionuclide therapy: Part II (α , β , Auger therapy; dose quantification)

The wapons: particles ... about their origin, character, and fate

Their fate:

1. PARTICLE INTERACTION WITH MATTER (WATER)

2. IONIZATING WATER MOLECULES, THERBY CREATING REACTIVE RADICALS: H₂O ->->-> OH°, H°, etc.

3. RADICALS "ATTACK" DNA-BASE PAIRS TO BREAK BONDS BETWEEN THEM

