

2013 ICTP/IAEA Training Course on Radiation Protection of Patients • Trieste

Breast CT and Dosimetry

John M. Boone, Ph.D., FAAPM, FSBI, FACR Professor and Vice Chair (Research) of Radiology Professor of Biomedical Engineering University of California Davis Medical Center Sacramento, California

Breast CT and Dosimetry

Breast CT Background
 Technical Development
 Initial Clinical Results
 Dose Issues in Breast CT
 Summary

Mammography: Standard of Care

CC

Mammography

 μm × 70 μm × 50,000 μm 4

 μm × 230 μm × 250 μm

Dedicated Breast CT

Computed Tomographic Mammography--CTM

Mayo Clinic 1975

John J. Gisvold, Philip R. Karsell, David F. Reese

CTM: 1.56 x 1.56 x 10 mm voxels Voxel volume: over 900 times smaller

Special thanks to Cynthia McCollough and John Gisvold for providing this information

Breast CT and Dosimetry

Breast CT Background

- Technical Development
 - **Initial Clinical Results**
 - **Dose Issues in Breast CT**
 - Summary

Computer aided design / computer aided manufacture (CAD/CAM)

Albion 2004

Cambria 2011

Components (Albion and Bodega)

Varian 4030CB 194 μm pixels 2x2 388 μm 1024 x 768 x 30 FPS Kollmorgen Servo Motor Propulsion Bearing Angle Encoder

Comet 1 kW Tube

Components (Cambria and Doheny)

Varian 4030CB

Dexela 2329 .075 mm pixels 26 FPS / CMOS 70 FPS @ 2x2

Yaskawa Servo Motor Propulsion Bearing Angle Encoder

Half Cone Beam CT Geometry

calibration, corrections, reconstruction

FDK Reconstruction Code

Spatial Resolution: Modeled & Measured MTF's

Phantom Imaging

Phantom Imaging

Phantom Imaging

Breast CT and Dosimetry

Breast CT Background Technical Development

Initial Clinical Results

Dose Issues in Breast CT

Summary

Patient Imaging Radiologist Observers

Over 600 patients imaged at two sites

first breast cancer imaged: January 2005

2008

Dedicated Breast CT: Initial Clinical Experience¹

Karen K. Lindfors, MD John M. Boone, PhD Thomas R. Nelson, PhD Kai Yang, MS Alexander L. C. Kwan, PhD² DeWitt F. Miller, BE

bCT (with contrast)

Contrast-enhanced Dedicated **Breast CT:** Initial Clinical Experience¹

2010

microcalcifications

Prospective Clinical Trial

105 patients /103 lesions (BIRADS 4 or 5)
imaged on VCO mammo / tomo / CE-bCT
all biopsied

	microcalcifications	masses	
malignant	31	27	
benign	27	18	
total	58	45	

Shadi Shakeri, M.D.

2 Radiologists Rated Lesions using a 0 to 10 Conspicuity Score

0 = not seen 10 = excellent

one-way ANOVA with correction for multiple comparisons

Computer (Mathematical) Observer
Effect of slice thickness on detectability in breast CT using a prewhitened matched filter and simulated mass lesions

Nathan J. Packard Carestream Health Inc., Rochester, New York 14615

Craig K. Abbey Department of Psychology, University of California, Santa Barbara, California 93106

Kai Yang Department of Radiology, University of California Davis Medical Center, Sacramento, California 95817

John M. Boone^{a)} Department of Radiology, University of California Davis Medical Center, Sacramento, California 95817 and Department of Biomedical Engineering, University of California, Davis, California 95616

(Received 11 April 2011; revised 22 December 2011; accepted for publication 25 January 2012; published 14 March 2012)

breast CT image (actual images are used)

mass lesions only / results do not reflect microcalcifications

Breast CT and Dosimetry

Breast CT Background Technical Development

Initial Clinical Results

Dose Issues in Breast CT

Summary

John M. Boone, PhD Thomas R. Nelson, PhD Karen K. Lindfors, MD J. Anthony Seibert, PhD

Medical Physics

Dedicated Breast CT: Radiation Dose and Image Quality Evaluation¹

A comprehensive analysis of DgN_{CT} coefficients for pendant-geometry cone-beam breast computed tomography

J. M. Boone^{a)}

Department of Radiology, U.C. Davis Medical Center, 4701 X Street, X-ray Imaging Laboratory and Department of Biomedical Engineering, Sacramento, California 95817

N. Shah

Department of Radiology, U.C. Davis Medical Center, 4701 X Street, X-ray Imaging Laboratory, Sacramento, California 95817

T. R. Nelson Department of Radiology, University of California, San Diego, California 92037

(Received 21 July 2003; revised 26 September 2003; accepted for publication 4 November 2003; published 14 January 2004)

Technique factors and their relationship to radiation dose in pendant geometry breast CT

John M. Boone,^{a)} Alexander L. C. Kwan, J. Anthony Seibert, Nikula Shah, and Karen K. Lindfors Department of Radiology, University of California Davis Medical Center, Sacramento, California

Thomas R. Nelson

Department of Radiology, University of California San Diego, La Jolla, California

(Received 11 July 2005; revised 13 September 2005; accepted for publication 3 October 2005; published 22 November 2005)

2004

Radiation Dose from Breast CT ?

.....size matters

Mean Glandular Dose in Mammography

two-view mammography dose versus CB thickness

Compressed Breast Thickness (cm)

Monte Carlo Assessment of Dose Deposition

JM Boone, N. Shah, and T.R. Nelson, "A Comprehensive Analysis of DgN_{CT} Coefficients for Pendant-Geometry Cone-Beam Breast Computed Tomography", Medical Physics 31: 226-235 (2004)

X-ray spectral model for bCT beams

Thickness (mm Al)

Converting m-DgN to p-DgN using spectral weighting

polyenergetic functions

JM Boone, N. Shah, and T.R. Nelson, "A Comprehensive Analysis of DgN_{CT} Coefficients for Pendant-Geometry Cone-Beam Breast Computed Tomography", Medical Physics 31: 226-235 (2004)

Comparison of breast dimensions

2001 tape measure results (N = 200)

 $\begin{array}{l} X=13.4 \text{ cm} \\ \sigma=2.0 \text{ cm} \\ \text{Median}=13.6 \text{ cm} \end{array}$

2008 assessment on bCT images (N = 137)

Technique factors and their relationship to radiation dose in pendant geometry breast CT

John M. Boone,^{a)} Alexander L. C. Kwan, J. Anthony Seibert, Nikula Shah, and Karen K. Lindfors Department of Radiology, University of California Davis Medical Center, Sacramento, California

Thomas R. Nelson Department of Radiology, University of California San Diego, La Jolla, California

(Received 11 July 2005; revised 13 September 2005; accepted for publication 3 October 2005; published 22 November 2005)

actual and modeled x-ray spectra were "tuned"

X-ray system output carefully measured

	K @ iso	mR/mAs	TVH	E _{ave} (ent)	E _{ave} (exit)	BH factor	Trans (%) ¹⁴	₫/mGy
kVp	А	В	С	D	Е	F	G	Н
30	0.08	0.09	1.57	26.9	28.1	5.6	0.91	1.1074e + 007
35 40	0.35	0.40	2.10	30.2	31.4	4.2	1.61	1.392/e+007 1.6310e+007
40 45	1.46	0.95	2.55	32.9 35.8	54.4 37.6	5.0 3.5	2.21	1.03100 ± 007 $1.8772e\pm007$
50	2.30	2.63	3.44	38.2	40.2	3.3	3.28	$2.0741e \pm 0.07$
55	3.32	3.81	3.88	40.8	43.1	3.0	3.73	2.2675e + 007
60	4.54	5.20	4.26	43.0	45.6	3.0	4.10	2.4225e + 007
65	5.95	6.81	4.63	45.2	48.0	2.7	4.42	2.5541e+007
70	7.54	8.64	5.01	47.4	50.4	2.9	4.73	2.6711e+007
75	9.33	10.68	5.38	49.5	52.8	2.7	5.01	2.7711e+007
80	11.31	12.94	5.74	51.5	55.0	2.8	5.25	2.8512e+007
85	13.47	15.42	6.07	53.3	57.0	2.5	5.47	2.9144e+007
90	15.83	18.12	6.39	55.0	58.9	2.3	5.66	2.9622e + 007
95	18.37	21.03	6.68	56.5	60.6	2.5	5.83	2.9974e + 007
100	21.10	24.16	6.95	58.0	62.3	2.5	5.98	3.0222e + 007
105	24.03	27.51	7.21	59.3	63.9	2.5	6.12	3.0382e+007
110	27.14	31.08	7.46	60.7	65.4	2.4	6.25	3.0473e + 007
115	30.44	34.86	7.70	62.0	67.0	2.4	6.37	3.0507e + 007
120	33.94	38.86	7.92	63.2	68.5	2.4	6.48	3.0496e+007

MGD(t) in two-view mammography

MGD (mGy) as a function of air kerma at isocenter (mGy)

Kerma @ isocenter to yield same dose as 2V mammography

Kerma @ isocenter to yield same dose as 2V mammography

		kVp	10 cm	11 cm	12 cm	13 cm	14 cm	15 cm	16 cm	17 cm	18 cm
		30	1.502	2.417	3.841	5.976	9.000	12.934	17.438	21.681	24.513
		35	1.292	2.057	3.234	4.978	7.418	10.546	14.069	17.307	19.363
		40	1.161	1.836	2.867	4.382	6.483	9.154	12.127	14.818	16.467
		45	1.073	1.689	2.625	3.992	5.876	8.256	10.884	13.235	14.638
		50	1.012	1.587	2.456	3.721	5.457	7.638	10.033	12.155	13.396
		55	0.967	1.512	2.334	3.526	5.155	7.194	9.421	11.381	12.508
		60	0.933	1.457	2.243	3.380	4.930	6.864	8.968	10.808	11.851
3	300 - 					269	4.759	6.612	8.622	10.372	11.351
						183	4.626	6.417	8.354	10.033	10.963
-	50		i i		/	115	4.522	6.264	8.143	9.766	10.657
2	50 T	~0).113 mG	y/mAs 🛛	/)62	4.439	6.141	7.975	9.553	10.413
			1)19	4.372	6.043	7.839	9.382	10.216
s ²	200 +				/	·····)84	4.318	5.963	7.730	9.243	10.057
È						956	4.274	5.899	7.640	9.130	9.927
ୁ ଜୁ 1	150 -			/			4.239	5.846	7.568	9.038	9.821
ž				₩/)1 4	4.210	5.803	7.509	8.963	9.735
З ₁	100 -					399	4.186	5.769	7.461	8.902	9.665
-						387	4.167	5.741	7.422	8.853	9.609
	50					377	4.152	5.718	7.391	8.815	9.565
	50 1.										
	0 -	.									
	30	40	50 60	70 80 90 kVp	100 110	120	4.439	9 / 0.113 =	= 39.3 mA	S	

TABLE II. Air Kerma for 0% glandular/100% adipose breast composition. Air Kerma (mGy) values, calculated at the isocenter of the breast CT scanner, which deliver mean glandular doses equal to two-view mammography, for different kVp and breast diameters.

mAs (on our scanner) to yield same dose as 2V mammography

TABLE V. mAs for 0% glandular/100% adipose breast composition. The mAs values for the entire breast CT scan that delivers the same dose as two-view mammography are given in the table. To determine mA, divide the mAs values given below by the total time of the active scan (in seconds).

kVp	10 cm	11 cm	12 cm	13 cm	14 cm	15 cm	16 cm	17 cm	18 cm
30	1867.6	3005.0	4774.9	7428.5	*.*	* *	*.*	*.*	*.*
35	369.1	587.9	924.3	1422.8	2120.0	3014.2	4021.0	4946.6	5534.0
40	143.5	227.0	354.4	541.7	801.5	1131.7	1499.3	1831.9	2035.8
45	73.6	115.9	180.1	273.9	403.2	566.5	746.8	908.1	1004.4
50	44.1	69.1	107.0	162.1	237.7	332.7	437.0	529.5	583.5
55	29.1	45.5	70.2	106.1	155.1	216.5	283.5	342.5	376.4
60	20.6	32.1	49.4	74.4	108.6	151.2	197.5	238.0	261.0
65	15.3	23.8	36.5	55.0	80.0	111.2	145.0	174.4	190.8
70	11.8	18.3	28.1	42.2	61.3	85.1	110.7	133.0	145.3
75	9.4	14.5	22.3	33.4	48.5	67.1	87.3	104.7	114.2
80	7.6	11.8	18.1	27.1	39.3	54.3	70.5	84.5	92.1
85	6.3	9.8	15.0	22.4	32.5	44.9	58.2	69.6	75.8
90	5.3	8.3	12.6	18.9	27.3	37.7	48.8	58.4	63.5
95	4.6	7.1	10.8	16.1	23.3	32.1	41.6	49.7	54.0
100	3.9	6.1	9.3	13.9	20.1	27.7	35.9	42.8	46.5
105	3.4	5.3	8.1	12.1	17.5	24.2	31.3	37.3	40.5
110	3.0	4.7	7.2	10.7	15.4	21.3	27.5	32.8	35.6
115	2.7	4.2	6.4	9.5	13.7	18.9	24.4	29.1	31.6
120	2.4	3.7	5.7	8.5	12.2	16.9	21.8	26.0	28.2

Dose assessment repeated by Thacker/Glick

Other Considerations

Mammography

= high dose area= low dose area

Other Considerations (2)

- DgN's used in mammography probably underestimate dose:
- Skin Thickness Issue Glandular Density Spectrum

Breast CT and Dosimetry

Breast CT Background Technical Development

Initial Clinical Results

Dose Issues in Breast CT

Breast CT and Dosimetry: Summary

- Breast CT has strong clinical potential
- MGD levels are comparable to mammography
- When dosimetry methods are not available, you have to develop them yourself!

Breast Tomography Project

University of California Davis

California BCRP 7EB-0075 California BCRP 11I-0114 R01 CA•89260 R01 EB•002138-10 (BRP) R01 CA•129561 (RDB) P30 CA•093373 (CCSG) Susan G. Komen Foundation University of Pittsburgh