



























| Types of Imaging |                                                       |  |
|------------------|-------------------------------------------------------|--|
| X-Rays           | Plain radiography<br>CT<br>Fluoroscopy<br>Angiography |  |
| γ-rays           | Nuclear medicine<br>Bone Scans<br>SPECT<br>PET        |  |
| Radiofrequency   | MRI                                                   |  |
| Sound waves      | Ultrasound                                            |  |

| Organization                                                                                                                                            |                                                                                                                      |                                                                                                                                                                |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| CT Physics<br>Fundamentals                                                                                                                              | Novel Concepts                                                                                                       | Future Directions                                                                                                                                              |  |
| Imaging chain     X-ray generation & filtration     Attenuation     Detection     Recon algorithms     Characterization     X-ray dose     CT artifacts | <ul> <li>5 generations of<br/>scanners</li> <li>Cardiac CT</li> <li>Dual Energy CT</li> <li>Flat-panel CT</li> </ul> | <ul> <li>X-ray Source</li> <li>Contrast         Mechanism</li> <li>Detectors and         Photon Counting</li> <li>Reconstruction         Algorithms</li> </ul> |  |













































# Real-Time Dose Modulation Dose saving up to 66% for adults Improved IQ: higher mAs where needed Simplified workflow: auto-adjustment -Tech doesn't have to worry about proper mAs No over-dosing of pediatric patients \* \* Kamel IR et al: Radiation dose reduction in CT of the pediatric pelvis. Radiology 1994; 190:683–687: Only 43% of institutions adjust their CT scanning techniques when examining children.



### Overview of CT Physics Reconstruction · CT imaging chain algorithms X-ray tube Characterization X-ray generation Spatial resolution Filtration Contrast resolution - Collimation Dose CT artifacts Five generations X-ray detection and scan modes



























### **Take-home Points**

- Each projection = ray-sum of  $\mu$  values.
- Each projection is internally calibrated.
- HU system is water centered.
- $\mu$  and HU are artificial quantities.

# **Overview of CT Physics**

- CT imaging chain
- X-ray tube
  - X-ray generation
  - Filtration
- Collimation
- Attenuation in patient
- X-ray detection, scan modes, and parameters
- Reconstruction algorithms
- Characterization
  - Spatial resolution
- Contrast resolution
- Dose
- CT artifacts
- Five generations























### **Take-home Points**

- Multiple detector configurations
   4x1.25 mm (LightSpeed plus)
   8x1.25 mm (LightSpeed ultra)
   16x0.625 mm or 16x1.25 mm (LightSpeed 16)
   16x0.5 mm (Sensation 16, Siemens)
- 2. MSCT enables faster coverage
- 3. Isotropic Voxels
- 4. Dose efficiency increases with more slices

# **Scan Parameters**

- Rotation time
- mA
- kV
- Scan Mode: Spiral vs. Helical
- Pitch
- Image Width
- Detector configuration
- Reconstruction Algorithm

# **Rotation Time**

- Total scan time: proportional
- · Dose: proportional
- Noise and low contrast resolution
  - Proportional to 1/square root(T)
- In general, you want to minimize rotation time and increase mA
- Timing considerations for IV contrast

# **Tube Current**

- Affects
  - Noise / Low contrast resolution
  - Dose (proportional)

### Note:

• mA near tube/generator limits can be problematic (especially when dose modulation is used)

# **Tube Voltage**

- Affects
  - Contrast resolution
  - Dose
- Note:
  - Optimum mA varies with kV
  - Bolus tracking thresholds different at different kVs







































# Slice Thickenss

- Affects Noise and Low contrast Resolution
- Does not affect dose if changed retrospectively
- Can dramatically increase mA and dose if you try to compensate for increase noise in thinner slices.















