2013 ICTP/IAEA Training Course on Radiation Protection of Patients • Trieste

Patient Dosimetry in Mammography and Tomosynthesis:

What to measure, why and how

John M. Boone, Ph.D., FAAPM, FSBI, FACR Professor and Vice Chair (Research) of Radiology Professor of Biomedical Engineering University of California Davis Medical Center Sacramento, California

Mammography and Tomosynthesis Dosimetry

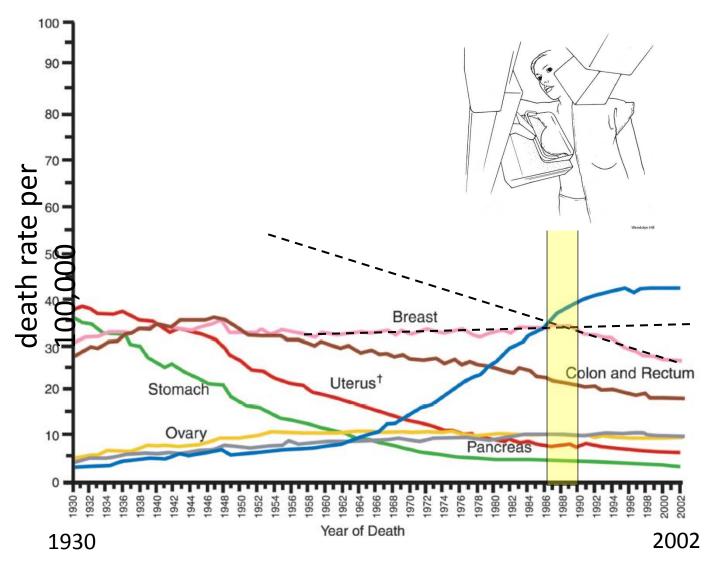
Mammography

Why measure breast dose?
 Basic Concepts of Breast Dosimetry (how)
 Mean Glandular Dose (MGD) (what)
 DgN coefficients
 Skin Thickness Issues
 Breast Density Issues

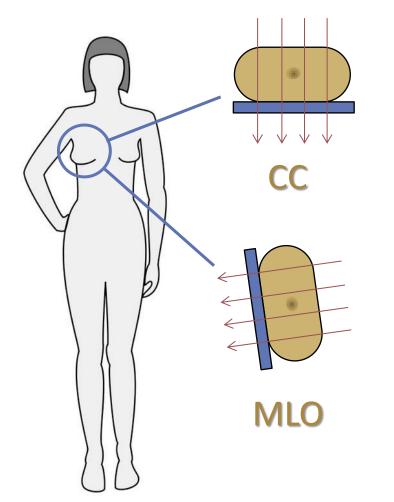
Tomosynthesis

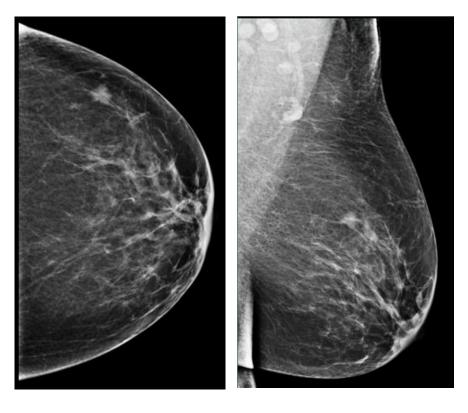
Differences between tomo and mammo Summary

U.S. Breast Cancer Statistics (2006)


212,290 new cases40,970 deaths1 / 8 women will get breast cancer (12.5%)

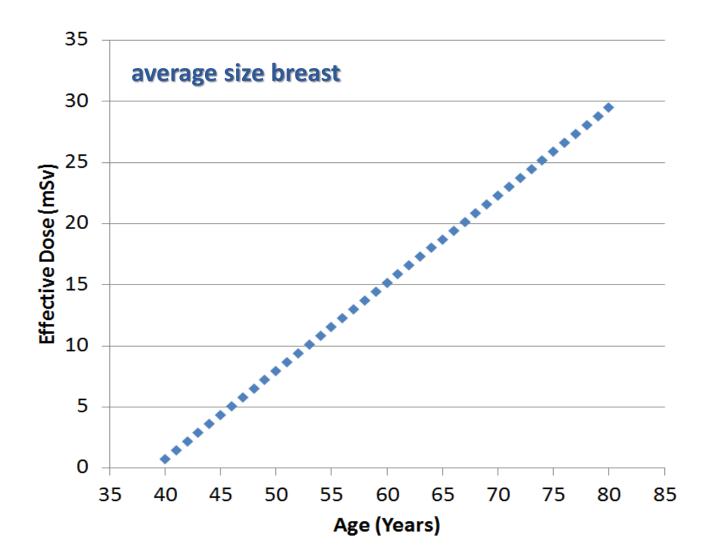
	Incidence*	Mortality*	
Breast Cancer	31%	15%	
Lung Cancer	12%	26%	


* of all cancers


Ravdin, et al., NEJM 2004

U.S. Cancer Mortality (1930-2002)

Mammography: Standard of Care



CC

MLO

Annual screening dose accumulation

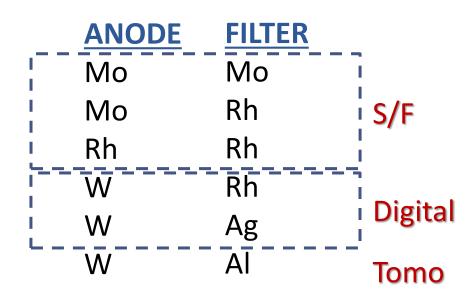
Mammography and Tomosynthesis Dosimetry

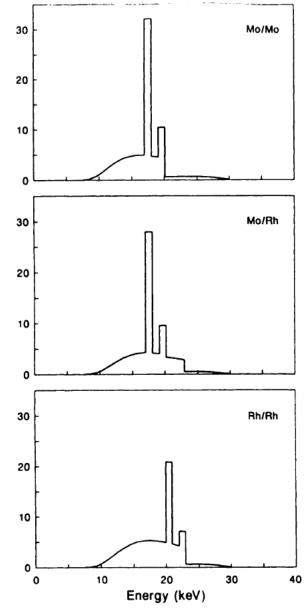
Mammography

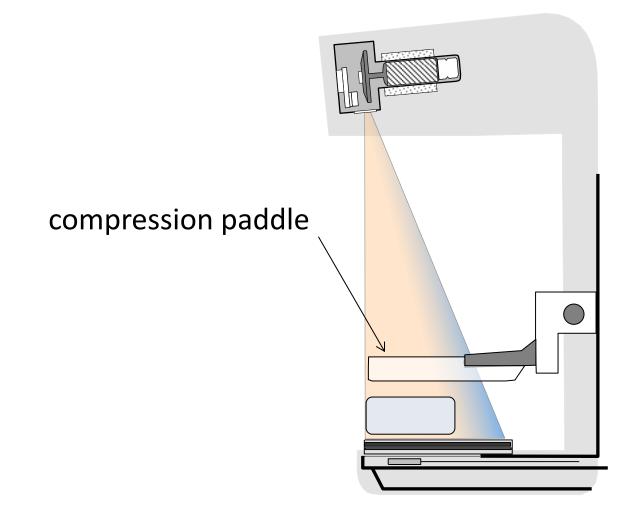
Why measure breast dose?

Basic Concepts of Breast Dosimetry (how) Mean Glandular Dose (MGD) (what) DgN coefficients Skin Thickness Issues Breast Density Issues

Tomosynthesis

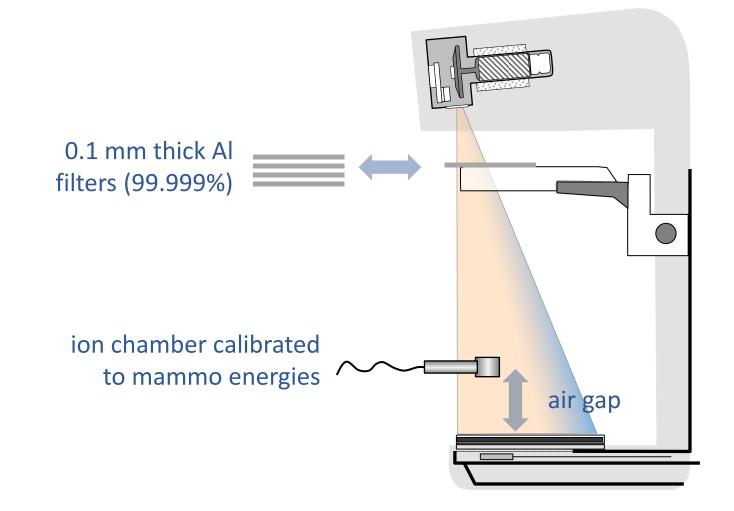

Differences between tomo and mammo Summary


Digital mammography unit at UC Davis

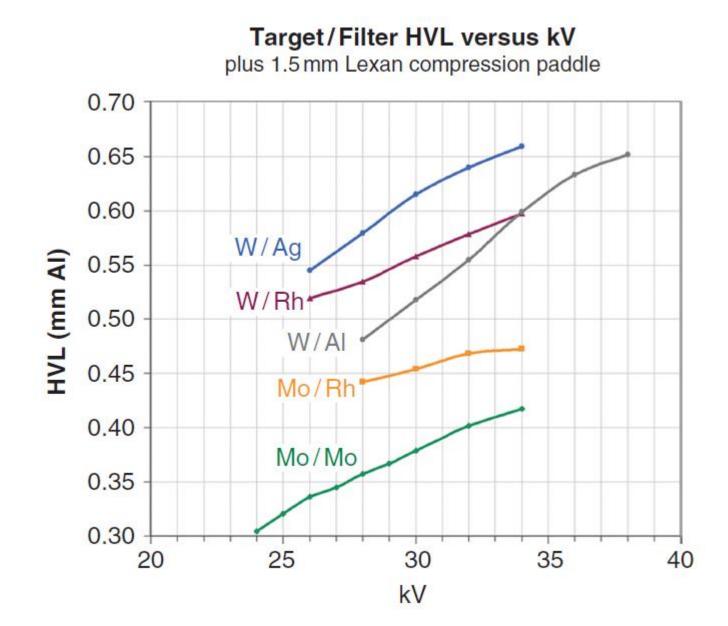

Breast Dose is highly dependent upon the x-ray spectrum used.

Different Anode/Filter combinations are used.

In addition to the Anode / Filter combo, the kV and HVL need to be well characterized

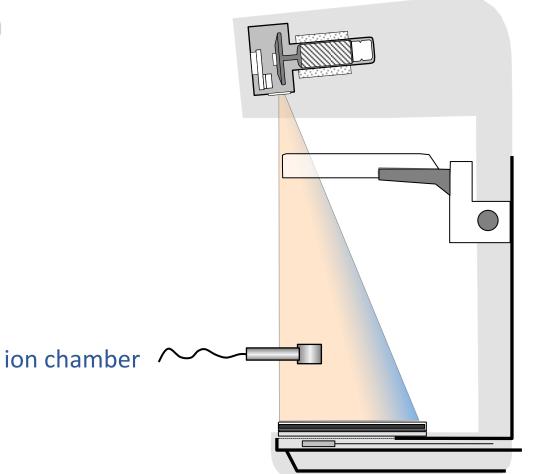


X-ray Tube Voltage Evaluation

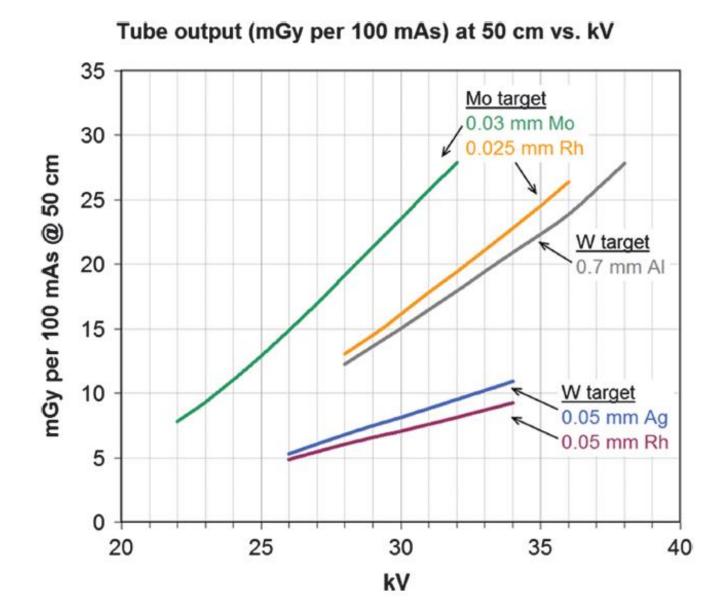

Measured kVp Selected kVp non-invasive kV meter

kVp Linearity (Large FS)

In addition to the Anode / Filter combo, the kV and HVL need to be well characterized

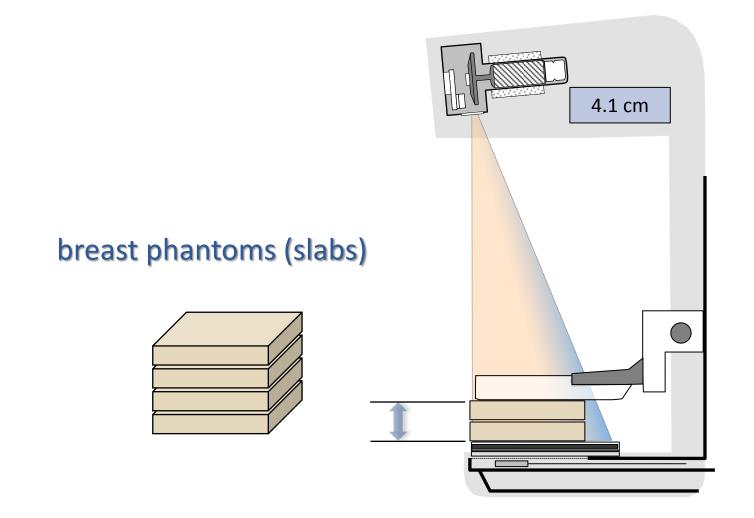


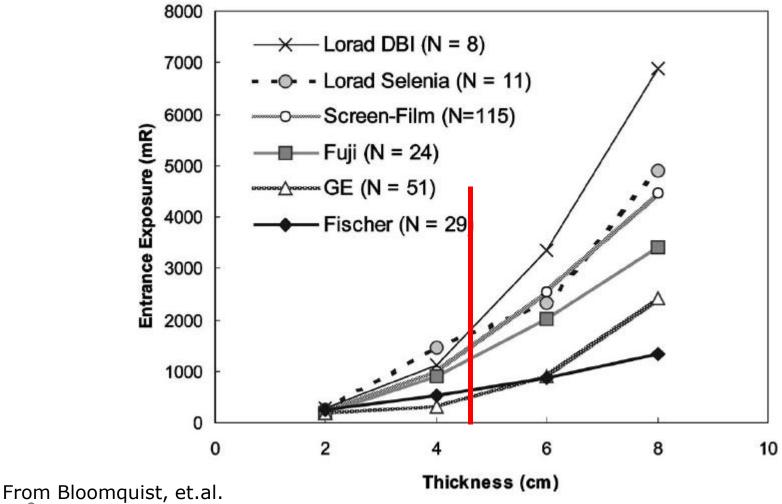
HVL as a function of tube voltage



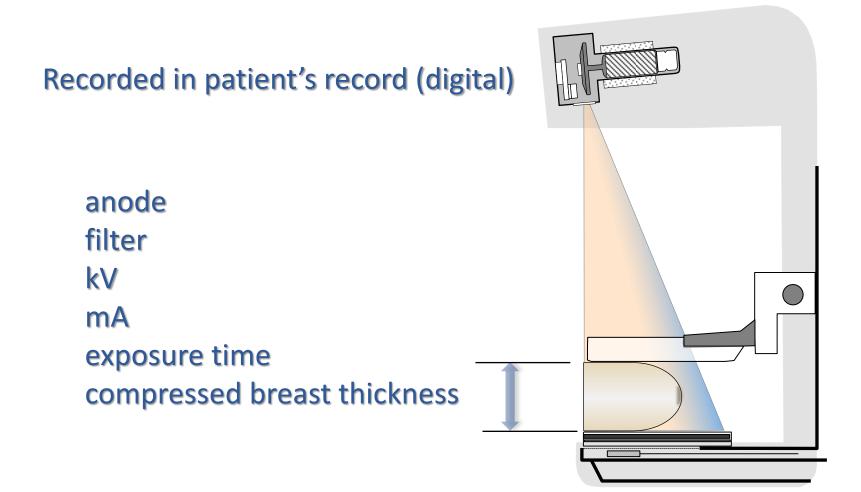
Establishing x-ray tube output

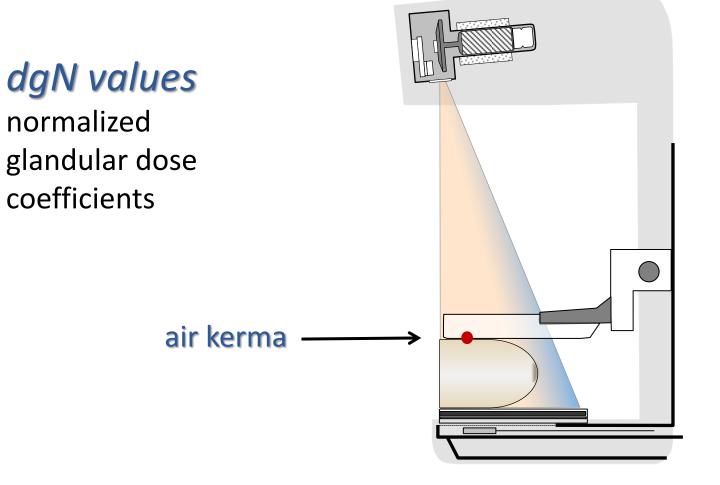
mGy air kerma per 100 mAs at 50 cm

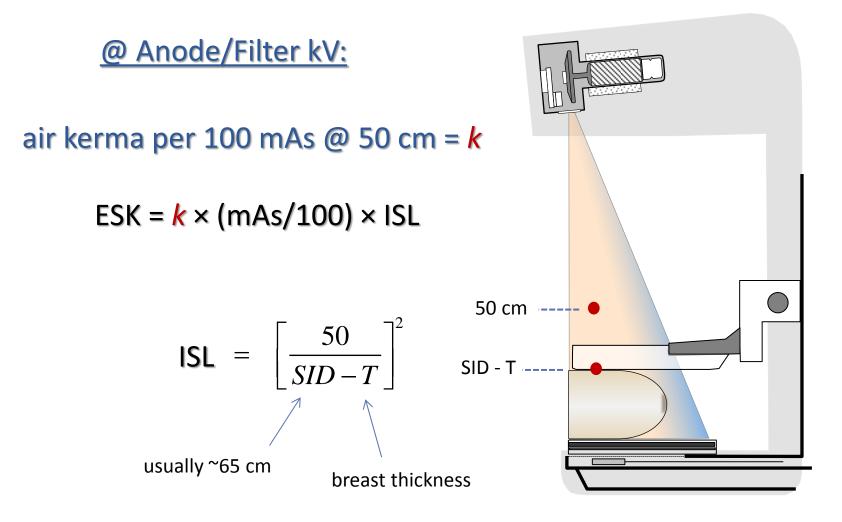

X-ray output (@50 cm) versus tube voltage



$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	r Tissue Dose (millirad) for 1-R	Glandular	ar Breast		Table 3 D _{gN} for Mo-Rh and 10 Entrance Skin Expose		ilter comb	ode / f	an	
$kv - 29 kvp = \begin{bmatrix} 0.38 & 220 & 166 & 132 & 108 & 92 & 79 & 92 \\ 0.38 & 220 & 166 & 132 & 106 & 132 & 106 & 100 & 97 & 105 & 122 & 101 & 88 & 100 & 100 & 97 & 105 & 122 & 101 & 88 & 100 & 100 & 97 & 105 & 122 & 101 & 88 & 100 & 100 & 98 & 100 & 100 & 100 & 98 & 100 $	ast Thickness (cm)	ressed Breas	Comp			-				
$ \begin{array}{c} \begin{array}{c} \begin{array}{c} 0.30 \\ 32 \\ 32 \\ 34 \\ 197 \\ 147 \\ 140 \\ 100 \\ 97 \\ 155 \\ 122 \\ 101 \\ 88 \\ 207 \\ 155 \\ 122 \\ 101 \\ 88 \\ 207 \\ 155 \\ 122 \\ 101 \\ 88 \\ 226 \\ 170 \\ 135 \\ 111 \\ 98 \\ 102 \\ 27 \\ 197 \\ 147 \\ 112 \\ 101 \\ 135 \\ 111 \\ 98 \\ 228 \\ 172 \\ 137 \\ 180 \\ 143 \\ 117 \\ 99 \\ 228 \\ 172 \\ 137 \\ 180 \\ 143 \\ 117 \\ 99 \\ 228 \\ 172 \\ 137 \\ 180 \\ 143 \\ 117 \\ 99 \\ 228 \\ 172 \\ 137 \\ 180 \\ 143 \\ 117 \\ 99 \\ 228 \\ 172 \\ 137 \\ 187 \\ 149 \\ 122 \\ 102 \\ 98 \\ 102 \\ 10$	6 7 8	5	4	3	X-ray Tube Voltage/ HVL (mm Al)					
$ \frac{glandular fraction}{1000} = \frac{32}{34} + \frac{140}{197} + \frac{140}{147} + \frac{116}{116} + \frac{95}{95} + \frac{83}{95} + \frac{140}{277} + \frac{116}{152} + \frac{197}{147} + \frac{116}{116} + \frac{95}{95} + \frac{83}{95} + \frac{140}{277} + \frac{116}{152} + \frac{197}{116} + \frac{110}{95} + \frac{110}$					25 kVp	-				
$ \frac{\text{glandular fraction}}{\text{breast thickness}}^{34} \frac{197}{147} \frac{116}{116} \frac{95}{163} \frac{187}{122} \frac{101}{106} \frac{95}{106} \frac{187}{147} \frac{116}{163} \frac{95}{122} \frac{101}{106} \frac{95}{106} \frac{187}{147} \frac{116}{163} \frac{95}{122} \frac{101}{106} \frac{95}{106} \frac{187}{147} \frac{116}{133} \frac{95}{111} \frac{97}{147} \frac{116}{133} \frac{97}{111} \frac{97}{147} \frac{116}{133} \frac{97}{111} \frac{97}{147} \frac{116}{132} \frac{97}{106} \frac{132}{107} \frac{107}{197} \frac{97}{147} \frac{116}{132} \frac{108}{107} \frac{97}{147} \frac{116}{132} \frac{108}{107} \frac{97}{147} \frac{116}{137} \frac{112}{107} \frac{99}{147} \frac{116}{137} \frac{112}{107} \frac{99}{147} \frac{116}{137} \frac{112}{108} \frac{97}{147} \frac{116}{187} \frac{113}{149} \frac{112}{122} \frac{106}{132} \frac{108}{143} \frac{92}{117} \frac{112}{187} \frac{99}{149} \frac{122}{106} \frac{108}{132} \frac{97}{147} \frac{116}{187} \frac{113}{149} \frac{112}{122} \frac{108}{108} \frac{92}{147} \frac{97}{187} \frac{113}{149} \frac{113}{122} \frac{98}{158} \frac{92}{156} \frac{79}{149} \frac{97}{149} \frac{97}{149} \frac{97}{149} \frac{97}{149} \frac{97}{149} \frac{97}{147} \frac{116}{144} \frac{118}{118} \frac{100}{100} \frac{87}{12} \frac{97}{147} \frac{97}{149} \frac{97}{147} \frac{97}{149} $	85 72 62									
$kv = \underbrace{\begin{smallmatrix} 0.40\\ 27\text{Mp} \\ 0.34 \\ 200 \\ 150 \\ 19 \\ 165 \\ 131 \\ 107 \\ 98 \\ 228 \\ 172 \\ 137 \\ 112 \\ 228 \\ 121 \\ 137 \\ 112 \\ 228 \\ 237 \\ 180 \\ 143 \\ 117 \\ 99 \\ 247 \\ 187 \\ 149 \\ 122 \\ 108 \\ 92 \\ 79 \\ 149 \\ 122 \\ 108 \\ 92 \\ 79 \\ 149 \\ 122 \\ 108 \\ 92 \\ 79 \\ 149 \\ 122 \\ 108 \\ 92 \\ 79 \\ 149 \\ 122 \\ 108 \\ 92 \\ 79 \\ 149 \\ 122 \\ 108 \\ 92 \\ 79 \\ 149 \\ 122 \\ 108 \\ 92 \\ 79 \\ 149 \\ 122 \\ 108 \\ 92 \\ 79 \\ 149 \\ 122 \\ 108 \\ 92 \\ 79 \\ 149 \\ 122 \\ 108 \\ 92 \\ 79 \\ 149 \\ 122 \\ 108 \\ 92 \\ 79 \\ 149 \\ 122 \\ 108 \\ 92 \\ 79 \\ 149 \\ 122 \\ 108 \\ 92 \\ 79 \\ 149 \\ 122 \\ 108 \\ 92 \\ 79 \\ 108 \\ 113 \\ 96 \\ 83 \\ 92 \\ 108 \\ 113 \\ 96 \\ 113 \\ 113 \\ 98 \\ 100 \\ 113 \\ 113 \\ 98 \\ 100 \\ 113 \\ 113 \\ 98 \\ 100 \\ 113 \\ 113 \\ 98 \\ 100 \\ 113 \\ 113 \\ 98 \\ 100 \\ 113 \\ 113 \\ 98 \\ 100 \\ 113 \\ 113 \\ 98 \\ 100 \\ 113 \\ 113 \\ 113 \\ 98 \\ 100 \\ 113 \\$	90 76 66				32					
breast thickness 226 170 135 111 93 breast thickness 228 172 131 107 99 83 220 165 131 107 99 83 223 111 93 83 225 102 85 213 111 93 83 225 102 85 213 111 93 83 225 102 85 213 111 93 83 228 172 133 113 96 83 210 111 93 93 111 93 93 111 94 122 100 29 kVp 200 166 132 108 92 79 90 93 93 94 92 94 92 90 93 93 93 94 94 94 94 94 94 94 94 94 94 94 94 94 94 94 94 94	95 81 70				34	glandular fraction				
breast thickness 226 170 135 111 93 breast thickness 228 172 131 107 99 83 220 165 131 107 99 83 223 111 93 83 225 102 85 213 111 93 83 225 102 85 213 111 93 83 225 102 85 213 111 93 83 228 172 133 113 96 83 210 111 93 93 111 93 93 111 94 122 100 29 kVp 200 166 132 108 92 79 90 93 93 94 92 94 92 90 93 93 93 94 94 94 94 94 94 94 94 94 94 94 94 94 94 94 94 94					36			Big		
$ \begin{array}{c} \begin{array}{c} 27 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	106 89 77							-		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	111 93 81	135	170	226	0.40 27 km					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	98 83 71	119	150		0.34					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	102 87 75	125			0.36					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	107 91 79									
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	112 95 82					aknaa	broact thi			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	117 99 86				S	cknes	preast the			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	122 104 90	149	187	247	20 1-12-					
HVĽs 0.42 238 181 144 118 100 87 0.44 248 188 150 123 104 90 97 0.46 257 195 156 128 109 94 98 0.48 266 203 162 133 113 98 14 0.50 277 212 169 140 115 33 kVp 0.44 250 191 152 126 100 0.44 250 191 152 126 100 0.44 250 191 152 126 100 0.48 268 206 164 136 116 136 116	<u> 108 92 79</u>	132	166	220	29 KVP 0.38				_	
HVĽs 0.42 238 181 144 118 100 87 0.44 248 188 150 123 104 90 97 0.46 257 195 156 128 109 94 98 0.48 266 203 162 133 113 98 14 0.50 277 212 169 140 115 33 kVp 0.44 250 191 152 126 100 0.44 250 191 152 126 100 0.44 250 191 152 126 100 0.48 268 206 164 136 116 136 116	96 83							29 kVn		
HVĽs 0.42 238 181 144 118 100 87 0.44 248 188 150 123 104 90 97 0.46 257 195 156 128 109 94 98 0.48 266 203 162 133 113 98 14 0.50 277 212 169 140 115 33 kVp 0.44 250 191 152 126 100 0.44 250 191 152 126 100 0.44 250 191 152 126 100 0.48 268 206 164 136 116 136 116	70 00 87	22	6	108	122	144	220	0.29		
HVĽs 0.42 238 181 144 118 100 87 0.44 248 188 150 123 104 90 97 0.46 257 195 156 128 109 94 98 0.48 266 203 162 133 113 98 14 0.50 277 212 169 140 115 33 kVp 0.44 250 191 152 126 100 0.44 250 191 152 126 100 0.44 250 191 152 126 100 0.48 268 206 164 136 116 136 116	79 p4 90 83 p9 94							0.50		
HVĽs 0.42 238 181 144 118 100 87 0.44 248 188 150 123 104 90 97 0.46 257 195 156 128 109 94 98 0.48 266 203 162 133 113 98 14 0.50 277 212 169 140 115 33 kVp 0.44 250 191 152 126 100 0.44 250 191 152 126 100 0.44 250 191 152 126 100 0.48 268 206 164 136 116 136 116	83 09 94 13 98	ю.	9	113	138	173				
0.44 248 188 150 123 104 90 00 0.46 257 195 156 128 109 94 05 0.48 266 203 162 133 113 98 14 0.50 277 212 169 140 115 33 kVp 0.42 241 183 146 121 100 0.44 250 191 152 126 107 0.44 250 191 152 126 107 0.44 250 191 152 126 107 0.44 250 191 152 126 107	87)0			144	181	238	0.42		
0.46 257 195 156 128 109 94 95 0.48 266 203 162 133 113 98 14 0.50 277 212 169 140 119 33 kVp 0.42 241 183 146 121 102 0.44 250 191 152 126 107 0.46 259 198 158 131 111 0.48 268 206 164 136 116	90 97 84 01 88)4			150	188	248		HVĽS	
0.50 277 212 169 140 119 33 kVp 0.42 241 183 146 121 102 0.44 250 191 152 126 107 0.46 259 198 158 131 111 0.48 268 206 164 136 116	94 05 91									
0.50 2/7 212 169 140 119 33 kVp 0.42 241 183 146 121 102 0.44 250 191 152 126 107 0.46 259 198 158 131 111 0.48 268 206 164 136 116	94 05 91 08 10 95									
33 kVp 0.42 241 183 146 121 102 0.44 250 191 152 126 107 0.46 259 198 158 131 111 0.48 268 206 164 136 116						205	200	0.40		
$egin{array}{cccccccccccccccccccccccccccccccccccc$	140 119 103	109	212	2//	33 kVp					
$egin{array}{cccccccccccccccccccccccccccccccccccc$	121 102 89	146	183	241						
0.46 259 198 158 131 111 0.48 268 206 164 136 116										
0.48 268 206 164 136 116	131 111 96		198							
	136 116 100	164	206	268	0.48					
	142 120 104	171	213	278	0.50					
	147 125 109	178	221	287	0.52					
35 kVp 0.44 251 192 153 127 108	127 108 93	152	102	251						

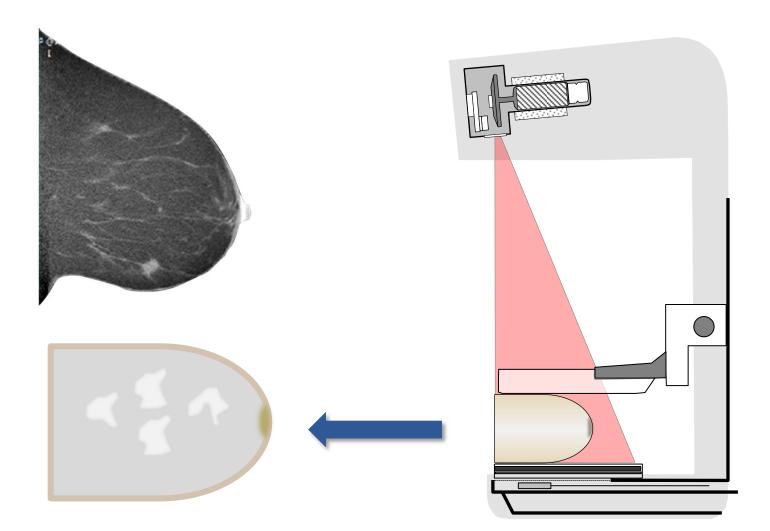

Note.—Doses are in conventional, not SI, units. Conversion factor: 1 mrad/R = 38.8 mGy/(C/kg).


Validation of Breast Thickness Accuracy

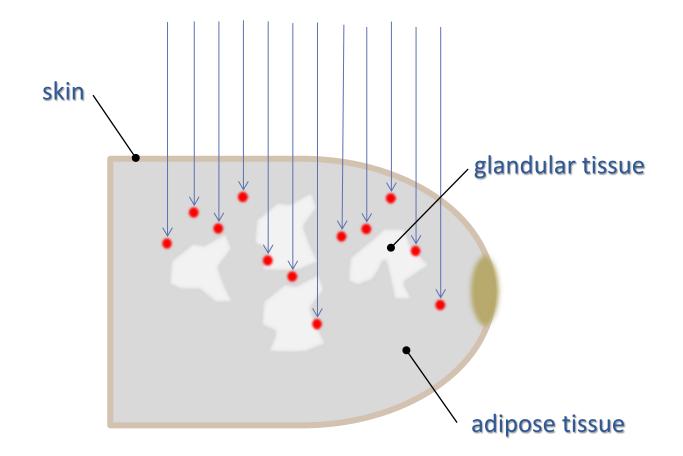


Med Phys 33: 719-736, 2006

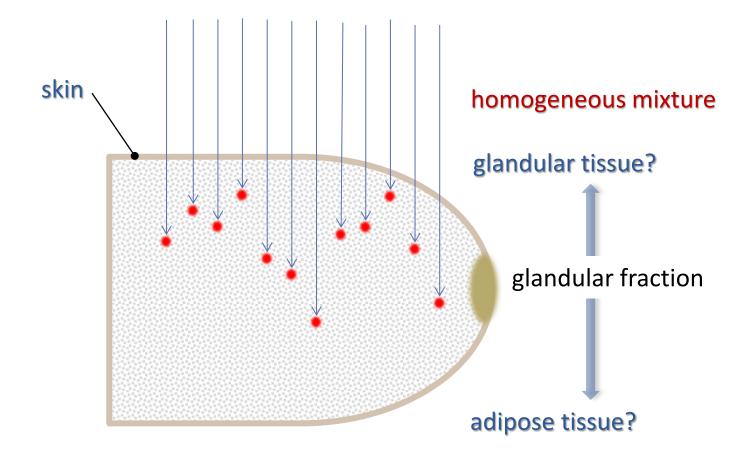
Mammography and Tomosynthesis Dosimetry


Mammography

Why measure breast dose? Basic Concepts of Breast Dosimetry (how) Mean Glandular Dose (MGD) (what) DgN coefficients Skin Thickness Issues Breast Density Issues


Tomosynthesis

Differences between tomo and mammo Summary


Mean Glandular Dose

Mean Glandular Dose

Mean Glandular Dose (Monte Carlo Calculations)

Mammography and Tomosynthesis Dosimetry

Mammography

Why measure breast dose? Basic Concepts of Breast Dosimetry (how) Mean Glandular Dose (MGD) (what)

- DgN coefficients
 - **Skin Thickness Issues**

Breast Density Issues

Tomosynthesis

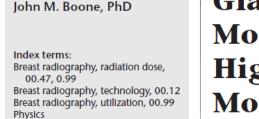
Differences between tomo and mammo Summary

DgN values are based on MC Studies Medical Physics

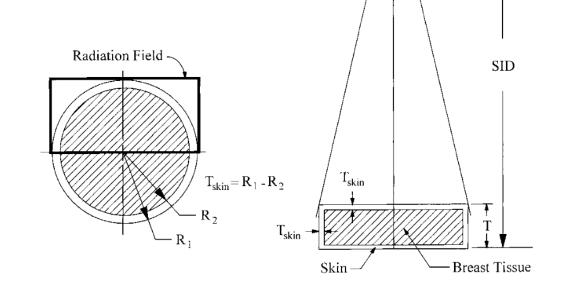
Xizeng Wu, PhD • Eric L. Gingold, PhD • Gary T. Barnes, PhD • Douglas M. Tucker, PhD

Normalized Average Glandular Dose in Molybdenum Target—Rhodium Filter and Rhodium Target—Rhodium Filter

Mammography¹

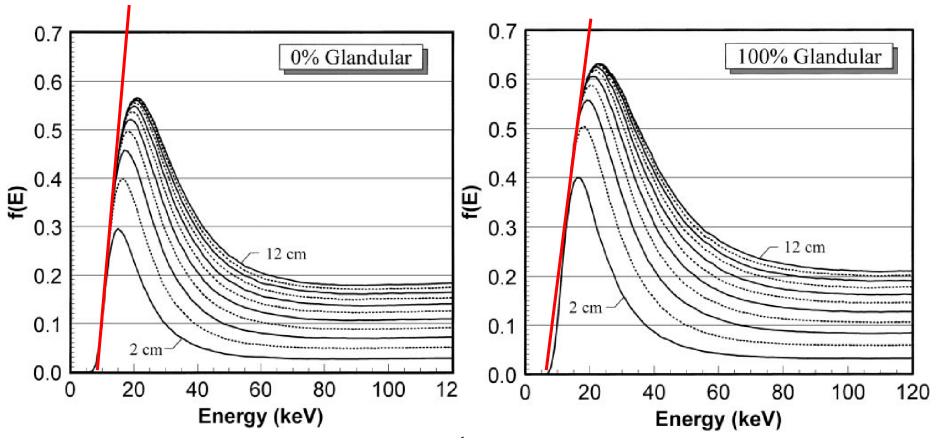

 \overline{D}_{gN} for Mo-Rh and 100% Glandular Breast: Glandular Tissue Dose (millirad) for 1-R Entrance Skin Exposure

	Y Tube Values (Compressed Breast Thickness (cm)						
	X-ray Tube Voltage/ HVL (mm Al)	3	4	5	6	7	8		
	25 kVp								
	0.30	177	132	104	85	72	62		
	0.32	187	140	110	90	76	66		
	0.34	197	147	116	95	81	70		
	0.36	207	155	122	101	85	73		
	0.38	216	163	129	106	89	77		
	0.40	226	170	135	111	93	81		
	27 kVp								
1	0.34	200	150	119	98	83	71		
	0.36	209	158	125	102	87	75		
	0.38	219	165	131	107	91	79		
	0.40	228	172	137	112	95	82		
	0.42	237	180	143	117	99	86		
	0.44	247	187	149	122	104	90		
	29 kVp								
	0.38	220	166	132	108	92	79		
	0.40	229	173	138	113	96	83		
	0.42	238	181	144	118	100	87		
	0.44	248	188	150	123	104	90		
	0.46	257	195	156	128	109	94		
	0.48	266	203	162	133	113	98		

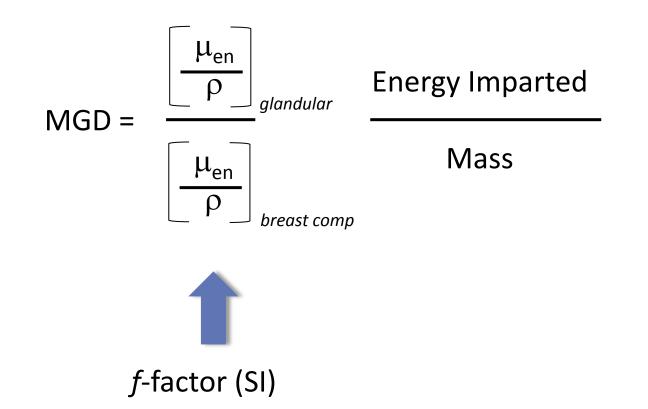

assumed 4 mm skin thickness

DgN values are based on MC Studies

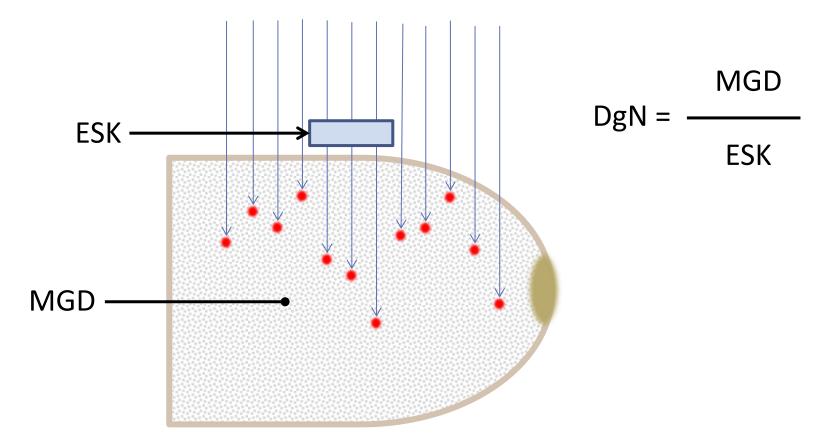
Medical Physics


Glandular Breast Dose for Monoenergetic and High-Energy X-ray Beams: Monte Carlo Assessment¹

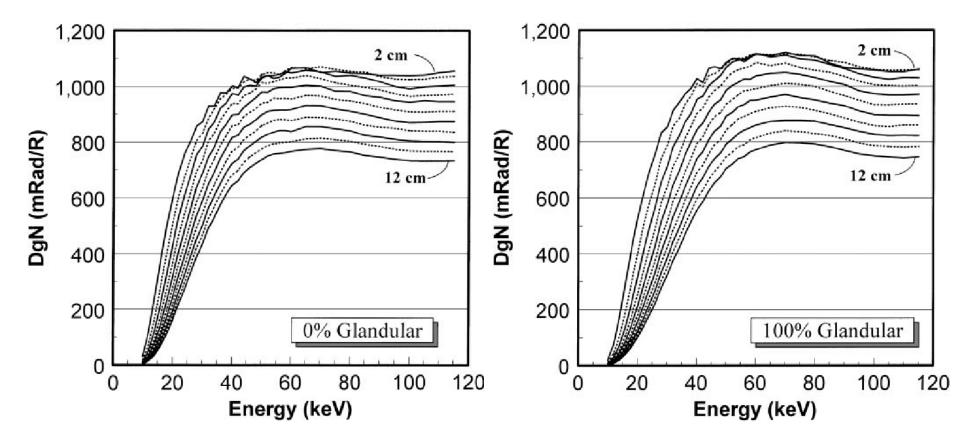
X-ray Source

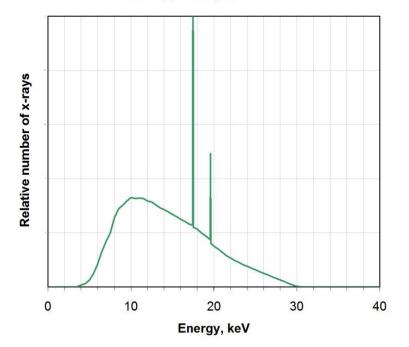

assumed 4 mm skin thickness

Monoenergetic MC eval of E deposition

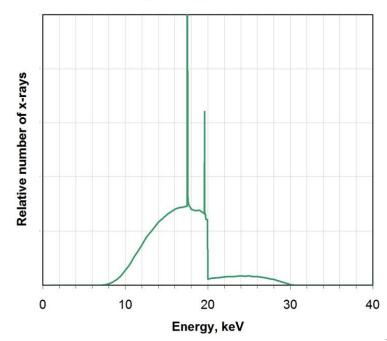


$$f(E) = \frac{\text{energy absorbed per}}{\text{photonenergy}}$$


Converting Energy imparted to dose....


Mean Glandular Dose (Monte Carlo Calculations)

Dose Calc with Normalization by ESE



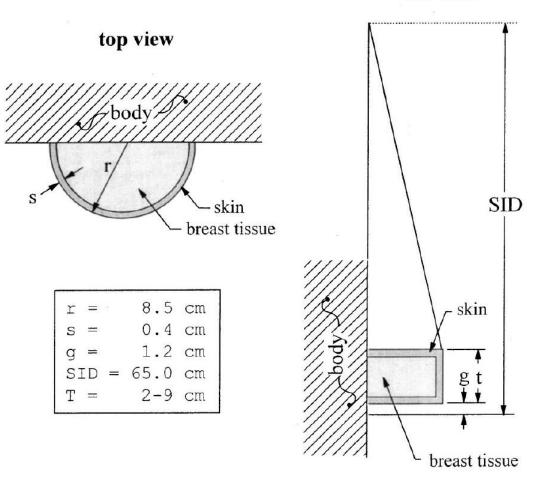
To convert the monoenergetic DgN values to realistic polyenergetic values, spectral models are used to weight the monoenergetic values

30 kVp, Mo target, unfiltered

30 kVp, Mo target, 0.03 mm Mo filter

DgN Tables (poly)

Energy (kV) HVL		Breast Thickness (cm)										
	HVL	2	3	4	5	6	7	8	9	10	11	12
20	0.338	342	258	202	164	136	116	101	89	79	71	6
21	0.365	368	282	224	183	153	131	114	100	90	81	7
22	0.392	392	306	245	202	170	146	127	112	101	91	8
23	0.420	415	328	266	221	187	161	140	124	111	101	9
24	0.444	434	347	284	237	201	174	152	135	121	109	10
25	0.462	447	360	296	248	211	183	160	142	128	116	1(
26	0.477	457	370	305	257	219	190	167	148	133	120	1
27	0.489	465	378	313	264	226	195	172	153	137	124	1
28	0.500	472	385	320	270	231	200	176	157	141	128	1
29	0.509	478	391	326	275	236	205	180	160	144	131	1
30	0.518	484	397	331	280	241	209	184	164	147	134	1.
31	0.527	489	403	336	285	245	213	188	168	151	137	1.
32	0.535	494	408	342	290	250	218	192	171	154	140	1.
33	0.544	499	413	347	295	254	222	196	175	158	143	1
34	0.552	504	418	352	300	259	226	200	179	161	146	1
35	0.560	509	424	357	306	264	231	205	183	165	150	1
36	0.569	514	429	363	311	269	236	209	187	169	154	1
37	0.577	519	434	368	316	275	241	214	192	173	158	1
38	0.585	524	440	373	321	280	246	218	196	177	161	1
39	0.593	528	444	379	327	285	251	223	200	181	165	1
40	0.601	532	449	383	331	289	255	227	204	185	169	1


The units used in DgN Tables have varied over the years and by the country of origin. These units are mRad / R, but mGy/mGy • is in more common usage today •34

Normalized glandular dose (DgN) coefficients for arbitrary x-ray spectra in mammography: Computer-fit values of Monte Carlo derived data

John M. Boone^{a)}

Department of Radiology, University of California, Davis, Sacramento, California 95817

(Received 1 November 2001; accepted for publication 28 February 2002; published 19 April 2002)

side view

TABLE II. Fit equations for 50% glandular breast compositions.

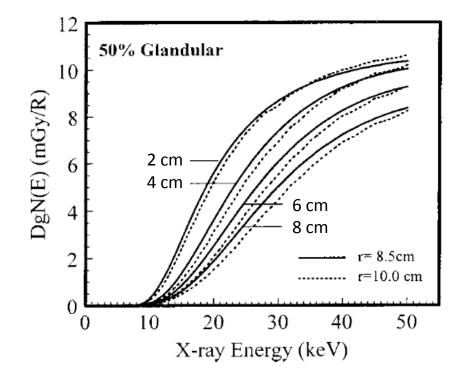
Composition=50% glandular, compressed breast thickness=2 cm

 $DgN(E) = exp\left(a + \frac{b \ln(E)}{E^2} + \frac{c}{E^2}\right)$ a = 2.391 926 241 342 124 b = 144.613 662 310 9463 c = -698.408 499 945 4397 DgN versus monoenergetic x-ray energy

Composition=50% glandular, compressed breast thickness=3 cm

 $DgN(E) = exp\left(a + \frac{b}{E^{0.5}} + \frac{c}{E^2}\right)$ a = 2.144 310 706 434 551 b = 2.756 318 009 819 883 c = -502.795 387 923 8766

Composition=50% glandular, compressed breast thickness=4 cm $\begin{pmatrix} b & c \times \ln(E) \end{pmatrix}$


 $DgN(E) = exp\left(a + \frac{b}{E^{0.5}} + \frac{c \times \ln(E)}{E^2}\right)$ $a = 1.716\ 433\ 088\ 631\ 987$ $b = 7.179\ 067\ 281\ 599\ 553$ $c = -271.371\ 867\ 296\ 2624$

Composition=50% glandular, compressed breast thickness=5 cm $DgN(E) = exp\left(a+b \times \{\ln(E)\}^2 + \frac{c \times \ln(E)}{E^2}\right)$ $a = 3.456\ 584\ 050\ 727\ 194$ $b = -0.051\ 521\ 196\ 269\ 344\ 88$

Composition=50% glandular, compressed breast thickness=6 cm

 $DgN(E) = exp\left(a + \frac{b}{E^{0.5}} + \frac{c}{E}\right)$ a = 0.174 992 526 996 0791 b = 33.686 852 918 469 66 c = -135.572 672 463 385

c = -252.8149668441184

Mammography and Tomosynthesis Dosimetry

Mammography

Why measure breast dose?
 Basic Concepts of Breast Dosimetry (how)
 Mean Glandular Dose (MGD) (what)
 DgN coefficients
 Skin Thickness Issues
 Breast Density Issues

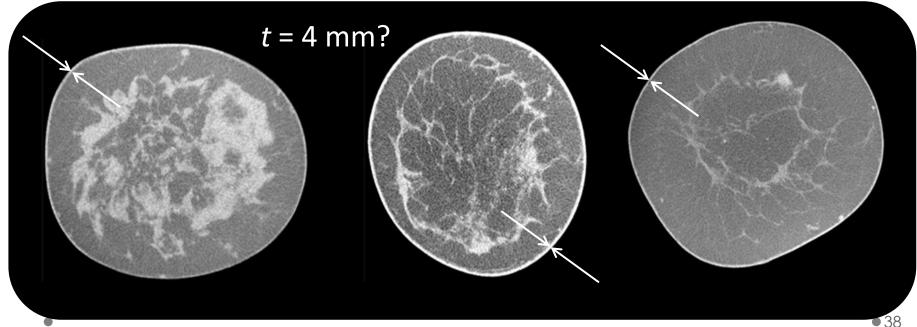
Tomosynthesis

Differences between tomo and mammo Summary

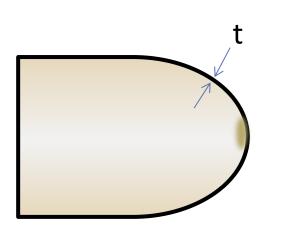
The effect of skin thickness determined using breast CT on mammographic dosimetry

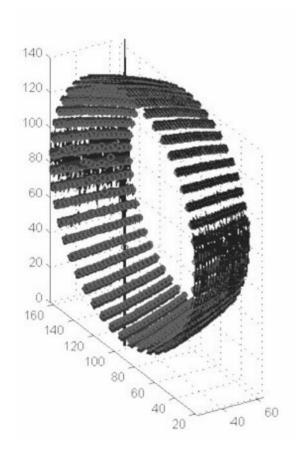
Shih-Ying Huang, John M. Boone,^{a)} and Kai Yang

Department of Biomedical Engineering, University of California, One Shields Avenue, Davis, California 95616 and Department of Radiology, X-Ray Imaging Laboratory, U.C. Davis Medical Center, 4701 X Street, Sacramento, California 95817

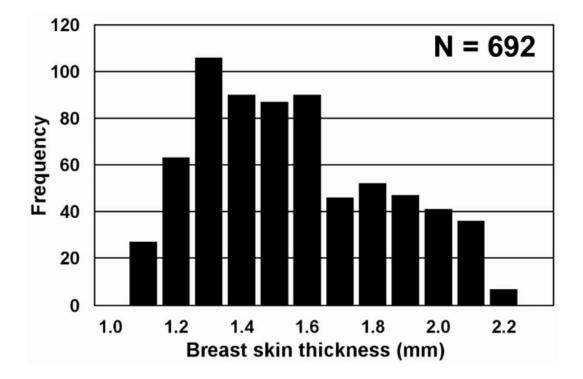

Alexander L. C. Kwan

Department of Radiology and Diagnostic Imaging, Division of Imaging Sciences, Research Transition Facility, University of Alberta, 8308-114 Street, Room 4105, Edmonton, Alberta T6G 2E1, Canada

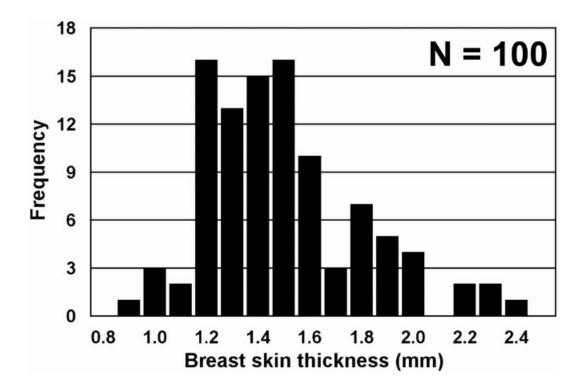

Nathan J. Packard


Department of Biomedical Engineering, University of California, One Shields Avenue, Davis, California 95616 and Department of Radiology, X-Ray Imaging Laboratory, U.C. Davis Medical Center, 4701 X Street, Sacramento, California 95817

(Received 24 October 2007; revised 15 January 2008; accepted for publication 17 January 2008; published 6 March 2008)

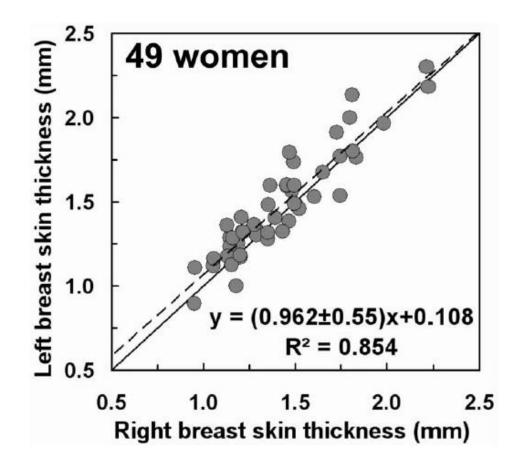


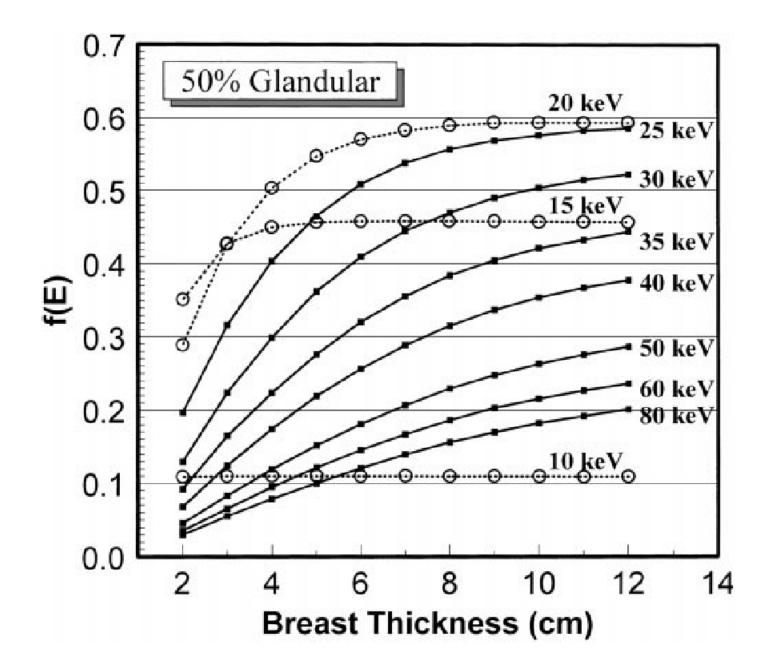
Developed algorithms to segment skin from breast CT images and measure thickness


Skin Thickness measurements were relatively precise for each women (18%)

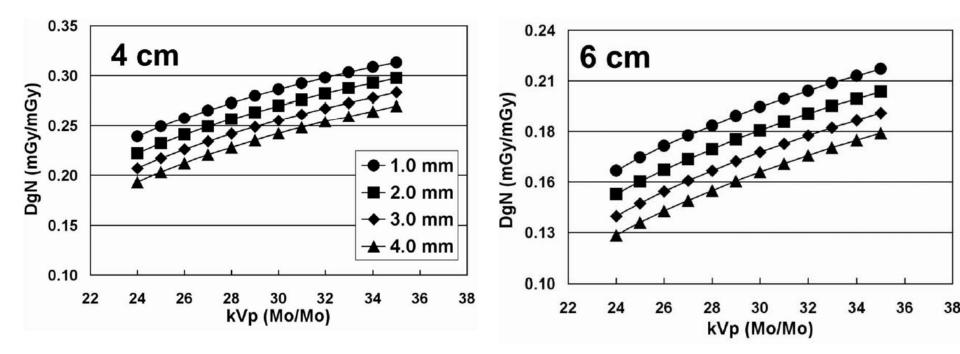
Measurements from the same women

FIG. 7. A histogram of breast skin thickness using the three-dimensional surface-fit approach with one single bCT volume data set. Among the skin thickness measured from 692 breast surface patches, the mean skin thickness (\pm intra-breast standard deviation) was 1.51 ± 0.28 mm, with a range of 1.1-2.1 mm. 40

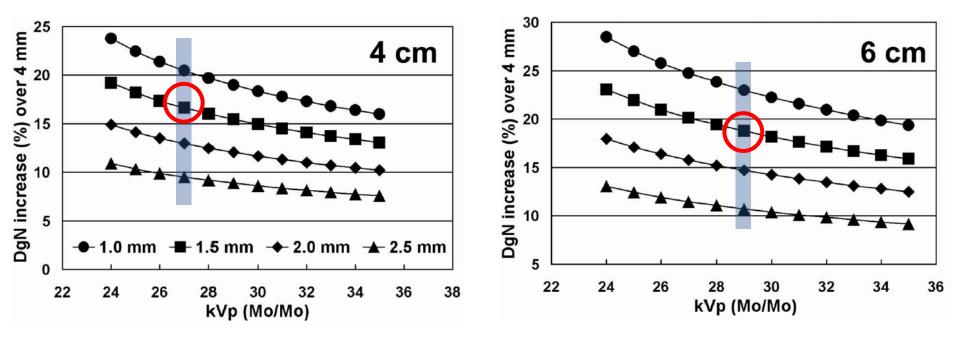

Skin Thickness measurements ranged from 0.9 mm to 2.3 mm (m = 1.45 mm)



Measurements from 51 different women

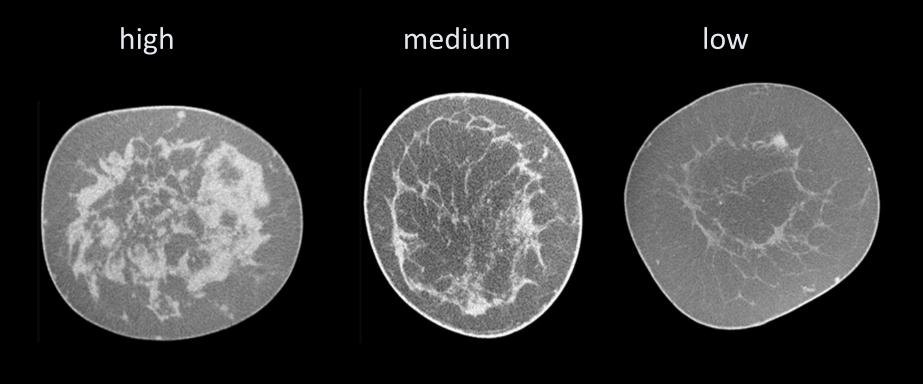

FIG. 6. A histogram showing the distribution of breast skin thickness using the three-dimensional, patch-by-patch approach on the breast surface sampled from the clinical bCT volumes. Among 100 breasts (51 women), the average breast skin thickness (\pm inter-breast standard deviation) was 1.45 ± 0.30 mm, ranged from 0.9 to 2.3 mm. 41

Left / Right Comparison provided a consistency check, with good results



DgN values versus skin thickness

Change (in %) in DgN values versus skin thickness, Relative to the assumption of t = 4 mm


Mammography and Tomosynthesis Dosimetry

Mammography

Why measure breast dose? Basic Concepts of Breast Dosimetry (how) Mean Glandular Dose (MGD) (what) DgN coefficients Skin Thickness Issues Breast Density Issues Tomosynthesis

Differences between tomo and mammo Summary

Mean Glandular Fraction

100%

0%

The myth of the 50-50 breast

M. J. Yaffe^{a)}

Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario M4N 3M5, Canada

J. M. Boone and N. Packard

UC Davis Medical Center, University of California-Davis, Sacramento, California 95817

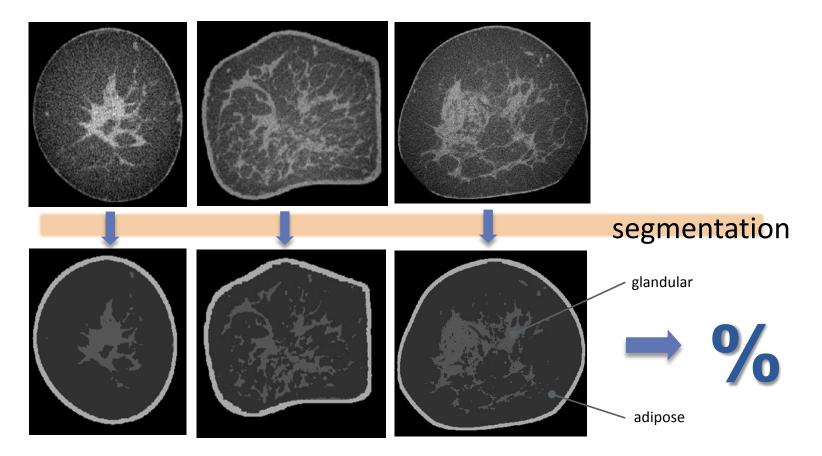
O. Alonzo-Proulx

Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario M4N 3M5, Canada

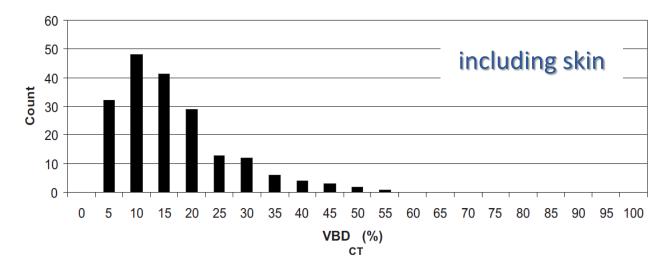
S.-Y. Huang

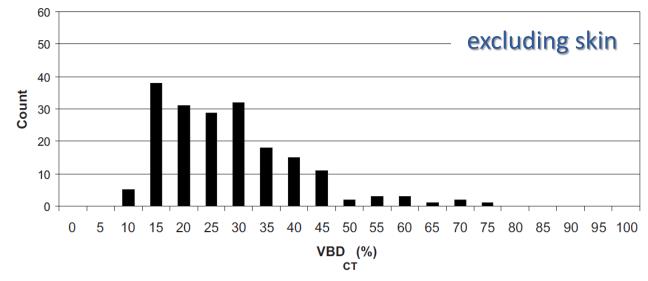
UC Davis Medical Center, University of California-Davis, Sacramento, California 95817

C. L. Peressotti

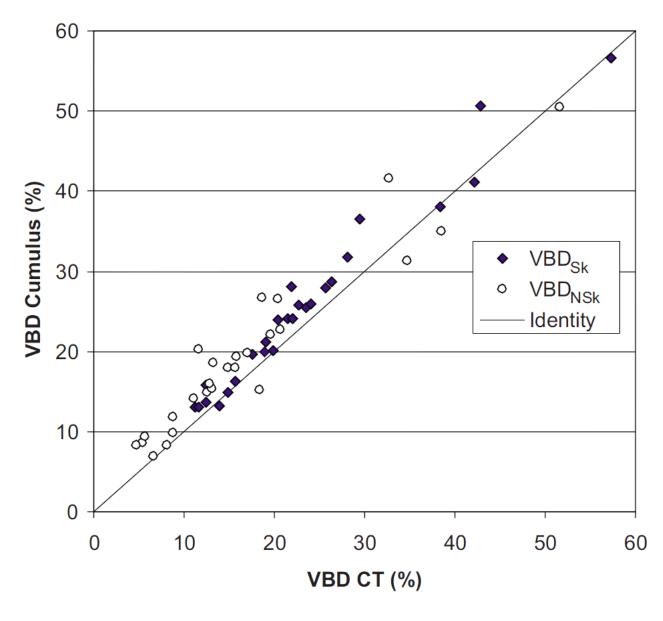

Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario M4N 3M5, Canada

A. Al-Mayah and K. Brock

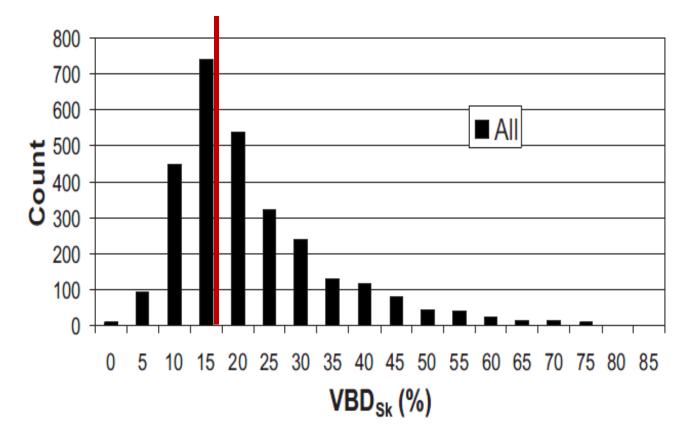

University Health Network, University of Toronto, Toronto, Ontario M5G 2M9, Canada

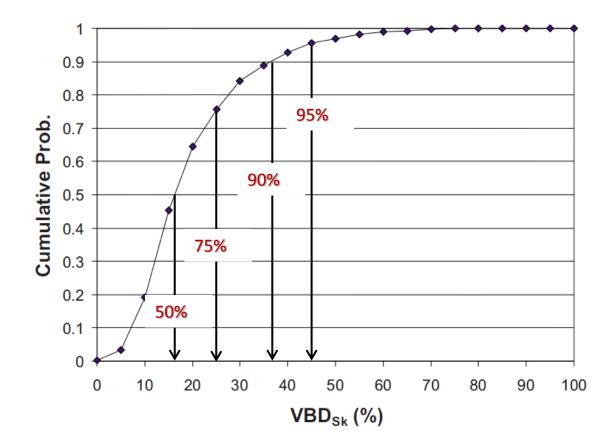

(Received 30 April 2009; revised 23 September 2009; accepted for publication 29 September 2009; published 5 November 2009)

Breast Density Analysis

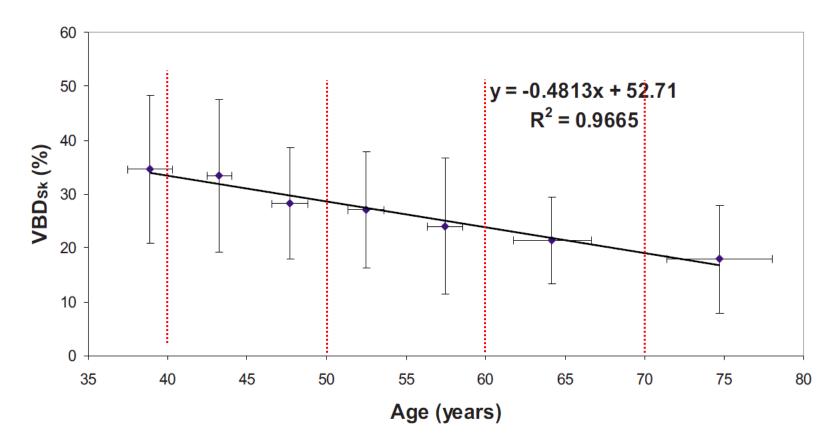

risk assessment & dosimetry validation of 2D approaches (M. Yaffe)

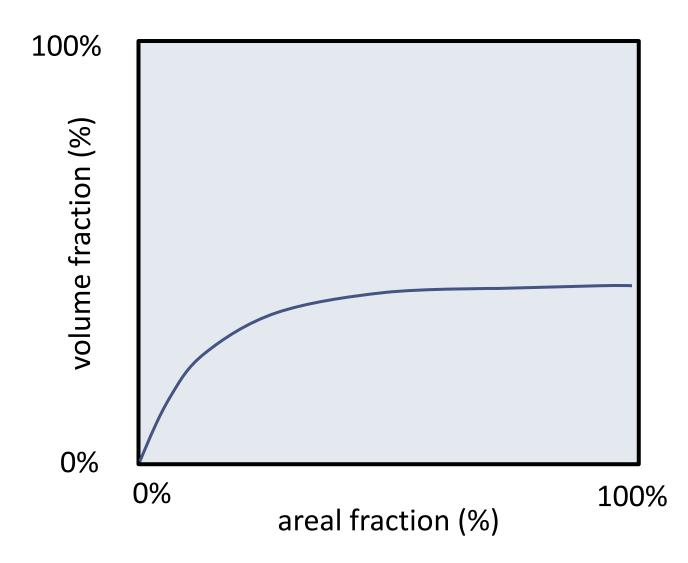
UC Davis breast CT N = 191




Data from UC Davis Breast CT

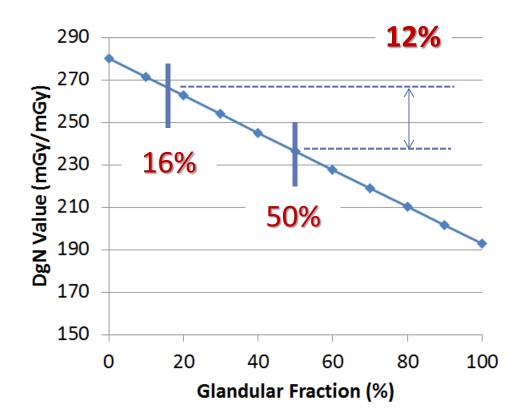
UCD & UT data combined (N = 2831)


Median ≈ 16 %


UCD & UT data combined (N = 2831) Cumulative Distribution

Breast density decreases about 5 % per decade

Areal Fraction versus Volume Fraction



DgN for 0% Glandular Breast

noray		Breast Thickness (cm)										
Energy (kV)	HVL	2	3	4	5	6	7	8	9	10	11	12
20	0.338	342	258	202	164	136	116	101	89	79	71	6
21	0.365	368	282	224	183	153	131	114	100	90	81	7
22	0.392	392	306	245	202	170	146	127	112	101	91	
23	0.420	415	328	266	221	187	161	140	124	111	101	1
24	0.444	434	347	284	237	201	174	152	135	121	109	10
25	0.462	447	360	296	248	211	183	160	142	128	116	10
26	0.477	457	370	305	257	219	190	167	148	133	120	1
27	0.489	465	378	313	264	226	195	172	153	137	124	1
28	0.500	472	385	320	270	231	200	176	157	141	128	1
29	0.509	478	391	326	275	236	205	180	160	144	131	1
30	0.518	484	397	331	280	241	209	184	164	147	134	1
31	0.527	489	403	336	285	245	213	188	168	151	137	1
32	0.535	494	408	342	290	250	218	192	171	154	140	1
33	0.544	499	413	347	295	254	222	196	175	158	143	1
34	0.552	504	418	352	300	259	226	200	179	161	146	1
35	0.560	509	424	357	306	264	231	205	183	165	150	1
36	0.569	514	429	363	311	269	236	209	187	169	154	1
37	0.577	519	434	368	316	275	241	214	192	173	158	1
38	0.585	524	440	373	321	280	246	218	196	177	161	1
39	0.593	528	444	379	327	285	251	223	200	181	165	1
40	0.601	532	449	383	331	289	255	227	204	185	169	1

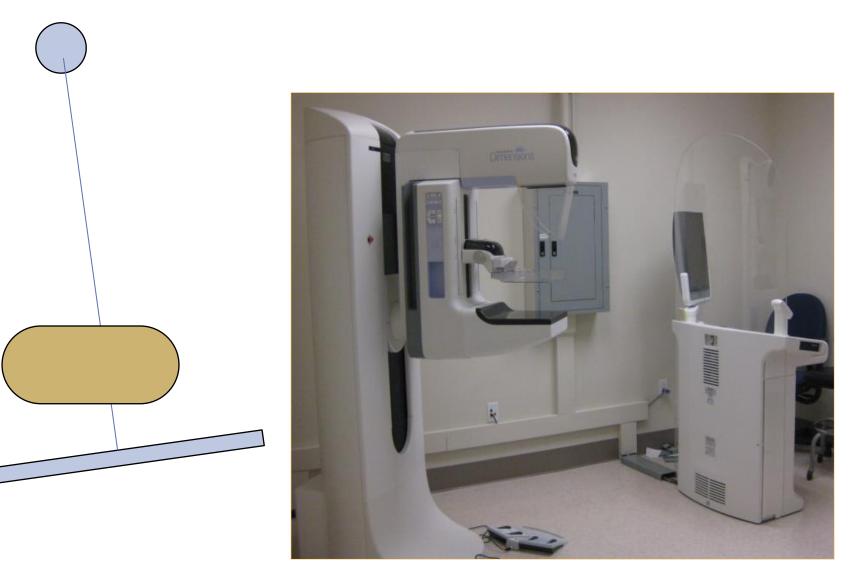
DgN for 100% Glandular Breast

Energy (kV)	HVL	Breast Thickness (cm)										
		2	3	4	5	6	7	8	9	10	11	12
20	0.338	271	182	133	104	84	71	61	54	48	43	3
21	0.365	296	203	150	118	96	81	70	61	55	49	4
22	0.392	320	223	167	132	108	91	79	69	61	55	5
23	0.420	342	243	184	146	120	101	88	77	69	62	5
24	0.444	361	260	199	158	131	111	96	84	75	68	6
25	0.462	374	272	209	167	138	117	101	89	80	72	
26	0.477	384	281	217	174	144	122	106	93	83	75	
27	0.489	392	289	223	179	149	126	109	96	86	77	
28	0.500	399	295	229	184	153	130	112	99	88	80	
29	0.509	405	301	234	188	156	133	115	102	91	82	
30	0.518	411	306	239	193	160	136	118	104	93	84	
31	0.527	417	311	244	197	164	140	121	107	95	86	
32	0.535	422	317	248	201	168	143	124	110	98	88	1
33	0.544	427	322	253	206	172	147	127	112	100	91	
34	0.552	433	327	258	210	176	150	131	115	103	93	1
35	0.560	438	333	263	215	180	154	134	119	106	96	1
36	0.569	443	338	269	220	185	158	138	122	109	99	9
37	0.577	449	344	274	225	190	163	142	126	113	102	
38	0.585	454	350	280	230	194	167	146	130	117	105	
39	0.593	459	355	285	235	199	172	151	134	120	109	
40	0.601	464	360	290	240	204	176	155	137	124	112	1

increase in "average" DgN coefficient of:

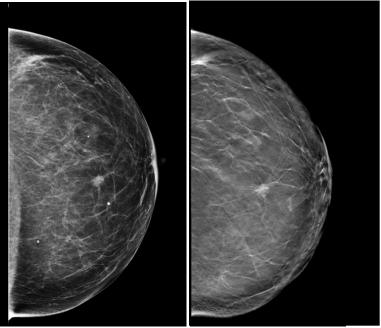
(265-237)/237 = **12%**

Mammography and Tomosynthesis Dosimetry


Mammography

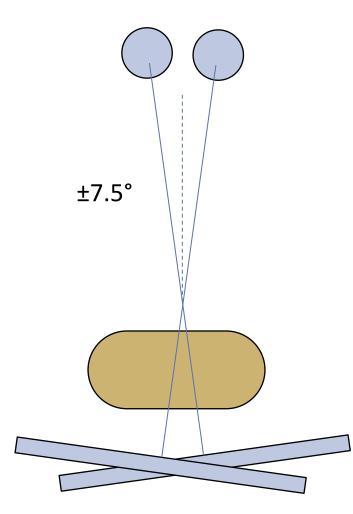
Why measure breast dose? Basic Concepts of Breast Dosimetry (how) Mean Glandular Dose (MGD) (what) DgN coefficients Skin Thickness Issues Breast Density Issues

Tomosynthesis


Differences between tomo and mammo
 Summary

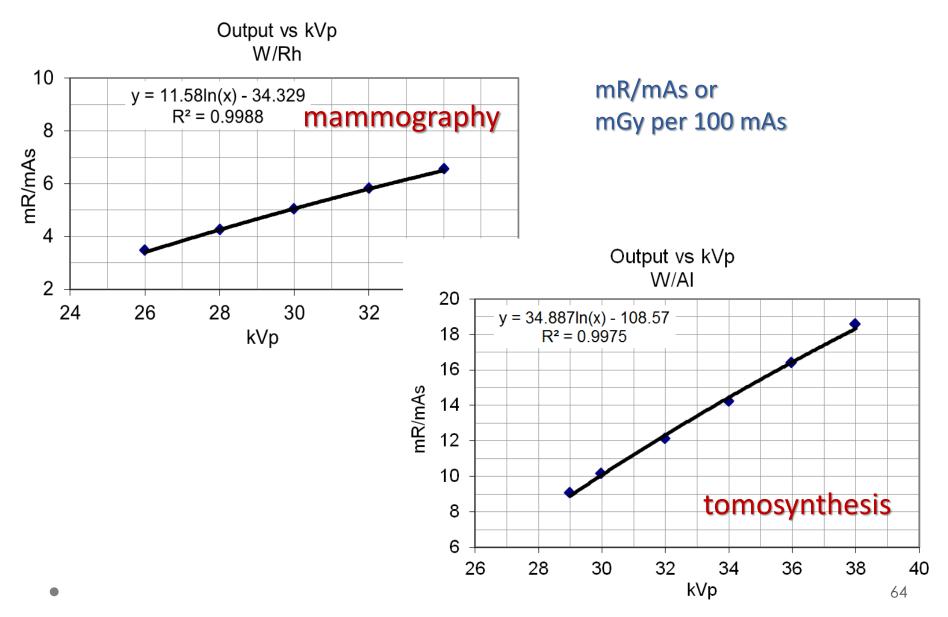
Tomosynthesis (limited angle tomography)

Conventional versus Tomosynthesis



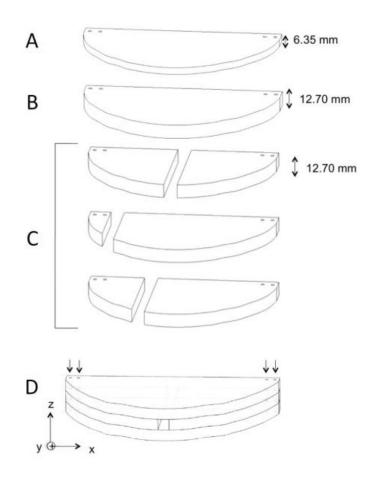
ConventionalTomosynthesis

ConventionalTomosynthesis


Similar display characteristics

Tomosynthesis (limited angle tomography)

Combo Tomo / Mammo mode output

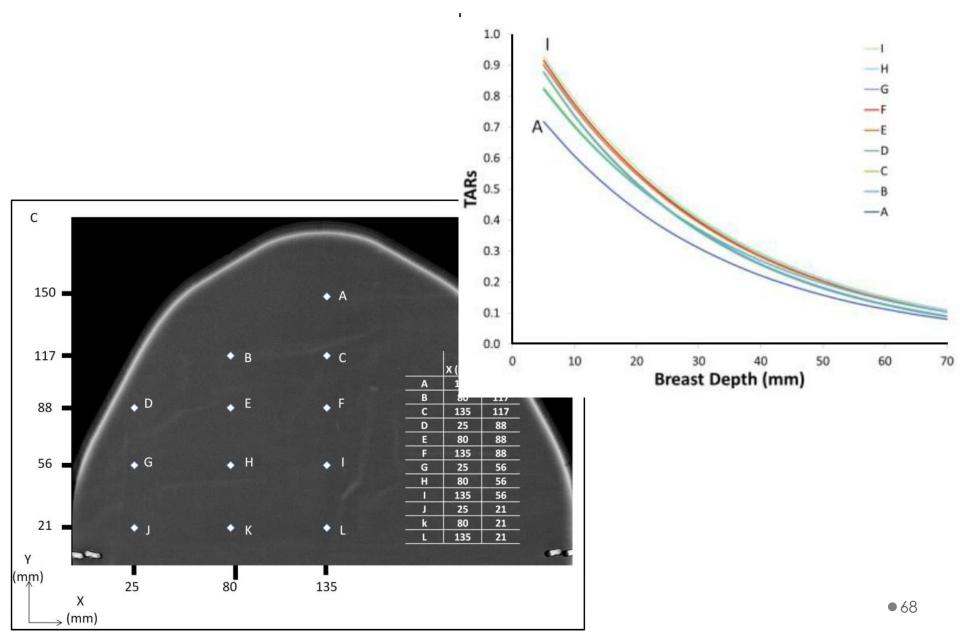


3D Dose measurements in tomosynthesis using a high bandwidth dosimeter

Anita Nosratieh, George W. Burkett, John M. Boone

UC Davis Medical Center

Physical measurements of dose in Tomo/Mammo



Polyethylene is an excellent surrogate for adipose

Output of real time exposure meter

		*Accu-Gold (set 1, 2, 3.agold)	Radcal 🛛 🗖 🛛 🛛
	💽 Measure 📄 List 🛛 📄 Wave		General Dose & Dose Rate 👻
1 2 3	Rate 1Ch 12.78 μGy/s 2.041 s	Tawa	300 Hz • Q Q Q
4		Tomo	2 P
6	15 tomo exposures	r	mammo exposure Mammo
8 9 ×	1.181 mGy/s View Port 0s to 17.408 s 0 Gy/s to 5.00 r	filter changes grid is inserte	
D S	tart	Offline	Settings *

Point dose measures: Tissue Air Ratios

Mammography and Tomosynthesis Dosimetry

Mammography

Why measure breast dose? Basic Concepts of Breast Dosimetry (how) Mean Glandular Dose (MGD) (what) DgN coefficients Skin Thickness Issues Breast Density Issues

Tomosynthesis

Differences between tomo and mammo
Summary

Mammography and Tomosynthesis Dosimetry Summary

- Complete characterization of the x-ray system is necessary (kV accuracy, HVL, and air kerma / 100 mAs @ anode/filter)
- Ionization chambers must be mammo beam compatible thin windowed and calibrated
- Practical Assessment requires table of DgN values specific to the conditions of the actual exam
- Current DgN tables may slightly under-estimate dose due to % glandular fraction and skin thickness issues
- Tomosynthesis is similar enough to the geometry of mammo anode/filter combo may differ; different DgN tables needed