Recent Highlights from IceCube

Nathan Whitehorn for the IceCube Collaboration

University of Wisconsin - Madison

October 9, 2013

N. Whitehorn, UW Madison

Why are TeV Neutrinos Interesting?

Neutrinos are ideal astrophysical messengers:

- Trace high-energy interactions
- Travel in straight lines
- Very difficult to absorb in flight
- Escape from dense environments
- Have lots of properties: energy, flavor, direction

A Neutrino Taxonomy at 100 GeV and Up

- π/K Atmospheric Neutrinos (dominant < 100 TeV)
- Charm Atmospheric Neutrinos ("prompt", 300 TeV)
- Astrophysical Neutrinos (maybe dominant > 100 TeV)
- N. Whitehorn, UW Madison

Challenges

- Neutrino cross-section is very small
- ...so are the fluxes
- Most astrophysical models predict on the order of 1 event/gigaton/year
- Discrimination against background (cosmic ray muons, atmospheric neutrinos from π, K decay)

Gigaton Detectors

Need natural detectors: IceCube, KM3NET (future), ANTARES, Baikal

IceCube

- 5160 PMTs with waveform readout
- ns time resolution
- 1 km³ volume
- 86 strings
- 17 m PMT-PMT spacing per string
- 125 m string spacing
- DeepCore subarray lowers energy threshold to 10 GeV
- Due to increasing neutrino cross-section with E, larger energy range than most

instruments N. Whitehorn, UW Madison

ICTP - 6

Digital Optical Modules

- 25 cm photomultiplier
- All-digitial readout: In-Situ Digitization
- Built-in calibration instruments
- Nanosecond global time resolution
- 300 MHz waveform digitization

Event Signatures

Muon Neutrino CC (data) < 1 degree angular resolution within a factor of 2 in muon energy

Neutral Current or Electron Neutrino (data) 10 degree angular resolution (high energy) $\sim 15\%$ deposited energy resolution

> Tau Neutrino CC (simulation) Not yet observed

N. Whitehorn, UW Madison

Challenges in Large-Volume Neutrino Detectors

Backgrounds:

- Cosmic Ray Muons (3000 Hz)
- Atmospheric Neutrinos (1 per 5 minutes)

Natural materials:

- Optical Properties of Ice measured In-Situ
- No Laboratory Calibration – must use cosmic rays

Calibration

Calibration Sources:

- LED Flashers on each DOM
- In-Ice Calibration Laser
- Cosmic Ray Energy Spectrum
- Moon Shadow
- Atmospheric Neutrino Energy Spectrum
- Minimum-Ionizing Muons

Moon Shadow in Cosmic Ray Muons in IceCube (59 strings)

Neutrino Identification

How to identify neutrinos?

- 1. Upgoing muon tracks
 - Filter out CR muons with bulk of Earth
 - Unknown vertex hard to measure energy
- 2. Contained vertex
 - ► Filter out CR muons using detector edge for anticoincidence
 - All charged particles seen
- 3. Excess over background
 - Works only for extremely bright/high energy sources

Atmsopheric Neutrinos

- Main Neutrino Source Visible to IceCube
- Produced in Cosmic Ray Interactions
- ► π⁺/π⁻ and kaons produced in shower decay to neutrinos
- ν_{μ} dominated
- Unmeasured component at very high energies from charmed meson production
- Study air shower physics and neutrino oscillations

Atmospheric Neutrino Measurement

- Largest-ever sample of atmospheric neutrinos: 100,000 events per year
- First measurement of atmospheric v_e at TeV energies
- Approaching the ability to test prompt models

arXiv:1212.4760

Neutrino Oscillations

Sensitive to Θ_{23} over long baselines from atmospheric neutrinos – zenith-dependent suppression of CC ν_{μ} as different chords of the Earth are traversed.

Extremely high statistics available with multi-megaton Deep Core subarray – first observation of neutrino oscillations in IceCube.

Beyond the Atmosphere

How to probe extraterrestrial fluxes?

- 1. Go to high energies
 - Atmospheric neutrino spectrum very steep
 - $\blacktriangleright\,$ Above \sim 100 TeV, atmospherics almost gone
- 2. Use southern hemisphere
 - Veto neutrinos with accompanying air showers
 - Veto ineffective below 10 TeV
- 3. Spatial anisotropy
 - Requires bright or small sources

IceCube Astrophysical ν Searches

- High-Energy Point Sources
 - Main focus: cosmic ray accelerators (GRBs, AGN)
 - Primary energy range: > 10 TeV
 - Null results, now constraining models of cosmic ray acceleration
- WIMP Searches
 - WIMP annihilation signatures
 - Looks for point (e.g. Sun) or extended (e.g. Galactic Center) of neutrinos
 - Main goal of Deep Core subarray
 - Typical energy range: 20 GeV 10 TeV (standard WIMPs)
 - Sensitive to very exotic high-mass particles as well
 - Increasingly strong limits
- Diffuse Neutrino Background
 - Sensitive above 100 TeV
 - More than 4σ evidence for high-energy flux

Steady Point Sources

Test theories of cosmic ray acceleration by searching for neutrinos produced in the same source: no sources identified

WIMP Searches

- Regions of high WIMP density (centers of massive objects)
- Search for neutrinos from WIMP annihilation
- Favorite targets: Sun, Earth, Galactic Center, Dwarfs
- Complementary to direct searches: fills out WIMP picture by testing other properties, and in multiple channels
- DM-Ice: direct detection coming too...

NASA

The Sun

- WIMPs collect in gravitational potential wells
- Large and old enough assumed to be in capture/annihilation equilibrium
- Probes scattering cross-section through annihilation
- Neutrinos allow us to peer into the solar core
- No other source of high-energy neutrinos
- \blacktriangleright For $E_{
 u}\gtrsim 1$ TeV, neutrinos attenuated in stellar interior
- High sensitivity to spin-dependent cross sections due to proton target

Spin-Dependent Results

Spin-Independent Results

Galactic Sources

- ► Not in capture/annihilation equilibrium → probe self-annihilation only
- Test WIMP annihilation cross-section averaged over velocity distribution
- Tenuous enough that neutrinos are not absorbed in source: sensitivity to very high masses

WIMP Halo Results

Look for large-scale anistropies around the galactic halo.

Galactic Center Search

Diffuse Measurements

A mystery: PeV neutrinos

Appearance of ~ 1 PeV neutrinos at threshold in cosmogenic neutrino search – should be $\ll 1$ atmospheric neutrinos per year at these energies

 $\sim 1100 \; {
m TeV}$

 $\sim 1300 \,\, \text{TeV}$

A closer look at a PeV shower

- Good absolute agreement with predictions for either *v_e* or neutral-current
- Width of waveforms related to direction of Cherenkov cone
- Height proportional to energy
- Pointing established (blue arrow)
- Energy uncertainty of +15% -13%

Hints in other channels

IC40 Cascades

2008, 2.4σ

N. Whitehorn, UW Madison

Follow-up Event Selection For Contained Events

- Define a fiducial volume and a veto region
- Make sure first hits are not on boundary
- Go to high energy (> 6000 PE) to make sure significant numbers of photons expected on boundary
- Topology/direction independent sample
- Becomes efficient at $\sim 50-100 \text{ TeV}$

Results of 2-year Contained Vertex Event Search (2010-2012)

ICTP - 30

Signals and Backgrounds: Why This is Compelling Signal Background Data

- Cascadedominated (~ 80%) from oscillations
- ✓ High energy?
 Typically
 assume E⁻²
- Mostly (2/3) in southern sky from Earth absorption

- X Track-like from CR muons and atmospheric ν_μ
- Soft spectrum $(E^{-3.7}), \leq 1$ event/year > 100 TeV
- Muons in south, atmospheric neutrinos in north

21/28 are cascades

- Energies to above 1 PeV, 9 above 100 TeV
- 24/28 from South, mostly cascades

Signals and Backgrounds: Why This is Compelling Signal Background Data

- ✓ Cascadedominated (~ 80%) from oscillations
- ✓ High energy?
 Typically
 assume E⁻²
- Mostly (2/3) in southern sky from Earth absorption

- X Track-like from CR muons and atmospheric ν_μ
- **X** Soft spectrum $(E^{-3.7}), \leq 1$ event/year > 100 TeV
- Muons in south, atmospheric neutrinos in north

21/28 are cascades

- Energies to above 1 PeV, 9 above 100 TeV
- 24/28 from South, mostly cascades

 \rightarrow 4 σ evidence for astrophysical flux

N. Whitehorn, UW Madison

Some interesting events

N. Whitehorn, UW Madison

Energy Spectrum

- Harder than any expected atmospheric background
- Merges well into expected backgrounds at low energies
- Potential cutoff around 2 PeV if E⁻²
- Too few events to measure spectrum well

Zenith Distribution (> 60 TeV dep)

Skymap: Compatible with Isotropy

Too few events to evaluate isotropy or identify sources $N_{\text{N. Whitehorn, UW Madison}}$

ICTP - 36

Next Steps

- Rich program of neutrino measurements in place
- New channels (southern hemisphere, ν_e , low energies) opening
- Strong complementarity of WIMP observations with direct and gamma-ray measurements
- IceCube probing interesting regions of parameter space on many topics
- First apparent astrophysical neutrinos at high energies seen and of unknown origin
- Hopefully, more to come

The Beginning

Backup

N. Whitehorn, UW Madison

Shower Energy Resolution

Shower Angular Resolution

Background 1: Muon Background

- Estimate Muon Background from Data
- Use outer tagging layer, see how many miss
- 3 ± 1.5 background events per year

N. Whitehorn, UW Madison

Background 2: Atmospheric Neutrinos

- π/K rate well constrained:
 2.3 ± 0.6 events per year
- Charm rate not well constrained: upper limit (1σ) of 1.7 events per year
- Total: 2.3^{+1.9}_{-0.6}
 events per year

Event Distribution in Detector

Uniform in fiducial volume

N. Whitehorn, UW Madison

Effective Area 1

Effective Area 2

Effective Volume

Muon Flux From Sun

Charge Distribution

