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Motivation	
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Local bias factors can be measured in simulations using a 1-point  
cross-correlation technique (Musso, Paranjape & Sheth (2012)) 

This technique can be extended to measure second-
order non-local Lagrangian bias factors. 

Paranjape, Sefusatti, Chan, Desjacques & Monaco (2013) 



Modeling  the  clustering  of  
dark  ma<er  haloes	

 
Analytic and heuristic approaches: 
 

•  Peak model (BBKS 1986) 
 

•  Excursion set framework (Bond et al. 1991) 
 

•  Perturbation theory (Bernardeau et al. 2002 , review) 
 

•  Peak-background split (Kaiser 1984) 
 

•  Local bias (Fry & Gaztanaga 1993) 
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Excursion  set  peaks	

•  The peak model is combined with excursion set theory by imposing 
that peaks on a given smoothing scale are counted only if they 
satisfy a first crossing condition; 

 

•  The barrier considered is           ; 
 

•  The first crossing condition is then          ; 
 

•  We assume that each halo “sees” a constant, flat barrier, whose 
height varies from halo to halo; 

•  This first crossing condition affects the number density of peaks 
through the variable μ. 
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Excursion  set  peaks	

Owing to the triaxiality of 
collapse, the critical density 
for collapse is not constant 
and equal to δc=1.68, but 
rather distributed around a 
value which increases with 
decreasing of the halo mass. 

Robertson et al., APJ 696,636 (2009) 
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Excursion  set  peaks	
With the assumptions taken above, 

 the peak multiplicity function is 
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Where we can apply Bayes’ theorem and compute the integral over μ  

where 



Excursion  set  peaks	
Comparison with N-body simulations 

MB, Chan, Desjacques & Paranjape, ArXiv: 1310.1401 9 



Bias  factors  from  ESP	
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Local and nonlocal bias factors are computed using a  
peak-background split argument 

The long-wavelength modes are uncorrelated with the 
short ones but modulate the mean of their distributions 
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Bias  factors  from  ESP	
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Local and nonlocal bias factors are computed using a  
peak-background split argument 

where 

P1(w)d11w = N (⌫, u, µ)d⌫dudµ⇥ �2
3(3⌘

2)d(3⌘2)

⇥ �2
5(5⇣

2)d(5⇣2)⇥ P (angles)



Effective  bias  expansion	
We can write a effective bias expansion  

using rotational invariants 
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This expansion can be used to calculate the N-point 
correlation function in the excursion set peak framework 
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Bias  from  cross-‐‑correlation	
Bias factors of discrete tracers can be computed  
from 1-point measurements   Musso, Paranjape & Sheth (2012) 

 

The recipe is 
•  Find haloes at z=0; 
•  Track back the particles at initial conditions.  

There we have our proto halo; 
•  Smooth the density field on a “large” scale 

(R=10,15,20 h-1Mpc) 
•  The quantity Hn(νl) is computed at the location of the proto-

halo. For the ESP considered, the ensemble average over all 
proto-haloes reads 
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In this case we have to deal with χ2 distributions with 
3- and 5- degrees of freedom and consequently with 
their orthogonal, Laguerre polynomials. 
. 

Bias  from  cross-‐‑correlation	
We want to measure nonlocal bias factors χ10  and  χ01  
related to the rotational invariants 

⌘2(x) =
1

�2
1G

(r�)2(x)

⇣2(x) =
3

2�2
2G

tr

⇣
@i@j� �

1

3
�ijr2�

⌘2
�
(x)



16 

In analogy with the derivation of the bias factors associated to 
Hermite polynomials, a first way to get a measurement of χ10 is 

Bias  from  cross-‐‑correlation	

And one can show that 
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Bias  from  cross-‐‑correlation	
A second (equivalent) way is to start from the original formula 
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And consider the conditional chi-squared distribution  

And we can measure the conditional chi-squared distribution  
at the position of the maxima and fit it to the best value of x. 
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Testing  for  Gaussian  random  fields…	
We first test the technique with peaks of Gaussian random fields 
(with the same power spectrum used in our N-body simulations) 

Conditional probability distributions for the variables 3ηl
2 and 5ζl

2 

measured at the position of the maxima of the linear density field 
where the theoretical prediction gives    

x = h3⌘2|peaki = 0
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…  and  measuring  χ10  and  χ01	
In principle, we could go directly to the first way and measure 
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Measuring  χ10  and  χ01	
We choose Rl=10 h-1Mpc and we get the halo RG as a function of 
RT requiring that 

The RG gives us a value for the cross-correlation coefficients, but 
it leads to unphysical negative values of x. 
What we do is then to use the following recipe: 
 
•  Estimate both ε1 and x by fitting the model      to the 

measured          ; 

•  Compute ε2 assuming that the same RG enters the spectral 
moments;  

•  Estimate         by fitting the theoretical model  
      to the measured    .   
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MB, Chan, Desjacques & Paranjape, ArXiv 1310.1401 21 

Measuring  χ10  and  χ01	
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Measuring  χ10  and  χ01	



Interpretation of the measurement: 
 

•  If haloes were forming out of randomly distributed patches in the 
initial conditions then we would measure something consistent with 0 
since for random points: 

•  There could be an offset between the proto-halo center of mass and 
the position of the linear density peak; 

•  We assumed that proto-haloes always form around a density peak. 
However, N-body simulations suggest that a fraction of the proto-
haloes collapse along the ridges or filaments connecting two density 
maxima (especially significant for low halo masses); 

•  We note that if the Lagrangian clustering of haloes also depends on 
 
 
then we are not measuring χ01, but some weighted and scale-
dependent combination of both χ01 and the Lagrangian bias γ2 
associated with s2. 

Measuring  χ10  and  χ01	

3η2 = 3 and 5ζ 2 = 5

s2 (x) = sij (x)s
ij (x), sij (x) = ∂i∂ jφ(x)−

1
3
δijδ(x)

Chan, Scoccimarro & Sheth, PRD 85,083509 (2012) 
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Measuring  χ10  and  χ01	

Ludlow & Porciani, MNRAS 413,1961 (2011) 24 



Take  home  message	

•  We combine excursion set theory with the peak 
model, exploiting advantages from both approaches; 

 

•  Theoretical prediction for bias parameters is made 
using a simple peak-background split; 

 

•  We get bias from N-body simulation with a 1-point 
measurement and no higher order correlation 
functions; 

 

•  We can use correlation between wavelengths modes 
in N-body simulations to measure bias parameters. 
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