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Overview

Local bias
Nonlocal bias
Exclusion bias
Peaks bias
Velocity bias

Summary: epicycles?

Collaborators: T. Baldauf, V. Desjacques, N. Hamaus, P. McDonald, T.
Okumura, S. Saito, R. Smith, Z. Vlah




Galaxy clustering in redshift space
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1) Measures 3-d distribution, has many more modes than
projected quantities like shear from weak lensing

2) Easy to measure: effects of order unity, not 1%




Power Spectrum

Galaxy clustering traces
dark matter clustering: 3-d
analysis contains a lot o
statistical information

Amplitude depends on
galaxy type: galaxy bias b

P, (k)=b2 (K)P,,..(k)

To determine b(k) we need
additional (external)
information

Galaxy bias can be scale
dependent: b(k)

Once we know bias we
know how dark matter
clustering grows in time

Power spectrum P(k) [(h-'Mpc)3]
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Complication I: why are galaxies linearly biased?
Galaxies form at high density peaks of initial density:
rare peaks are more strongly clustered

The enhancement depends on the halo mass function slope

Entrenched concept by now: but it is a complication

! - ] he diff ] ; bl
(galaxy P(k)) and theory (dark matter P(k))




Complication Il: local quadratic bias

Local bias model: §,=b,d_+b,d 2+... : Eulerian or Lagrangian?

Gravity develops nonlocal terms
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Tidal tensor  |PENGSSEEPPIF AN %585) ey Baldauf etal, Kwan
etal 2012

511(:177 77) - b15(:1:, 77) + b2 [52(1:’ 77) - <52(ma77)>] + b32 [32(:1:’77) - <32($a7l)>]

Local Lagrangian bias model predicts b,= -2(b,-1)/7

We can look for 1t in bispectrum B_ .
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Imprint on the Bispectrum
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Bispectrum fits to simulations vs
peak-background split predictions

o i)l from P,
e 2 13-2 from Bumh

o b from Bmh

M[h=1My)
Lagrangian local bias 1s a better, but maybe not
perfect description
Anything that 1s allowed by symmetry 1s also present
Do b, , b, help in modeling P(k)? No!




Saito et al, in prep

Complication lll: 3 order bias

Let’s write all possible terms allowed by symmetry at
31 order (McDonald and Roy 2010)

2nd-order non-local bias ~ ghmm _, <5(2)5(1)5(1)>

P o (51D60) + (8008)) + (8,620 + (6,7 60)

linear bias x PNlm




local bias

& () =:-C-5;5;1za;)“- ": non-local bias linear: can be measured via P"™(k) at large scales
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where sij(z) = 8;0j0(x) — %555,“(@-) = [a,iaja—2 — 555] ém(z), tidal field

tig(@) = Biv — 50Kbm(@) — sis(x) = [aia,-a-2 - %55] 6() — b ()],
U(x) = [0(x) — bu(@)] — 25(2)* + 570m(@)

(halo density)-(matter density) McDonald & Roy (2010)
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origin: (1)x(1) or (1)x(3)—linear bias
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(halo density)-(matter density) (halo density)-(matter momentum)
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Prediction from local bias in
Lagrangian space

he simple co-evolution picture predicts non-local bias as
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We now have introduced 4 free parameters to explain P, , B

hm ° ~hmm



Complication IV: stochasticity from
exclusion and nonlinearity

We managed to explain P, ., what about P, ?

Define stochasticity as 02=<(§,-bd,,)2>=P, -2bP, +b2P__
If we can model o?(k) we

can model P,

Standard model: 62=1/n

2 corrections: exclusion,

nonlinear clustering

Baldauf et al 2013




Random Sample with Exclusion
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Perturbation Theory + Exclusion
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Proto-halos in initial conditions

r (" Mpc] 1" Mpc]

0%(k=0) is given by integral of r3(§,,-b2g, )

This value is preserved to z=0




Dependence on halo mass

Same value of 6%(k=0)
between z=z., and z=0: gravity
cannot modify it

Positive (nonlinear effects
dominate) for low mass, negative
(exclusion dominates) for high
mass

At k= O correction to 1/n
Transition scale shrinks at z=0

relative to z=z._
Effects of order a few %

k [h Mpc™]




Can we predict it? Sort of, not

really... (Tobias's, Zvonimir’s talk)
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Vlah et al 2013

Scale dependent, redshift dependent, halo mass dependent

We can explain the full covariance matrix of halos of different mass

Diagonalization reveals one low eigenvalue: low stochasticity
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stochasticity reduction

® Uniform weighting has
large stochasticity

® \Weighting galaxies by
halo mass reduces scatter

(Hamaus, US, Desjacques
2010)

Useful for reconstruction,
f
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f . sampling variance canceling

Hamaus, US, Desjacques 2011
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Future surveys (MS-DESI, Euclid) could reach f ; around 1




Complication V: linear peak
biasing for proto-halos

® Peak constraints depend also on 2"d derivatives of density
field, in low k limit one can expand to find (Desjacques 2008)

Pam(k) = (b + bek®) We, gy, (k) P(k)} Pan(k) = (b, + bck?)” W2 ., (k) P(k)

x 10

100 ———————ry ———————rr 6

g
90 - ° bghésm
- - - lin
80 .
k
70} EE
— — — 71 °lin,sm
60
€ s0f e
3
E a0t

30-"
20F
10==%

ol ¢

- ‘I‘IH; ‘ - ‘IIII4 . - Illllo
10 10 10

k Th Mpc™]

k? effects like irvive to z=0. but are pushed

effects in velocity or momentum (Tobias’s talk)



State of the field

For each new statistic we introduced new parameters to explain
them, along with a theoretical explanation why it is natural to expect
them and why we have no choice not to introduce them. Epicycles?

So far we have more parameters than statistics, making explicit
demonstration of effects like k2 difficult

Can we predict all nonlinear biasing terms as a function of zand b,
and do we have a consistent description for all N-point functions in
real and redshift space?

To what k can we model galaxy power spectrum in real and redshift
space? k=0.1 or 0.2h/Mpc? Other NL effects like FoG require even
more poorly constrained parameters




Alternative: graceful transition to

ignorance (McDonald 2012)

observable 0o (X)

0o (x) = f [0 (x)]

= f o (Xl) theory x—x| < R

-I-./dx' K (|x—x')é; (x) +

0o (X) =10 [5,5 (%) + 2==R*V?5; (X) + ... | + ...

6o (k) =b [1 — bﬁRW

E R | 6 (K) +

P,(k)=0b*|1—b2 R*k*+ .| P, (k) + ...

® \We can parametrize our ignorance as a series in powers of k2



Graceful transition to ignorance

What should 8, be? Options for dark matter: linear theory, SPT, fully
NL matter. Can also include some biasing effects (eg local bias etc)
SPT may be a good choice.

b,, etc are different for each statistic, but can include all
complications mentioned before

Stochasticity: o?(k)=b, +b, k?+...
In redshift space b,,(u'), byo(u?)...

|f 6i linear then no PT needed. We are simply imposing

locality (kR<<1) and nothing else

All these coefficients can still be fully deterministic, eg just
a function of b; (perhaps unlikely in any realistic galaxy
case), or come Wlth strong priors




Summary

® Biasing is hard: more parameters than statistics to
determine them

® Redshift space disortions are even harder (Zvonimir’s talk)

® Perhaps we should just parametrize our ignorance and let
the data determine it (possibly with some priors from
simulations)




