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The bias problem

• What is our goal in “solving the bias problem” ?

• Describe the connection between statistics of initial 
conditions and statistics of any observed large-scale 
structure tracer in terms of few, observationally 
determined numbers

• How much (messy) astrophysics do we need to 
model ?

• Trade-off between number of free 
parameters and restrictiveness of model
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The bias problem

• The relation between tracer and matter 
perturbations in its most general form* is

• Clearly, we can’t learn anything by having a 
general functional - need to condense it into a 
small set of numbers to be constrained 
observationally

• What are the most general constraints on 
biasing we can place without making specific 
model assumptions ? *On a constant-proper-time slice; also 

dependence on matter velocities.

nh(x) = Fh[�(y)]
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I. “Model-independent” 
biasing approach

• Suppose the (expectation value of) local 
abundance of tracers at    , at fixed proper time, 
is a function of the matter density field within a 
finite region of size

• Physically, the largest possible such scale is the 
horizon:

• But probably     is much smaller (few Mpc) for 
most tracers (since DM plays the dominant role)  

x

R⇤

R⇤  H�1(t)

R⇤
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Large-scale limit
• When looking at scales much larger than    , abundance 

of galaxies depends only on 

• (i) proper time (age of the Universe) 

• (ii) local matter density,

• (iii) amplitude and shape of initial density fluctuations 

• I.e. all the properties we need to initialize and run an N-
body simulation

• For Gaussian initial conditions, (iii) is trivial: galaxy 
density is a local function of the matter density: local biasing

R⇤
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• Local biasing in a coarse-grained sense:

• The coarse-graining scale RL is nothing physical:

• a tool for our effective description

• Arbitrarily chosen “UV cutoff”

• Expression for any observable should be independent of RL

Coarse-graining

nh(x) = Fh,L[�L(x); x] �L(x) =

Z
d3y �(x� y)WRL(|y|)
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• Tracer correlation function is then, formally,

• ξh is observable and should thus be RL-independent. But, 
both Fh,L and δL depend on RL.

• For example, expanding Fh,L in δL yields terms

• Goal: reorder ξh into an RL-independent expansion in 
terms of matter correlators such as                              ,           
i.e. no terms

Tracer correlations

⇠h(r) =
hFh,L(�L(x1),x1)Fh,L(�L(x2),x2)i

hFh,Li2
� 1

Fry & Gaztanaga ’93;  Coles ’93

⇠L(r) = h�L(1)�L(2)i
/ �2n

L

/ �2n
L =

⌦
�2L

↵n
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• On large scales, clustering of tracers should be determined 
by their abundance in an unperturbed Universe with varying 
background density, at fixed age,

• We can expand this function around fiducial    at fixed age 
by defining

• bN = peak-background split (PBS) bias parameters     
(following historic usage)

• The parameters bN are uniquely defined numbers (at fixed 
t0) for any given tracer - in particular, independent of RL

n̄h(⇢̄, t)

bN =
⇢̄N

n̄h(⇢̄, t0)

@N n̄h(⇢̄, t0)

@⇢̄N

Large-scale limit and 
local biasing

⇢̄
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• To determine bN exactly, run cosmological simulations 
with varying    and measure     at fixed age

• Simple special case: universal mass function prescription:

• Adding a uniform matter density      is equivalent to 
saying that the collapse threshold    is reduced:

• Thus*, 

PBS bias parameters

�c ! �c �D

bN =
(�1)N

�(M)N
1

f(⌫)

dNf(⌫)

d⌫N

n̄h(M) / f(⌫), ⌫ =
�c

�(M)

D⇢̄

�c

Cole & Kaiser ‘89
Mo, Jing & White ’97

* There are small corrections from changes of the mass definition

⇢̄ n̄h

Tuesday, October 8, 13



PBS biases and correlations

• If residual dependence on x in                
has no large-scale correlations, then, for a 
Gaussian density field:

• For a general density field:

proofs in 1212.0868

Fh,L(�L,x)

⇠h(r) =
1X

N=1

b2N
N !

[⇠L(r)]
N

⇠h(r) =
1X

N,M=1

bNbM
N !M !

⌦
�NL (1)�ML (2)

↵
nzl No zero-lag correlators

Analogous expression for tracer counts in cells
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PBS biases and correlations

•  As desired, we have an expansion in terms of powers of ξ(r) 
and PBS biases bN

• Renormalized bN absorb all zero-lag terms (powers of σL)

• Same bN describe both auto- and cross-correlations

• Convergent whenever ξ(r) << 1, independently of coarse-
graining scale

• Local biasing as an effective description valid on large scales 
for any tracer, rather than a “microscopic” description valid 
at some fixed scale RL

• Understood in this sense, peak-background split is exact

⇠h(r) =
1X

N=1

b2N
N !

[⇠L(r)]
N
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II. Beyond local bias

• Recall that there is non-locality in the 
tracer-matter relation on some scale R*, i.e. 
at linear order (for simplicity) 

• We can expand

• Thus, we expect a non-local bias w.r.t.       
to be necessary on sufficiently small scales

�h(x) =

Z
f(|y|)�(x� y)d3y

�h(x) = c1�(x) +R2
⇤r2�(x) + · · ·

r2�

R2
⇤ =

1

2

Z
f(|y|)y2d3y
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Curvature bias
• Generalize local ansatz: tracer density depends on local 

coarse-grained density as well as its curvature,

• Leads to a bivariate expansion in

• coefficients again explicitly RL-dependent

• restrict to linear order here

nh(x) = Fh,L

⇥
�L(x), r2�L(x); x

⇤

�L, r2�L
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Curvature bias

• What is the physical (renormalized) curvature 
bias ? 

• Consider adding a component with uniform 
curvature to the density:

• Then, define

�(x) ! �(x) +
↵

6`2
x

2

Note: dimension [length]^2br2� =
`2

n̄h

@n̄h

@↵

���
↵=0
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Curvature bias

• What is the physical (renormalized) curvature 
bias ? 

• Consider adding a component with uniform 
curvature to the density:

• Then, define

�(x) ! �(x) +
↵

6`2
x

2

Note: dimension [length]^2br2� =
`2

n̄h

@n̄h

@↵

���
↵=0
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Curvature bias
• The tracer correlation then becomes

• Introducing curvature bias has thus removed the RL-
dependence in ξL(r) !

• In fact, we can generalize to include higher derivatives         
of the density field           - can show that we then 
remove the effects of smoothing exactly - the scale RL 
disappears completely !

• If                  , scale R* is physical “cut-off” of the effective 
description: we cannot hope to describe the tracer 
statistics on scales R* and smaller

⇠h(r) = b21⇠(r) + 2b1br2�r2⇠(r) + · · ·

r2n�

br2n� ⇠ R2n
⇤
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Curvature bias
• The tracer correlation then becomes

• Introducing curvature bias has thus removed the RL-
dependence in ξL(r) !

• In fact, we can generalize to include higher derivatives         
of the density field           - can show that we then 
remove the effects of smoothing exactly - the scale RL 
disappears completely !

• If                  , scale R* is physical “cut-off” of the effective 
description: we cannot hope to describe the tracer 
statistics on scales R* and smaller

⇠h(r) = b21⇠(r) + 2b1br2�r2⇠(r) + · · ·

r2n�

br2n� ⇠ R2n
⇤
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Curvature bias =   
scale-dependent bias
• Tracer correlation in Fourier space becomes 

•        is a scale-dependent bias which can 
boost or suppress BAO feature in ξh(r)

• Our general renormalization approach 
predicts that a scale-dependent bias needs to 
be introduced whenever         becomes relevant

Ph(k) = b21P (k) + 2b1br2� k
2 P (k) + · · ·

br2�

See Desjacques et al, 2010 for peaks of a Gaussian density field

(R⇤k)
2
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• Previous results formally apply to non-Gaussian 
density fields as well

• The lowest-order non-Gaussian contribution to halo 
clustering is the 3-pt function:

• With local NG, the second term is*

• Despite having used the renormalized bN here, we get 
an unwanted RL-dependence.  Something is missing !

III. Non-Gaussianity

⇠h(r) = b21⇠L(r) + b1b2h�L(1)�2L(2)i+ · · ·

⌦
�L(1)�

2
L(2)

↵
= 4fNL h�L(1)�(2)i�2

L

* In the large-scale limit

Verde & Matarrese, ’08
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LSS with non-Gaussianity

• In the Gaussian case, the dependence of the 
tracer abundance on the small-scale 
fluctuations                            is irrelevant 
for clustering

• The RL-dependence in NG case tells us that 
we can no longer ignore this dependence

• Not surprising since for local fNL, 

�s(x) = �(x)� �L(x)

�s(x) ! [1 + 2fNL�(x)]�s(x)
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• Thus, we explicitly introduce the 
dependence of the tracer density on the 
amplitude of δs:

• As in the case of        , we now have a 
bivariate bias expansion.

Small-scale fluctuations

13

to zero as R becomes much larger than R
L

:

h�
s

(x)�
R

(x)i =
Z

d3k

(2⇡)3
W̃

s

(k)W̃
R

(k)P (k)

R�RL! 0, (88)

and similarly for h�
s

(x1)�L(x2)i if |x1 � x2| � R
L

. We
further use the notation

�2
s

⌘ h�2
s

i =
Z

d3k

(2⇡)3
|W̃

s

(k)|2P (k). (89)

We quantify the dependence of the tracer abundance on
the amplitude of small-scale fluctuations through

y⇤(x) ⌘ 1

2

✓

�2
s

(x)

�2
s

� 1

◆

, (90)

where the subscript ⇤ refers to the smoothing scale R⇤,
hy⇤i = 0, and the factor of 1/2 is included to obtain
expressions which conform to standard convention later
on. In the Gaussian case, ⇠

s

(r) ! 0 for r � R
L

, so that
the small-scale density field and y⇤ in particular have no
large-scale correlations. In the non-Gaussian case how-
ever, y⇤ is in general correlated with long-wavelength per-
turbations. Note that h�

s

(1)�
L

(2)i vanishes by construc-
tion on large scales [Eq. (88)], so that it is natural to
start the expansion with the leading term �2

s

.
We now generalize Eq. (6) to explicitly include the de-

pendence on y⇤,

n̂
h

(x) = F
h,L

(�
L

(x), y⇤(x);x). (91)

Although our approach here is formally similar to the
bivariate local expansion in �

L

and �
L

adopted in [18, 26,
41], there is somewhat of a conceptual di↵erence in that
we expand n̂

h

purely in terms of properties of the matter
distribution. The e↵ect of non-Gaussianity, and the fact
that it derives from a potential �, only enter through the
expressions for the correlators between �

L

and y⇤ here.
The nature of non-Gaussianity thus decouples from the
description of the tracers (which only know about the
matter density field) in this approach.

We can now repeat the derivation of Sec. II, includ-
ing this additional dependence. All arguments about the
residual scatter from the deterministic relation n̂

h

(x) =
n̂
h

[�
L

(x), y⇤(x)] and its negligible correlation with long-
wavelength perturbations made in Sec. II also apply here.
In fact, the dependence of n̂

h

(x) on y⇤(x) is a source
of uncorrelated scatter in the Gaussian case which be-
comes correlated with long-wavelength perturbations in
the non-Gaussian case. This is another way of seeing
why we need to introduce the dependence on y⇤ explic-
itly when dealing with large-scale non-Gaussianity. Tak-
ing the expectation value of Eq. (91), we obtain

hn̂
h

i = hF
h,L

(0)i
X

n,m

c
nm

n!m!
h�n

L

ym⇤ i, (92)

where we have defined bivariate “bare” bias parameters
through

c
nm

⌘ 1

hF
h,L

(0)i
⌧

@n+mF
h,L

@�n
L

@ym⇤

�

�

�

�L=0,y⇤=0

�

. (93)

We then need expressions for the various cross-
correlations of �

L

and y⇤. In the following, we will re-
strict ourselves to the leading order terms, as the general
expansion becomes lengthy.

A. Primordial non-Gaussianity of the local type

We will consider a density field derived from a Bardeen
potential with non-Gaussianity of the local type. We
will restrict our treatment to leading order in the non-
linearity parameter fNL. At this order, the only relevant
N -point function is the bispectrum,

B(k1,k2,k3) =M(k1)M(k2)M(k3)B�

(k1,k2,k3)

B
�

(k1,k2,k3) = 2fNL[P�

(k1)P�

(k2) + (2 cyclic)]. (94)

Here,

M(k) =
2

3

k2T (k)g(z)

⌦
m

H2
0 (1 + z)

(95)

is the relation in Fourier space between the density and
the Bardeen potential �,

�(k, z) = M(k)�(k), (96)

where T (k) is the matter transfer function normalized to
unity as k ! 0, and g(z) is the linear growth rate of the
gravitational potential normalized to unity during the
matter dominated epoch. Further, we define M

L

(k) =
M(k)W̃

L

(k), M
s

(k) = M(k)W̃
s

(k), and so on. We can
then derive the leading contributions in the large-scale
limit. As shown in App. C,

h�
L

(1)�2
L

(2)i =
Z

d3k

(2⇡)3
eik·rM

L

(k)

Z

d3k1
(2⇡)3

Z

d3k2
(2⇡)3

⇥M
L

(k1)ML

(k2)h�k

�
k1�k2i

= 4fNL�
2
L

⇠
��,L

(r), (97)

where ⇠
��,L

is the cross-correlation function between the
density coarse-grained on scale R

L

and the Bardeen po-
tential �, i.e.

⇠
��,L

(r) =

Z

d3k

(2⇡)3
eik·rW̃

L

(k)

Z

d3k1
(2⇡)3

h�(k)�(k1)i.
(98)

In deriving Eq. (97), we have expanded to lowest order in
k/k1 (“squeezed limit” of the bispectrum), with the next
higher order being suppressed by (k/k1)2 in this limit.
We will discuss this approximation in Sec. V.

r2�L

nh(x) = Fh,L [�L(x), y⇤(x); x]
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• Bivariate bias parameters encode the 
dependence of     on the mean matter 
density as well as the amplitude of initial 
density fluctuations

• Thus, e.g.  

Bivariate halo bias

�8 / A1/2
s

n̄h

b01 =
1

n̄h

@n̄h

@ ln�8
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• Bivariate bias parameters encode the 
dependence of     on the mean matter 
density as well as the amplitude of initial 
density fluctuations

• Thus, e.g.  

Bivariate halo bias

�8 / A1/2
s

n̄h

b01 =
1

n̄h

@n̄h

@ ln�8
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Prediction for LSS 
statistics

• We then obtain

• Again, we have obtained an RL-independent 
result

• The term          has been absorbed into

• Scale-dependent bias is encoded by

/ b2�
2
L b01

h�L(1)y⇤(2)i = 2fNL h�L(1)�(2)i

⇠h(r) = b210 ⇠L(r) +
b220
2

⇠2L(r) + 2b10b01 h�L(1)y⇤(2)i

see 1212.0868
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Generalizations          
(for NG aficionados)

• Argument generalizes to non-local and higher order 
non-Gaussianity

• Key property is the squeezed limit scaling of the 
primordial bispectrum (or N-pt function)

• The value of scale-dependent bias     depends 
on this scaling: tracers respond differently to 
different shapes of non-Gaussianity

• For a universal mass function, recover the 
previously found                  for local NG

• Again, special case of the general exact definition

b01

b01 = �cb10
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Generalizations          
(for NG aficionados)

• We can also generalize beyond the squeezed 
limit (see arXiv:1304.1817)

• Now, long-wavelength modes modify the 
shape as well as the amplitude of small-scale 
fluctuations

• Leads to trivariate bias expansion...

• Clarifies the differences beyond squeezed 
limit between various scale-dependent bias 
predictions
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Conclusions
• Gravity and formation of tracers are local processes

• We use this as starting point of a general, model-
independent bias expansion

• Fictitious coarse-graining scale RL indicates the regime 
of validity of the bias expansion

• PBS biases (when understood in this way) are exact

• Source of scale-dependent bias from primordial non-
Gaussianity clarified (no term            )

• Framework in which specific approaches (peaks, excursion 
set, ...) can be embedded to provide relations between 
bias parameters (cf. scale-dep bias from fNL)

/ b2�
2
L
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