Galaxy Clustering and the Peak-Background Split

Fabian Schmidt Max Planck Institute for Astrophysics (MPA)

with Donghui Jeong, Vincent Desjacques

arXiv:1212.0868, 1304.1817

ICTP workshop on galaxy bias, Oct 2013

The bias problem

- What is our goal in "solving the bias problem" ?
- Describe the connection between statistics of initial conditions and statistics of any observed large-scale structure tracer in terms of few, observationally determined numbers
- How much (messy) astrophysics do we need to model ?
 - Trade-off between number of free parameters and restrictiveness of model

The bias problem

• The relation between tracer and matter perturbations in its most general form* is

 $n_h(\mathbf{x}) = F_h[\delta(\mathbf{y})]$

- Clearly, we can't learn anything by having a general *functional* - need to condense it into a small set of numbers to be constrained observationally
- What are the most general constraints on biasing we can place without making specific model assumptions ? *On a constant-proper-time slice; also

dependence on matter velocities.

I. "Model-independent" biasing approach

- Suppose the (expectation value of) local abundance of tracers at x, at fixed proper time, is a function of the matter density field within a finite region of size R_{*}
- Physically, the largest possible such scale is the horizon: $R_* \leq H^{-1}(t)$
- But probably R_* is much smaller (few Mpc) for most tracers (since DM plays the dominant role)

Large-scale limit

- When looking at scales much larger than R_* , abundance of galaxies depends only on
 - (i) proper time (age of the Universe)
 - (ii) local matter density,
 - (iii) amplitude and shape of initial density fluctuations
- I.e. all the properties we need to initialize and run an Nbody simulation
- For Gaussian initial conditions, (iii) is trivial: galaxy density is a local function of the matter density: local biasing

Coarse-graining

- Local biasing in a coarse-grained sense: $n_h(\mathbf{x}) = F_{h,L}[\delta_L(\mathbf{x}); \mathbf{x}] \qquad \delta_L(\mathbf{x}) = \int d^3 \mathbf{y} \, \delta(\mathbf{x} - \mathbf{y}) W_{R_L}(|\mathbf{y}|)$
- The coarse-graining scale R_L is nothing physical:
 - a tool for our effective description
 - Arbitrarily chosen "UV cutoff"
- Expression for any observable should be independent of R_L

Tracer correlations

• Tracer correlation function is then, formally,

$$\xi_h(r) = \frac{\langle F_{h,L}(\delta_L(\mathbf{x}_1), \mathbf{x}_1) F_{h,L}(\delta_L(\mathbf{x}_2), \mathbf{x}_2) \rangle}{\langle F_{h,L} \rangle^2} - 1$$

Fry & Gaztanaga '93; Coles '93

- ξ_h is observable and should thus be R_L -independent. But, both $F_{h,L}$ and δ_L depend on R_L .
- For example, expanding $F_{h,L}$ in δ_L yields terms $\propto \sigma_L^{2n} = \left< \delta_L^2 \right>^n$
- **Goal:** reorder ξ_h into an R_L -independent expansion in terms of matter correlators such as $\xi_L(r) = \langle \delta_L(1) \delta_L(2) \rangle$, i.e. no terms $\propto \sigma_L^{2n}$

Large-scale limit and local biasing

- On large scales, clustering of tracers should be determined by their abundance in an unperturbed Universe with varying background density, at fixed age, $\bar{n}_h(\bar{\rho}, t)$
- We can expand this function around fiducial $\bar{\rho}$ at fixed age by defining

$$b_N = \frac{\bar{\rho}^N}{\bar{n}_h(\bar{\rho}, t_0)} \frac{\partial^N \bar{n}_h(\bar{\rho}, t_0)}{\partial \bar{\rho}^N}$$

- b_N = peak-background split (PBS) bias parameters (following historic usage)
- The parameters b_N are uniquely defined numbers (at fixed t_0) for any given tracer in particular, independent of R_L

PBS bias parameters

- To determine b_N exactly, run cosmological simulations with varying $\bar{\rho}$ and measure \bar{n}_h at fixed age
- Simple special case: universal mass function prescription: $\bar{n}_h(M) \propto f(\nu), \quad \nu = \frac{\delta_c}{\sigma(M)}$
- Adding a uniform matter density $D\bar{\rho}$ is equivalent to saying that the collapse threshold δ_c is reduced:

• Thus*,
$$b_N = \frac{(-1)^N}{\sigma(M)^N} \frac{1}{f(\nu)} \frac{d^N f(\nu)}{d\nu^N}$$

• $\delta_c \to \delta_c - D$
Cole & Kaiser '89
Mo, Jing & White '97

*There are small corrections from changes of the mass definition

PBS biases and correlations

• If residual dependence on x in $F_{h,L}(\delta_L, \mathbf{x})$ has no large-scale correlations, then, for a Gaussian density field:

$$\xi_h(r) = \sum_{N=1}^{\infty} \frac{b_N^2}{N!} [\xi_L(r)]^N$$

proofs in 1212.0868

• For a general density field:

$$\xi_h(r) = \sum_{N,M=1}^{\infty} \frac{b_N b_M}{N!M!} \left\langle \delta_L^N(1) \delta_L^M(2) \right\rangle_{\text{nzl}} - \text{No zero-lag correlators}$$

Analogous expression for tracer counts in cells

PBS biases and correlations

$$\xi_h(r) = \sum_{N=1}^{\infty} \frac{b_N^2}{N!} \left[\xi_L(r)\right]^N$$

- As desired, we have an expansion in terms of powers of $\xi(r)$ and PBS biases b_N
 - Renormalized b_N absorb all zero-lag terms (powers of σ_L)
 - Same b_N describe both auto- and cross-correlations
 - Convergent whenever $\xi(r) \le 1$, independently of coarsegraining scale
- Local biasing as an effective description valid on large scales for any tracer, rather than a "microscopic" description valid at some fixed scale R_L
- Understood in this sense, peak-background split is exact

II. Beyond local bias

 Recall that there is non-locality in the tracer-matter relation on some scale R*, i.e. at linear order (for simplicity)

$$\delta_h(\mathbf{x}) = \int f(|\mathbf{y}|) \delta(\mathbf{x} - \mathbf{y}) d^3 \mathbf{y} \qquad R_*^2 = \frac{1}{2} \int f(|\mathbf{y}|) y^2 d^3 \mathbf{y}$$

- We can expand $\delta_h(\mathbf{x}) = c_1 \delta(\mathbf{x}) + R_*^2 \nabla^2 \delta(\mathbf{x}) + \cdots$
- Thus, we expect a non-local bias w.r.t. $\nabla^2 \delta$ to be necessary on sufficiently small scales

• Generalize local ansatz: tracer density depends on local coarse-grained density as well as its curvature,

 $n_h(\mathbf{x}) = F_{h,L} \left[\delta_L(\mathbf{x}), \nabla^2 \delta_L(\mathbf{x}); \mathbf{x} \right]$

- Leads to a bivariate expansion in δ_L , $\nabla^2 \delta_L$
 - coefficients again explicitly R_L-dependent
 - restrict to linear order here

- What is the physical (renormalized) curvature bias ?
- Consider adding a component with uniform curvature to the density: $\delta(\mathbf{x}) \rightarrow \delta(\mathbf{x}) + \frac{\alpha}{6\ell^2}\mathbf{x}^2$

• Then, define
$$b_{\nabla^2 \delta} = \frac{\ell^2}{\bar{n}_h} \frac{\partial \bar{n}_h}{\partial \alpha} \Big|_{\alpha=0}$$

Note: dimension [length]²

- What is the physical (renormalized) curvature bias ?
- Consider adding a component with uniform curvature to the density: $\delta(\mathbf{x}) \rightarrow \delta(\mathbf{x}) + \frac{\alpha}{6\ell^2}\mathbf{x}^2$

• Then, define
$$b_{\nabla^2 \delta} = \frac{\ell^2}{\bar{n}_h} \frac{\partial \bar{n}_h}{\partial \alpha} \Big|_{\alpha=0}$$

Note: dimension [length]²

- The tracer correlation then becomes $\xi_h(r) = b_1^2 \xi(r) + 2b_1 b_{\nabla^2 \delta} \nabla^2 \xi(r) + \cdots$
- Introducing curvature bias has thus removed the R_L -dependence in $\xi_L(r)$!

- The tracer correlation then becomes $\xi_h(r) = b_1^2 \xi(r) + 2b_1 b_{\nabla^2 \delta} \nabla^2 \xi(r) + \cdots$
- Introducing curvature bias has thus removed the R_L -dependence in $\xi_L(r)$!
- In fact, we can generalize to include higher derivatives of the density field $\nabla^{2n}\delta$ - can show that we then remove the effects of smoothing exactly - the scale R_L disappears completely !
- If $b_{\nabla^{2n}\delta} \sim R_*^{2n}$, scale R* is physical "cut-off" of the effective description: we cannot hope to describe the tracer statistics on scales R* and smaller

Curvature bias = scale-dependent bias

- Tracer correlation in Fourier space becomes $P_h(k) = b_1^2 P(k) + 2b_1 b_{\nabla^2 \delta} k^2 P(k) + \cdots$
- $b_{\nabla^2\delta}$ is a scale-dependent bias which can boost or suppress BAO feature in $\xi_h(r)$

See Desjacques et al, 2010 for peaks of a Gaussian density field

 Our general renormalization approach predicts that a scale-dependent bias needs to be introduced whenever (R_{*}k)²becomes relevant

III. Non-Gaussianity

- Previous results formally apply to non-Gaussian density fields as well
- The lowest-order non-Gaussian contribution to halo clustering is the 3-pt function: $\xi_h(r) = b_1^2 \xi_L(r) + b_1 b_2 \langle \delta_L(1) \delta_L^2(2) \rangle + \cdots$

Verde & Matarrese, '08

- With local NG, the second term is* $\langle \delta_L(1)\delta_L^2(2) \rangle = 4f_{\rm NL} \langle \delta_L(1)\phi(2) \rangle \sigma_L^2$
- Despite having used the *renormalized* b_N here, we get an unwanted R_L -dependence. Something is missing !

* In the large-scale limit

LSS with non-Gaussianity

- In the Gaussian case, the dependence of the tracer abundance on the small-scale fluctuations δ_s(x) = δ(x) δ_L(x) is irrelevant for clustering
- The R_L-dependence in NG case tells us that we can no longer ignore this dependence
 - Not surprising since for local f_{NL}, $\delta_s(\mathbf{x}) \rightarrow [1 + 2f_{NL}\phi(\mathbf{x})]\delta_s(\mathbf{x})$

Small-scale fluctuations

• Thus, we explicitly introduce the dependence of the tracer density on the amplitude of δ_s :

$$n_h(\mathbf{x}) = F_{h,L} \left[\delta_L(\mathbf{x}), \ y_*(\mathbf{x}); \ \mathbf{x} \right]$$
$$y_*(\mathbf{x}) \equiv \frac{1}{2} \left(\frac{\delta_s^2(\mathbf{x})}{\sigma_s^2} - 1 \right)$$

• As in the case of $\nabla^2 \delta_L$, we now have a bivariate bias expansion.

Bivariate halo bias

 Bivariate bias parameters encode the dependence of n
h on the mean matter density as well as the amplitude of initial density fluctuations

• Thus, e.g.
$$b_{01} = \frac{1}{\bar{n}_h} \frac{\partial \bar{n}_h}{\partial \ln \sigma_8}$$

$$\sigma_8 \propto {\cal A}_s^{1/2}$$

Bivariate halo bias

 Bivariate bias parameters encode the dependence of n_h on the mean matter density as well as the amplitude of initial density fluctuations

 $\sigma_8 \propto {\cal A}_s^{1/2}$

• Thus, e.g.
$$b_{01} = \frac{1}{\bar{n}_h} \frac{\partial \bar{n}_h}{\partial \ln \sigma_8}$$

Prediction for LSS statistics

- We then obtain see I2I2.0868 $\xi_h(r) = b_{10}^2 \, \xi_L(r) + \frac{b_{20}^2}{2} \, \xi_L^2(r) + 2b_{10}b_{01} \, \langle \delta_L(1)y_*(2) \rangle$
- Again, we have obtained an R_L-independent result
 - The term $\propto b_2 \sigma_L^2$ has been absorbed into b_{01}
 - Scale-dependent bias is encoded by $\langle \delta_L(1)y_*(2) \rangle = 2f_{\rm NL} \langle \delta_L(1)\phi(2) \rangle$

Generalizations (for NG aficionados)

- Argument generalizes to non-local and higher order non-Gaussianity
 - Key property is the squeezed limit scaling of the primordial bispectrum (or N-pt function)
 - The value of scale-dependent bias b₀₁ depends on this scaling: tracers respond differently to different shapes of non-Gaussianity
- For a universal mass function, recover the previously found $b_{01} = \delta_c b_{10}$ for local NG
 - Again, special case of the general exact definition

Generalizations (for NG aficionados)

- We can also generalize beyond the squeezed limit (see *arXiv*:1304.1817)
- Now, long-wavelength modes modify the shape as well as the amplitude of small-scale fluctuations
 - Leads to trivariate bias expansion...
- Clarifies the differences beyond squeezed limit between various scale-dependent bias predictions

Conclusions

- Gravity and formation of tracers are local processes
- We use this as starting point of a general, modelindependent bias expansion
 - Fictitious coarse-graining scale $R_{\rm L}$ indicates the regime of validity of the bias expansion
 - PBS biases (when understood in this way) are exact
 - Source of scale-dependent bias from primordial non-Gaussianity clarified (no term $\propto b_2 \sigma_L^2$)
- Framework in which specific approaches (peaks, excursion set, ...) can be embedded to provide relations between bias parameters (cf. scale-dep bias from f_{NL})