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spectroscopic redshifts

* They are well defined

* The source needs to be bright enough

* They are expensive

As time goes on the fraction of known galaxies for which
we have a spectroscopic redshift



Photometric Redshifts
SEDs or Training Sets




Photometric redshifts

* They rely on templates (theoretical or observed)
* They require training sets. The answer is not unique.

PHAT: PHoto-z Accuracy Testing *  Hildebrandt et al.



Photometric redshifts

* They rely on templates (theoretical or observed)
* They require training sets. The answer is not unique.

* They are affected by dust extinction/reddening effects
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Photometric redshifts

* They rely on templates (theoretical or observed)
* They require training sets. The answer is not unique.

* They are affected by dust extinction/reddening effects
* They suffer from catastrophic failures

=> serious problem to select clean samples of foreground & background
objects, needed for gravitational lensing.




Photometric redshifts

* They rely on templates (theoretical or observed)
* They require training sets. The answer is not unique.

* They are affected by dust extinction/reddening effects
* They suffer from catastrophic failures

* Most importantly they rely on our a priori knowledge of the
sources.When exploring the unknown, they may no longer be
reliable.

We could completely miss an entire population of galaxies.



Atmospheric transmission

Atmospheric transmission
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Photometric Redshifts
SEDs or Training Sets

Clustering Redshifts
Spatial Correlation with Reference Set



Estimating redshifts
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ABSTRACT

We have studied galaxy two-point angular correlations as a function of color using 4 m plate photom-
etry in two independent fields. Each field consists of over 2900 galaxies with magnitudes 20 < B, <
23.5 in an area of ~750 arcmin®, We find that the autocorrelation amplitude of the bluest 15% of gal-
axies is surprisingly strong, with a relative increase in clustering amplitude of a factor of 6 over that of
the complete data set, while exhibiting a power-law slope consistent with the canonical value of —0.8.
These very blue galaxies are also found to be weakly correlated with galaxies of median color and mar-
ginally anticorrelated with the reddest subset. These correlation properties are incompatible with existing
simple models of the galaxy distribution; they suggest that a significant fraction, more than 50%, of
these very blue galaxies are a faint population that lies at nearby redshifts, z < 0.3.
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Reference set

Sample at unknown
redshift

<5ref . 5unknown>

Metric: 2-point correlation function
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e key point here is to do a local sampling

in the space of observables

if dlogdN/dz
dz

then dN/dz oc Wy, (2) (br(z)lw(z)>
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dz

and the redshift distribution is
simply normalized by

/dZ dN/dZ — Ntot
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Scale dependence of the results

° Clustering exists on all scales but with different amplitudes. The dependence on scale
can be explored with simulations
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Bimodal redshift distributions
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Application to real datasets:

reference sample: spectroscopic
‘unknown’ sample: photometric
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clustering-based redshifts

SDSS Luminous Red Galaxies
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clustering-based redshifts

SDSS Emission Line Galaxies
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clustering-based redshifts
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clustering-based redshifts

The FIRST VLA FIRST radio sources
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Exploration of the SDSS
photometric galaxies



dN/dz x Az

Characterizing photometric galaxies

Photometric
10° Spectroscopic )
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The (spectroscopic) reference
sample is much smaller and does
not need to be representative of
the unknown galaxies



Cluster-z distribution of a color-selected sample

Assembling
clustering redshift
distribution of all
r-i selected
samples

80 slices in r-i

80 slices in z
(Az ~1072)

6400 cross-
correlation
measurements

Rahman et al. (in prep)
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Reducing the dimensionality of the problem

Reducing to
4 independent one dimension

color mapsﬁ; | KD-Tree photometric
" g redshifts
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Clustering redshift distribution
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Density map of clustering-z distribution

80 slices in z
(Az ~1072)

Rahman et al. (in prep)
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Density map of clustering-z distribution
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Redshift

0.8

Density map of clustering-z distribution
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Redshift

Locating the Emission Line Galaxies (ELGsS)

Gaussian Smoothing

0.8

Star forming (blue) galaxies at
high z

Colours dominated by emission
lines: O III, O II and HP3

Problematic for photo-z estimates

we could have discovered them a
long time ago

They have become key
populations for upcoming surveys
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Photometric selection of ELGs

Goal: selecting galaxies with 0.6 <z <1.7

the “ugr” selection the “gr1” selection
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Photometric selection of ELGs

ELG SDSS-III/BOSS ancillary program, 2000 spectra:
Objects with robust redshifts: blue galaxies, red galaxies, QSOs,

Objects with unreliable redshifts: single emission line, low continuum level, bad quality data
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ELG redshift distributions
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Global redshift distribution
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Global redshift distributions inferred from
photo-zs and cluster-zs
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Comparing different photo-z methods

KD=Tree Fitting (r < 21) Random Forest (r < 21)
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What's next?



Photometric Redshi
SEDs or Training Sets

Brightness,
Shape,
ellipticity, ...

Clustering Redshifts

Spatial Correlation with Reference Se
Environment

- multidimensional sampling/selection
This will be done without any reference to photo-zs

This can be used to infer the redshift pdf of one galaxy



Summary

e Spatial correlations give us an estimate of b(z) . dN/dz

e This can be used as a tool to explore
0.8 —

the 3 dimension of the Universe. e

Rahman et al. (in prep)

0.7p
® This method can process any dataset: 0.6
* does not require any spectral feature |

* can even be done with one band
* can be applied to diffuse signals -

!

* |nteresting preliminary results. More to
come soon...
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