Exploring the scale dependence of Lagrangian bias

Aseem Paranjape

in collaboration with R. Sheth, M. Musso, V. Desjacques, E. Sefusatti, K. Chan, P. Monaco
Bias workshop, ICTP, Oct 8,2013

Motivation

Scale dependence of halo bias can be a powerful probe of cosmology, potentially testing the initial conditions (e.g., Dalal et al. 08; Slosar et al. 08; many others) or the nature of gravity (e.g., Parfrey, Hui \& Sheth II;Lam \& Li I2).

Problem is, halo bias in vanilla LCDM is also scale dependent due to the nature of Einstein/Newtonian gravity (e.g., Chan et al. 12; Baldauf et al. 12).

Analytical predictions traditionally rely on excursion set approach and "peak-background split" argument. Recent work on excursion sets with correlated steps (see Marcello's talk) shows that scaledependence is expected even in the initial conditions.

We explore this here.
Caveat: Everything in this talk is Lagrangian!

Outline

-Fourier space versus real space
-Scale dependence from random walks
-(Detour: Excursion Set Peaks)

- Numerical tests and comparisons with N -body simulations

Traditional estimates of bias

$$
b_{1}^{2}(k) \equiv \frac{P_{\mathrm{hh}}(k)}{P_{\mathrm{mm}}(k)} \quad \text { or } \quad b_{1}(k) \equiv \frac{P_{\mathrm{hm}}(k)}{P_{\mathrm{mm}}(k)}
$$

where $P_{\mathrm{hh}}(k)=\left\langle\delta_{\mathrm{h}}^{2}\right\rangle, P_{\mathrm{mm}}(k)=\left\langle\delta^{2}\right\rangle$ and $P_{\mathrm{hm}}(k)=\left\langle\delta_{\mathrm{h}} \delta\right\rangle$.
These typically show scale-dependence $\sim k^{2}$ with constant value at large scales, usually compared with "peak-background split" (Kaiser 84; BBKS 86; Mo \& White 96)

$$
b_{n 0}=f^{-1}\left(-\frac{\partial}{\partial \delta_{\mathrm{c}}}\right)^{n} f,
$$

with halo mass function $f\left(\delta_{c} ; m\right)$.

Estimates beyond linear bias require measuring higher order correlations (e.g., quadratic bias requires bispectrum) and/or assumptions regarding locality/stochasticity/ scale dependence.

From Fourier space to Real space

Peak-bg split argument works in real space. Not immediately obvious why/how this should be compared with Fourier space measurement.

Consider a toy example:

$$
\delta_{0}(\mathbf{k})=\delta(\mathbf{k}) W\left(k R_{0}\right) \quad ; \quad \delta_{\mathrm{h}}(\mathbf{k})=b(k \mid m) \delta(\mathbf{k}) W(k R)
$$

with $m \propto R^{3}$ and $W(y)=\mathrm{e}^{-y^{2} / 2}$.
Natural real-space definition of linear bias could be $b\left(m, R_{0}\right)=\left\langle\delta_{\mathrm{h}} \delta_{0}\right\rangle /\left\langle\delta_{0}^{2}\right\rangle$. Then,

$$
\begin{aligned}
& b(k \mid m)=b_{10}(m) \Longrightarrow b\left(m, R_{0}\right)=\left(S_{\times} / S_{0}\right) b_{10} \\
& {\left[S_{0}=\int \operatorname{dln} k \Delta(k) W\left(k R_{0}\right)^{2} ; S_{\times}=\int \operatorname{dln} k \Delta(k) W(k R) W\left(k R_{0}\right)\right]}
\end{aligned}
$$

So even constant Fourier-space bias will lead to scale dependence in real space.

Real-space bias from random walks

Excursion set approach makes the peak-bg argument rigorous (Mo \& White 96).
Calculation proceeds by writing a conditional mass function

$$
f\left(\delta_{\mathrm{c}}, m \mid \delta_{0}, R_{0}\right)=f\left(\delta_{\mathrm{c}}, s \mid \delta_{0}, S_{0}\right)
$$

and then Taylor expanding. $\quad\left[s \equiv \int \mathrm{~d} \ln k \Delta(k) W(k R)^{2} ; m \propto R^{3}\right]$
For random walks with uncorrelated steps $f\left(\delta_{\mathrm{c}}, s \mid \delta_{0}, S_{0}\right)=f\left(\delta_{\mathrm{c}}-\delta_{0}, s-S_{0}\right)$ so Taylor expansion precisely recovers peak-bg results provided $S_{0} \ll s$.

Two issues:

(I.) We'd like to compute cross-correlations, not Taylor coefficients.
(2.) We'd like to use random walks with correlated steps.

It's possible to do (I.) alone.
But it's easier to do (I.) and (2.) simultaneously.

Scale dependence from correlated steps

From Marcello's talk we know an accurate analytical first crossing distribution
$\nu \equiv \delta_{\mathrm{c}} / \sqrt{s} ; x \sim$ walk slope
$\gamma=\langle x \nu\rangle \sim$ width of power spectrum
$p_{\mathrm{G}}\left(x-\mu ; \Sigma^{2}\right)$: Gaussian with mean μ and variance Σ^{2}

$$
\begin{aligned}
f_{\mathrm{MS}}(\nu) & =\frac{\mathrm{e}^{-\nu^{2} / 2}}{\sqrt{2 \pi}} \frac{1}{\gamma \nu} \int_{0}^{\infty} \mathrm{d} x x p_{\mathrm{G}}\left(x-\gamma \nu ; 1-\gamma^{2}\right) \\
& =\int_{0}^{\infty} \mathrm{d} x \frac{x}{\gamma \nu} p(x, \nu) \quad \text { (Musso \& Sheth 12) }
\end{aligned}
$$

which also leads to an accurate conditional distribution
$f\left(\nu \mid \delta_{0}\right)=\int_{0}^{\infty} \mathrm{d} x \frac{x}{\gamma \nu} p\left(x, \nu \mid \delta_{0}\right)$

Musso, AP \& Sheth 12

Scale dependence from correlated steps

Define $\left\langle\rho_{\mathrm{h}} \mid \delta_{0} ; S_{0}\right\rangle \equiv f\left(\nu \mid \delta_{0} ; S_{0}\right) / f(\nu)$
Musso, AP \& Sheth 12
Cross-correlation $\left\langle\rho_{\mathrm{h}} \delta_{0}\right\rangle=\int \mathrm{d} \delta_{0} p_{\mathrm{G}}\left(\delta_{0} ; S_{0}\right) \delta_{0}\left\langle\rho_{\mathrm{h}} \mid \delta_{0} ; S_{0}\right\rangle$ is analytic, and has nice properties:

- Structure of linear bias

$$
b_{1} \equiv\left\langle\rho_{\mathrm{h}} \delta_{0}\right\rangle / S_{0}=\left(S_{\times} / S_{0}\right)\left[b_{10}+\epsilon_{\times} b_{11}\right]
$$

where $\epsilon_{\times}=2 \mathrm{~d} \ln S_{\times} / \mathrm{d} \ln s \quad ; \quad b_{10}=-\partial \ln f / \partial \delta_{\mathrm{c}} \quad ; \quad \delta_{\mathrm{c}} b_{11}=\nu^{2}-\delta_{\mathrm{c}} b_{10}$

- Interpretation of ϵ_{\times}

Suppose that in Fourier space: $b_{1}(k)=b_{10}+\left(k^{2} s / \sigma_{1}^{2}\right) b_{11} \quad\left[\sigma_{1}^{2} \equiv \int \mathrm{~d} \ln k \Delta(k) k^{2} W(k R)^{2}\right]$
Then in real space: $b_{1}=\left(S_{\times} / S_{0}\right)\left[b_{10}+\epsilon_{\times} b_{11}\right]$

Scale dependence from correlated steps

Define $\left\langle\rho_{\mathrm{h}} \mid \delta_{0} ; S_{0}\right\rangle \equiv f\left(\nu \mid \delta_{0} ; S_{0}\right) / f(\nu)$

$$
\text { Musso, AP \& Sheth } 12
$$

Cross-correlation $\left\langle\rho_{\mathrm{h}} \delta_{0}\right\rangle=\int \mathrm{d} \delta_{0} p_{\mathrm{G}}\left(\delta_{0} ; S_{0}\right) \delta_{0}\left\langle\rho_{\mathrm{h}} \mid \delta_{0} ; S_{0}\right\rangle$ is analytic, and has nice properties:

- Extension to nonlinear bias

$b_{n} \equiv S_{0}^{-n / 2}\left\langle\rho_{\mathrm{h}} H_{n}\left(\delta_{0} / \sqrt{S_{0}}\right)\right\rangle$ has similar properties:
$b_{n}=\left(S_{\times} / S_{0}\right)^{n} \sum_{r=0}^{n}\binom{n}{r} b_{n r} \epsilon_{\times}^{r}$ where $b_{n 0}=f^{-1}\left(-\frac{\partial}{\partial \delta_{\mathrm{c}}}\right)^{n} f, \quad$ and linear relations

- Suggests simple measurement prescription $\hat{b}_{n}=S_{0}^{-n / 2} \sum_{i=1}^{N} H_{n}\left(\delta_{0 i} / \sqrt{S_{0}}\right) / N$
- Peak-background split is the large scale limit of Fourier-space bias, and can be recovered from finite scale measurement using linear relations.
- Extends to Excursion Set Peaks with same structure, different details.

Detour: Excursion Set Peaks Mass Function

-Constant threshold: $B=\delta_{\text {c }}$
(Appel \& Jones 90)

$$
f_{\mathrm{ESP}}(\nu)=\frac{m}{\bar{\rho} V_{*}} \int_{0}^{\infty} \mathrm{d} x \frac{x}{\gamma \nu} F(x) p(x, \nu) \underset{\nu \gg 1}{\longrightarrow} \frac{m}{\bar{\rho} V_{*}} \gamma^{3} \nu^{3} f_{\mathrm{MS}}(\nu)
$$

$x=$ peak curvature; $F(x)=$ BBKS curvature weight; $V_{*}=$ characteristic peak volume
-"Moving" threshold: $B(\sigma) \quad\left[\sigma^{2}=s\right]$
AP \& Sheth 12

$$
f_{\mathrm{ESP}}(\nu)=\frac{m}{\bar{\rho} V_{*}} \frac{1}{\gamma \nu} \int_{\gamma B^{\prime}}^{\infty} \mathrm{d} x\left(x-\gamma B^{\prime}\right) F(x) p(x, B / \sigma)
$$

-"Ellipsoidal" threshold: $B=\delta_{\mathrm{c}}+\beta \sigma$ with stochastic β

$$
\begin{aligned}
f_{\mathrm{ESP}}(\nu) & =\int \mathrm{d} \beta p(\beta) f_{\mathrm{ESP}}(\nu \mid \beta) \quad \text { AP, Sheth \& Desjacques I3 } \\
& =\frac{m}{\bar{\rho} V_{*}} \frac{1}{\gamma \nu} \int \mathrm{~d} \beta p(\beta) \int_{\beta \gamma}^{\infty} \mathrm{d} x(x-\beta \gamma) F(x) p(x, \nu+\beta)
\end{aligned}
$$

Detour: Excursion Set Peaks Bias

Bias calculation is identical to that for traditional excursion sets, but keeping track of barrier stochasticity.
E.g., linear bias is given by

$$
\delta_{\mathrm{c}} b_{1}=\left(\frac{S_{\times}}{S_{0}}\right) \frac{\int \mathrm{d} \beta p(\beta) \mathcal{B}_{1, \operatorname{ESP}}\left(\nu, \epsilon_{\times} \mid \beta\right)}{\int \mathrm{d} \beta p(\beta) f_{\operatorname{ESP}}(\nu \mid \beta)},
$$

where
AP, Sheth \& Desjacques I3

$$
\begin{aligned}
\mathcal{B}_{1, \mathrm{ESP}}\left(\nu, \epsilon_{\times} \mid \beta\right) \equiv\left(\frac{m}{\bar{\rho} V_{*}}\right) & \frac{\mathrm{e}^{-(\nu+\beta)^{2} / 2}}{\sqrt{2 \pi}} \\
& \times \frac{1}{\gamma \nu} \int_{\beta \gamma}^{\infty} \mathrm{d} x(x-\beta \gamma) F(x) p_{\mathrm{G}}\left(x-\beta \gamma-\gamma \nu ; 1-\gamma^{2}\right) \\
& \times\left[\nu(\nu+\beta)-\left(1-\epsilon_{\times}\right) \frac{\gamma \nu}{1-\gamma^{2}}(x-\beta \gamma-\gamma \nu)\right]
\end{aligned}
$$

Numerical tests:

\mathbf{N}-body simulations

$$
b_{n} \equiv S_{0}^{-n / 2}\left\langle\rho_{\mathrm{h}} H_{n}\left(\delta_{0} / \sqrt{S_{0}}\right)\right\rangle
$$

Measurement:

- Find all N halos in mass bin $(m, m+\mathrm{d} m)$
- Choose S_{0} (i.e., R_{0})
- Estimate, e.g., $\hat{b}_{1}=S_{0}^{-1} \sum_{i=1}^{N} \delta_{0 i} / N$

AP, Sefusatti, Chan et al. I3

Numerical tests:

\mathbf{N}-body simulations

$$
b_{n} \equiv S_{0}^{-n / 2}\left\langle\rho_{\mathrm{h}} H_{n}\left(\delta_{0} / \sqrt{S_{0}}\right)\right\rangle
$$

Measurement:

- Find all N halos in mass bin $(m, m+\mathrm{d} m)$
- Choose S_{0} (i.e., R_{0})
- Estimate, e.g., $\hat{b}_{2}=S_{0}^{-1} \sum_{i=1}^{N}\left(\frac{\delta_{0 i}^{2}}{S_{0}}-1\right) / N$

AP, Sefusatti, Chan et al. I3

Numerical tests:

\mathbf{N}-body simulations

$$
b_{n} \equiv S_{0}^{-n / 2}\left\langle\rho_{\mathrm{h}} H_{n}\left(\delta_{0} / \sqrt{S_{0}}\right)\right\rangle
$$

Measurement:

- Find all N halos in mass bin $(m, m+\mathrm{d} m)$
- Choose S_{0} (i.e., R_{0})
- Estimate, e.g., \hat{b}_{1}, \hat{b}_{2} and reconstruct $\hat{b}_{10}, \hat{b}_{20}$

AP, Sefusatti, Chan et al. I3

Numerical tests:

Pinocchio

$$
b_{n} \equiv S_{0}^{-n / 2}\left\langle\rho_{\mathrm{h}} H_{n}\left(\delta_{0} / \sqrt{S_{0}}\right)\right\rangle
$$

Measurement:

- Find all N halos in mass bin $(m, m+\mathrm{d} m)$
- Choose S_{0} (i.e., R_{0})
- Estimate, e.g., \hat{b}_{1}, \hat{b}_{2} and reconstruct $\hat{b}_{10}, \hat{b}_{20}$

AP, Sefusatti, Chan et al. I3

Conclusions

- Random walks with correlated steps predict scale-dependent Lagrangian bias.
- This extends to excursion set peaks (ESP) calculations too.
- A simple prescription leads to measurements in simulations that are directly comparable to the analytical prediction.

$$
\hat{b}_{n}=S_{0}^{-n / 2} \sum_{i=1}^{N} H_{n}\left(\delta_{0 i} / \sqrt{S_{0}}\right) / N
$$

- ESP makes accurate predictions for linear and quadratic bias coefficients.
- Measurement prescription is a fast, useful consistency check for "semi-analytic" algorithms (we tested PinOCCHIO).

Still to do:

- Scale-dependence beyond density
- Predictions for Eulerian bias
- Relevance for observations (?)

Thank you!

