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Motivation

Caveat: Everything in this talk is Lagrangian!

Scale dependence of halo bias can be a powerful probe of cosmology, 
potentially testing the initial conditions (e.g., Dalal et al. 08; Slosar et al. 08; 

many others) or the nature of gravity (e.g., Parfrey, Hui & Sheth 11; Lam & Li 12).

Problem is, halo bias in vanilla LCDM is also scale dependent due to 
the nature of Einstein/Newtonian gravity (e.g., Chan et al. 12; Baldauf et al. 12).

Analytical predictions traditionally rely on excursion set approach and 
“peak-background split” argument. Recent work on excursion sets 
with correlated steps (see Marcello’s talk) shows that scale-
dependence is expected even in the initial conditions. 

We explore this here.



Outline

•Fourier space versus real space

•Scale dependence from random walks

•(Detour: Excursion Set Peaks)

•Numerical tests and comparisons with N-body 
simulations



Traditional estimates of bias

These typically show scale-dependence ~ k2 with constant value at large scales, 
usually compared with “peak-background split” 
(Kaiser 84; BBKS 86; Mo & White 96)
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ABSTRACT
We explore the scale dependence of halo bias using real-space cross-correlation measurements
in N-body simulations and in PINOCCHIO, an algorithm based on Lagrangian Perturbation Theory.
Recent work has shown how to interpret such real-space measurements in terms of k-dependent
bias in Fourier space, and how to remove the k-dependence to reconstruct the k-independent
peak-background split halo bias parameters. We compare our reconstruction of the linear
bias, which requires no free parameters, with previous estimates from N-body simulations
which were obtained directly in Fourier space at large scales, and find very good agreement.
Our reconstruction of the quadratic bias is similarly parameter-free, although in this case
there are no previous Fourier space measurements to compare with. Our analysis of N-body
simulations explicitly tests the predictions of the excursion set peaks (ESP) formalism of
Paranjape et al. for the scale dependence of bias; we find that the ESP predictions accurately
describe our measurements. In addition, our measurements in PINOCCHIO serve as a useful,
successful consistency check between PINOCCHIO and N-body simulations that is not accessible
to traditional measurements.

Key words: large-scale structure of Universe.

1 IN T RO D U C T I O N

Galaxies, and the dark matter haloes they live in, cluster differently
from the underlying dark matter field itself. This halo bias is ex-
pected to be non-linear, non-local and stochastic, and understanding
its behaviour is a prerequisite to a successful program of precision
cosmology with large-scale structure. While this non-linearity, non-
locality and stochasticity of bias is measured in N-body simulations
of cold dark matter (CDM), its precise physical origin remains un-
clear, and is likely to be influenced by several effects (Desjacques
et al. 2010; Baldauf et al. 2012; Chan, Scoccimarro & Sheth 2012;
Sheth, Chan & Scoccimarro 2013). In practice, in the absence of
accurate analytical predictions of the so-called non-linear bias pa-
rameters bn discussed below, one resorts to fitting these parame-
ters to measurements in N-body simulations (Tinker et al. 2005;

! E-mail: aseemp@phys.ethz.ch

Pollack, Smith & Porciani 2012) or marginalizing over them when
analysing data from galaxy surveys (e.g. Blake et al. 2011; Sánchez
et al. 2012), leading to a potential source of unmodelled systematic
effects when attempting to recover information on cosmological
parameters.

The language used when discussing halo bias is also not unique.
Traditional measurements of bias in simulations are performed in
Fourier space. For example, ‘linear bias’ is typically defined using
ratios of power spectra of the halo overdensity δh(k) and matter
overdensity δ(k). For example,

b2
1(k) ≡ Phh(k)

Pmm(k)
or b1(k) ≡ Phm(k)

Pmm(k)
, (1)

where Phh(k) = 〈δ2
h〉, Pmm(k) = 〈δ2〉 are halo and matter auto-power

spectra, respectively, and Phm(k) = 〈δhδ〉 is the corresponding cross-
power spectrum. These ratios are found to be scale independent
at large scales (small k) as expected from peak-background split

C© 2013 The Authors
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2 A. Paranjape et al.

arguments (Kaiser 1984; Mo & White 1996; Sheth & Tormen
1999).

Quadratic bias is typically estimated by measuring (cross-)
bispectra of δh(k) and δ(k) and modelling them, e.g. by using pertur-
bation theory or halo model arguments combined with a ‘local bias-
ing’ scheme δh(x) = b1δ(x) + b2δ(x)2/2! + · · · (Fry & Gaztañaga
1993), and in this case the state of the art (Pollack et al. 2012) shows
systematic effects associated with, e.g., shot-noise modelling.

The corresponding real-space measurements of bias typically in-
volve gridding the halo and matter density fields on some smoothing
scale and then fitting a quadratic relation to the associated scatter
plot (e.g. Manera & Gaztañaga 2012). The resulting fits show a
dependence on smoothing scale, although it is not easy to interpret
this scale dependence in terms of a k-dependence in Fourier space
(Chan & Scoccimarro 2012). (See also Angulo, Baugh & Lacey
2008, for a large-scale real-space treatment that assumes local bias-
ing and recovers scale-independent bias parameters to fourth order.)

Recent work using an excursion set approach to the problem has
revealed several features of halo bias: (a) Lagrangian Fourier-space
bias at any non-linear order is very naturally linked to a particular
real-space definition of Lagrangian bias based on cross-correlating
the halo density with a suitable transform of the smoothed ini-
tial matter density (Musso, Paranjape & Sheth 2012; Paranjape &
Sheth 2012a); (b) the excursion set analysis, as well as its extension
to peaks theory (Paranjape & Sheth 2012b; Paranjape, Sheth &
Desjacques 2013), predicts a specific smoothing-scale depen-
dence of these real-space bias parameters, and hence a specific
k-dependence in Fourier space; and (c) this scale dependence can
be unravelled to reconstruct the large-scale, scale-independent bias
coefficients using measurements at a finite intermediate smoothing
scale. Ultimately, it is the dependence of these scale-independent
coefficients on redshift and halo mass that probes the underlying
cosmology.

In this paper, we apply these ideas to haloes identified in N-
body simulations of CDM, as well as haloes identified in PINOCCHIO

(Monaco, Theuns & Taffoni 2002; Monaco et al. 2013), which is
a fast algorithm based on Lagrangian Perturbation Theory (LPT)
which provides positions, velocities and merger histories of dark
matter haloes. The measurements in the N-body simulations consti-
tute a direct test of the excursion set peaks (ESP) formalism (Paran-
jape et al. 2013) which, as we show below, fares very well. The
additional measurements in PINOCCHIO then become a very useful
(and successful) consistency check between PINOCCHIO and the N-
body simulations on the one hand, and between PINOCCHIO and ESP
on the other. Taken together, our results constitute a self-consistent
test of real-space measurements of linear and quadratic bias with
no free parameters.

The paper is organized as follows. In Section 2, we give de-
tails of our simulation data set, including a brief description of the
PINOCCHIO algorithm. Section 3 deals with measuring the bias param-
eters and comparing with theory. We first recapitulate in Section 3.1
the real-space definition of the nth order bias parameters bn and its
relation to Fourier-space definitions such as equation (1). Our mea-
surements and the resulting estimates of b1 and b2 from the data
are described in Section 3.2. We find that these estimates, which we
make at different smoothing scales, are in good agreement with the
corresponding (scale-dependent) predictions of the ESP formalism.
This agreement is important because the measurements themselves
are completely independent of the ESP formalism.

In Section 3.3, we use the reconstruction algorithm mentioned
above, specifically the version described by Paranjape et al. (2013),
to obtain estimates of the scale-independent peak-background split

parameters b10 and b20 from the estimates of b1 and b2. The peak-
background split bias parameters defined in the excursion set ap-
proach directly probe the halo mass function f(δc; m) through

bn0 = f −1
(

− ∂

∂δc

)n

f , (2)

where δc is the usual overdensity threshold predicted by spherical
collapse (Mo & White 1996; Sheth & Tormen 1999).

If the reconstruction works well, then these estimates of bn0

should be independent of the smoothing scale at which the bn

were measured; we find that this is indeed the case. The linear
bias coefficient b10 is also directly probed by the large-scale limit
of Fourier-space measurements such as equation (1) (Paranjape
& Sheth 2012a). We compare our reconstruction of b10 with the
Fourier-space large-scale fit to N-body simulations provided by
Tinker et al. (2010), and find very good agreement. For b20 there are
no previous N-body measurements we can compare with; a com-
parison with the ESP prediction (Paranjape et al. 2013) shows good
agreement. We conclude in Section 4.

We assume a flat "-CDM cosmology with Gaussian initial
conditions and compute transfer functions using CAMB (Lewis,
Challinor & Lasenby 2000)1 for two different sets of parameter val-
ues: (#m, σ8, ns, h,#b) = (0.272, 0.81, 0.967, 0.704, 0.0455) for
the N-body simulations and (0.25, 0.8, 0.95, 0.7, 0.044) for
PINOCCHIO.

2 SI M U L ATI O N S

2.1 N-body

Our CDM simulations were run with 10243 particles in a cubic
box of size 1500 h−1 Mpc, with each particle carrying a mass of
2.37 × 1011 h−1 M#. Gaussian initial conditions were set at a
starting redshift z = 99, with initial particle displacements imple-
mented using second-order LPT (Crocce, Pueblas & Scoccimarro
2006). The simulations were run using GADGET II (Springel 2005).
We use six realizations, with haloes identified using the Spherical
Overdensity (SO) halo finder AHF (Gill, Knebe & Gibson 2004;
Knollmann & Knebe 2009) which uses a redshift-dependent over-
density criterion motivated by spherical collapse (Eke, Cole & Frenk
1996; Bryan & Norman 1998). We only study haloes having at
least 100 particles: this corresponds to halo masses larger than
∼1013.4 h−1 M#.

2.2 PINOCCHIO

For a detailed explanation of the PINOCCHIO code we refer the reader
to the original paper and to the more recent Monaco et al. (2013)
where its parallel implementation and its application to cosmo-
logical volumes are presented. Here, we limit ourselves to a quite
succinct description.

PINOCCHIO starts from a linear density field generated on a grid in
a manner close to the generation of initial conditions in an N-body
simulation. It uses third-order LPT applied to the evolution of a
homogeneous ellipsoid to compute the collapse times of ‘particles’
(grid points); consistently with the excursion set approach, collapse
times are computed for many smoothing radii, thus constructing for
each particle a ‘trajectory’ in the plane defined by mass variance and
inverse collapse time (the inverse of the growth factor at collapse).

1 http://lambda.gsfc.nasa.gov/toolbox/tb_camb_form.cfm
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Estimates beyond linear bias require measuring higher order correlations (e.g., 
quadratic bias requires bispectrum) and/or assumptions regarding locality/stochasticity/
scale dependence.

where                                        and                     .
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Switzerland
5Dipartimento di Fisica – Sezione di Astronomia, Università di Trieste, via Tiepolo 11, I-34131 Trieste, Italy
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there are no previous Fourier space measurements to compare with. Our analysis of N-body
simulations explicitly tests the predictions of the excursion set peaks (ESP) formalism of
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describe our measurements. In addition, our measurements in PINOCCHIO serve as a useful,
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1 IN T RO D U C T I O N

Galaxies, and the dark matter haloes they live in, cluster differently
from the underlying dark matter field itself. This halo bias is ex-
pected to be non-linear, non-local and stochastic, and understanding
its behaviour is a prerequisite to a successful program of precision
cosmology with large-scale structure. While this non-linearity, non-
locality and stochasticity of bias is measured in N-body simulations
of cold dark matter (CDM), its precise physical origin remains un-
clear, and is likely to be influenced by several effects (Desjacques
et al. 2010; Baldauf et al. 2012; Chan, Scoccimarro & Sheth 2012;
Sheth, Chan & Scoccimarro 2013). In practice, in the absence of
accurate analytical predictions of the so-called non-linear bias pa-
rameters bn discussed below, one resorts to fitting these parame-
ters to measurements in N-body simulations (Tinker et al. 2005;
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Pollack, Smith & Porciani 2012) or marginalizing over them when
analysing data from galaxy surveys (e.g. Blake et al. 2011; Sánchez
et al. 2012), leading to a potential source of unmodelled systematic
effects when attempting to recover information on cosmological
parameters.

The language used when discussing halo bias is also not unique.
Traditional measurements of bias in simulations are performed in
Fourier space. For example, ‘linear bias’ is typically defined using
ratios of power spectra of the halo overdensity δh(k) and matter
overdensity δ(k). For example,

b2
1(k) ≡ Phh(k)

Pmm(k)
or b1(k) ≡ Phm(k)

Pmm(k)
, (1)

where Phh(k) = 〈δ2
h〉, Pmm(k) = 〈δ2〉 are halo and matter auto-power

spectra, respectively, and Phm(k) = 〈δhδ〉 is the corresponding cross-
power spectrum. These ratios are found to be scale independent
at large scales (small k) as expected from peak-background split

C© 2013 The Authors
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Paranjape et al. for the scale dependence of bias; we find that the ESP predictions accurately
describe our measurements. In addition, our measurements in PINOCCHIO serve as a useful,
successful consistency check between PINOCCHIO and N-body simulations that is not accessible
to traditional measurements.

Key words: large-scale structure of Universe.

1 IN T RO D U C T I O N

Galaxies, and the dark matter haloes they live in, cluster differently
from the underlying dark matter field itself. This halo bias is ex-
pected to be non-linear, non-local and stochastic, and understanding
its behaviour is a prerequisite to a successful program of precision
cosmology with large-scale structure. While this non-linearity, non-
locality and stochasticity of bias is measured in N-body simulations
of cold dark matter (CDM), its precise physical origin remains un-
clear, and is likely to be influenced by several effects (Desjacques
et al. 2010; Baldauf et al. 2012; Chan, Scoccimarro & Sheth 2012;
Sheth, Chan & Scoccimarro 2013). In practice, in the absence of
accurate analytical predictions of the so-called non-linear bias pa-
rameters bn discussed below, one resorts to fitting these parame-
ters to measurements in N-body simulations (Tinker et al. 2005;

! E-mail: aseemp@phys.ethz.ch

Pollack, Smith & Porciani 2012) or marginalizing over them when
analysing data from galaxy surveys (e.g. Blake et al. 2011; Sánchez
et al. 2012), leading to a potential source of unmodelled systematic
effects when attempting to recover information on cosmological
parameters.

The language used when discussing halo bias is also not unique.
Traditional measurements of bias in simulations are performed in
Fourier space. For example, ‘linear bias’ is typically defined using
ratios of power spectra of the halo overdensity δh(k) and matter
overdensity δ(k). For example,

b2
1(k) ≡ Phh(k)

Pmm(k)
or b1(k) ≡ Phm(k)

Pmm(k)
, (1)

where Phh(k) = 〈δ2
h〉, Pmm(k) = 〈δ2〉 are halo and matter auto-power

spectra, respectively, and Phm(k) = 〈δhδ〉 is the corresponding cross-
power spectrum. These ratios are found to be scale independent
at large scales (small k) as expected from peak-background split

C© 2013 The Authors
Published by Oxford University Press on behalf of the Royal Astronomical Society

 MNRAS Advance Access published September 17, 2013

 at ETH
 ZÃ

¼
rich on Septem

ber 23, 2013
http://m

nras.oxfordjournals.org/
D

ow
nloaded from

 
 at ETH

 ZÃ
¼

rich on Septem
ber 23, 2013

http://m
nras.oxfordjournals.org/

D
ow

nloaded from
 

 at ETH
 ZÃ

¼
rich on Septem

ber 23, 2013
http://m

nras.oxfordjournals.org/
D

ow
nloaded from

 
 at ETH

 ZÃ
¼

rich on Septem
ber 23, 2013

http://m
nras.oxfordjournals.org/

D
ow

nloaded from
 

 at ETH
 ZÃ

¼
rich on Septem

ber 23, 2013
http://m

nras.oxfordjournals.org/
D

ow
nloaded from

 
 at ETH

 ZÃ
¼

rich on Septem
ber 23, 2013

http://m
nras.oxfordjournals.org/

D
ow

nloaded from
 

 at ETH
 ZÃ

¼
rich on Septem

ber 23, 2013
http://m

nras.oxfordjournals.org/
D

ow
nloaded from

 
 at ETH

 ZÃ
¼

rich on Septem
ber 23, 2013

http://m
nras.oxfordjournals.org/

D
ow

nloaded from
 

 at ETH
 ZÃ

¼
rich on Septem

ber 23, 2013
http://m

nras.oxfordjournals.org/
D

ow
nloaded from

 
 at ETH

 ZÃ
¼

rich on Septem
ber 23, 2013

http://m
nras.oxfordjournals.org/

D
ow

nloaded from
 

 at ETH
 ZÃ

¼
rich on Septem

ber 23, 2013
http://m

nras.oxfordjournals.org/
D

ow
nloaded from

 



From Fourier space to Real space

Peak-bg split argument works in real space. Not immediately obvious why/how this 
should be compared with Fourier space measurement.

Natural real-space definition of linear bias could be                                     .  Then,

Consider a toy example:

with             and                       .
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So even constant Fourier-space bias will lead to scale dependence in real space.



Real-space bias from random walks

Excursion set approach makes the peak-bg argument rigorous (Mo & White 96). 

Calculation proceeds by writing a conditional mass function
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and then Taylor expanding.

For random walks with uncorrelated steps                                                 so 
Taylor expansion precisely recovers peak-bg results provided            .
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Two issues:
(1.)  We’d like to compute cross-correlations, not Taylor coefficients.
(2.)  We’d like to use random walks with correlated steps.

It’s possible to do (1.) alone. 
But it’s easier to do (1.) and (2.) simultaneously.
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Scale dependence from correlated steps

From Marcello’s talk we know an accurate analytical first crossing distribution
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Gaussian with mean       
and variance
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which also leads to an accurate conditional distribution
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Scale dependence from correlated steps

Define
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Cross-correlation                                                       is analytic, and has nice 
properties:
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•Structure of linear bias
  

     where

•Interpretation of

  Suppose that in Fourier space:

  Then in real space:                                      

1 Introduction

�0(k) = �(k)W (kR0) ; �h(k) = b(k|m)�(k)W (kR)

m / R

3

W (y) = e�y2/2

b(m,R0) = h �h�0 i /
⌦
�

2
0

↵

b(k|m) = b10(m) =) b(m,R0) = (S⇥/S0)b10


S0 =

Z
d ln k�(k)W (kR0)

2 ; S⇥ =

Z
d ln k�(k)W (kR)W (kR0)

�

f(�c,m|�0, R0) = f(�c, s|�0, S0)

f(�c, s|�0, S0) = f(�c � �0, s� S0)

S0 ⌧ s


s ⌘

Z
d ln k�(k)W (kR)2 ; m / R

3

�

⌫ ⌘ �c/
p
s ; x ⇠

� = hx ⌫ i ⇠

pG(x� µ;⌃2) : µ ⌃2

fMS(⌫) =
e�⌫2/2

p
2⇡

1

�⌫

Z 1

0
dxx pG(x� �⌫; 1� �

2)

=

Z 1

0
dx

x

�⌫

p(x, ⌫)

f(⌫|�0) =
Z 1

0
dx

x

�⌫

p(x, ⌫|�0)

h ⇢h|�0;S0 i ⌘ f(⌫|�0;S0)/f(⌫)

h ⇢h�0 i =
Z

d�0 pG(�0;S0) �0 h ⇢h|�0;S0 i

b1 ⌘ h ⇢h�0 i /S0 = (S⇥/S0)[b10 + ✏⇥b11]

1

1 Introduction

�0(k) = �(k)W (kR0) ; �h(k) = b(k|m)�(k)W (kR)

m / R

3

W (y) = e�y2/2

b(m,R0) = h �h�0 i /
⌦
�

2
0

↵

b(k|m) = b10(m) =) b(m,R0) = (S⇥/S0)b10


S0 =

Z
d ln k�(k)W (kR0)

2 ; S⇥ =

Z
d ln k�(k)W (kR)W (kR0)

�

f(�c,m|�0, R0) = f(�c, s|�0, S0)

f(�c, s|�0, S0) = f(�c � �0, s� S0)

S0 ⌧ s


s ⌘

Z
d ln k�(k)W (kR)2 ; m / R

3

�

⌫ ⌘ �c/
p
s ; x ⇠

� = hx ⌫ i ⇠

pG(x� µ;⌃2) : µ ⌃2

fMS(⌫) =
e�⌫2/2

p
2⇡

1

�⌫

Z 1

0
dxx pG(x� �⌫; 1� �

2)

=

Z 1

0
dx

x

�⌫

p(x, ⌫)

f(⌫|�0) =
Z 1

0
dx

x

�⌫

p(x, ⌫|�0)

h ⇢h|�0;S0 i ⌘ f(⌫|�0;S0)/f(⌫)

h ⇢h�0 i =
Z

d�0 pG(�0;S0) �0 h ⇢h|�0;S0 i

b1 ⌘ h ⇢h�0 i /S0 = (S⇥/S0)[b10 + ✏⇥b11]

✏⇥ = 2d lnS⇥/d ln s ; b10 = �@ ln f/@�c ; �cb11 = ⌫

2 � �cb10

1

1 Introduction

�0(k) = �(k)W (kR0) ; �h(k) = b(k|m)�(k)W (kR)

m / R

3

W (y) = e�y2/2

b(m,R0) = h �h�0 i /
⌦
�

2
0

↵

b(k|m) = b10(m) =) b(m,R0) = (S⇥/S0)b10


S0 =

Z
d ln k�(k)W (kR0)

2 ; S⇥ =

Z
d ln k�(k)W (kR)W (kR0)

�

f(�c,m|�0, R0) = f(�c, s|�0, S0)

f(�c, s|�0, S0) = f(�c � �0, s� S0)

S0 ⌧ s


s ⌘

Z
d ln k�(k)W (kR)2 ; m / R

3

�

⌫ ⌘ �c/
p
s ; x ⇠

� = hx ⌫ i ⇠

pG(x� µ;⌃2) : µ ⌃2

fMS(⌫) =
e�⌫2/2

p
2⇡

1

�⌫

Z 1

0
dxx pG(x� �⌫; 1� �

2)

=

Z 1

0
dx

x

�⌫

p(x, ⌫)

f(⌫|�0) =
Z 1

0
dx

x

�⌫

p(x, ⌫|�0)

h ⇢h|�0;S0 i ⌘ f(⌫|�0;S0)/f(⌫)

h ⇢h�0 i =
Z

d�0 pG(�0;S0) �0 h ⇢h|�0;S0 i

b1 ⌘ h ⇢h�0 i /S0 = (S⇥/S0)[b10 + ✏⇥b11]

✏⇥ = 2d lnS⇥/d ln s ; b10 = �@ ln f/@�c ; �cb11 = ⌫

2 � �cb10

1

✏⇥ = 2d lnS⇥/d ln s ; b10 = �@ ln f/@�c ; �cb11 = ⌫

2 � �cb10

b1(k) = b10 + (k2s/�2
1)b11

2

✏⇥ = 2d lnS⇥/d ln s ; b10 = �@ ln f/@�c ; �cb11 = ⌫

2 � �cb10

b1(k) = b10 + (k2s/�2
1)b11


�

2
1 ⌘

Z
d ln k�(k)k2W (kR)2

�

2

✏⇥ = 2d lnS⇥/d ln s ; b10 = �@ ln f/@�c ; �cb11 = ⌫

2 � �cb10

b1(k) = b10 + (k2s/�2
1)b11


�

2
1 ⌘

Z
d ln k�(k)k2W (kR)2

�

b1 = (S⇥/S0)[b10 + ✏⇥b11]

2

Musso,  AP & Sheth 12



Scale dependence from correlated steps

Define

1 Introduction

�0(k) = �(k)W (kR0) ; �h(k) = b(k|m)�(k)W (kR)

m / R

3

W (y) = e�y2/2

b(m,R0) = h �h�0 i /
⌦
�

2
0

↵

b(k|m) = b10(m) =) b(m,R0) = (S⇥/S0)b10


S0 =

Z
d ln k�(k)W (kR0)

2 ; S⇥ =

Z
d ln k�(k)W (kR)W (kR0)

�

f(�c,m|�0, R0) = f(�c, s|�0, S0)

f(�c, s|�0, S0) = f(�c � �0, s� S0)

S0 ⌧ s


s ⌘

Z
d ln k�(k)W (kR)2 ; m / R

3

�

⌫ ⌘ �c/
p
s ; x ⇠

� = hx ⌫ i ⇠

pG(x� µ;⌃2) : µ ⌃2

fMS(⌫) =
e�⌫2/2

p
2⇡

1

�⌫

Z 1

0
dxx pG(x� �⌫; 1� �

2)

=

Z 1

0
dx

x

�⌫

p(x, ⌫)

f(⌫|�0) =
Z 1

0
dx

x

�⌫

p(x, ⌫|�0)

h ⇢h|�0;S0 i ⌘ f(⌫|�0;S0)/f(⌫)

1

Cross-correlation                                                       is analytic, and has nice 
properties:

1 Introduction

�0(k) = �(k)W (kR0) ; �h(k) = b(k|m)�(k)W (kR)

m / R

3

W (y) = e�y2/2

b(m,R0) = h �h�0 i /
⌦
�

2
0

↵

b(k|m) = b10(m) =) b(m,R0) = (S⇥/S0)b10


S0 =

Z
d ln k�(k)W (kR0)

2 ; S⇥ =

Z
d ln k�(k)W (kR)W (kR0)

�

f(�c,m|�0, R0) = f(�c, s|�0, S0)

f(�c, s|�0, S0) = f(�c � �0, s� S0)

S0 ⌧ s


s ⌘

Z
d ln k�(k)W (kR)2 ; m / R

3

�

⌫ ⌘ �c/
p
s ; x ⇠

� = hx ⌫ i ⇠

pG(x� µ;⌃2) : µ ⌃2

fMS(⌫) =
e�⌫2/2

p
2⇡

1

�⌫

Z 1

0
dxx pG(x� �⌫; 1� �

2)

=

Z 1

0
dx

x

�⌫

p(x, ⌫)

f(⌫|�0) =
Z 1

0
dx

x

�⌫

p(x, ⌫|�0)

h ⇢h|�0;S0 i ⌘ f(⌫|�0;S0)/f(⌫)

h ⇢h�0 i =
Z

d�0 pG(�0;S0) �0 h ⇢h|�0;S0 i

1

•Extension to nonlinear bias

                                             has similar properties:

                                        where                                and linear relations
                                                                                 between
                   
•Suggests simple measurement prescription

•Peak-background split is the large scale limit of Fourier-space bias, and can be 
recovered from finite scale measurement using linear relations.

•Extends to Excursion Set Peaks with same structure, different details.
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2 A. Paranjape et al.

arguments (Kaiser 1984; Mo & White 1996; Sheth & Tormen
1999).

Quadratic bias is typically estimated by measuring (cross-)
bispectra of δh(k) and δ(k) and modelling them, e.g. by using pertur-
bation theory or halo model arguments combined with a ‘local bias-
ing’ scheme δh(x) = b1δ(x) + b2δ(x)2/2! + · · · (Fry & Gaztañaga
1993), and in this case the state of the art (Pollack et al. 2012) shows
systematic effects associated with, e.g., shot-noise modelling.

The corresponding real-space measurements of bias typically in-
volve gridding the halo and matter density fields on some smoothing
scale and then fitting a quadratic relation to the associated scatter
plot (e.g. Manera & Gaztañaga 2012). The resulting fits show a
dependence on smoothing scale, although it is not easy to interpret
this scale dependence in terms of a k-dependence in Fourier space
(Chan & Scoccimarro 2012). (See also Angulo, Baugh & Lacey
2008, for a large-scale real-space treatment that assumes local bias-
ing and recovers scale-independent bias parameters to fourth order.)

Recent work using an excursion set approach to the problem has
revealed several features of halo bias: (a) Lagrangian Fourier-space
bias at any non-linear order is very naturally linked to a particular
real-space definition of Lagrangian bias based on cross-correlating
the halo density with a suitable transform of the smoothed ini-
tial matter density (Musso, Paranjape & Sheth 2012; Paranjape &
Sheth 2012a); (b) the excursion set analysis, as well as its extension
to peaks theory (Paranjape & Sheth 2012b; Paranjape, Sheth &
Desjacques 2013), predicts a specific smoothing-scale depen-
dence of these real-space bias parameters, and hence a specific
k-dependence in Fourier space; and (c) this scale dependence can
be unravelled to reconstruct the large-scale, scale-independent bias
coefficients using measurements at a finite intermediate smoothing
scale. Ultimately, it is the dependence of these scale-independent
coefficients on redshift and halo mass that probes the underlying
cosmology.

In this paper, we apply these ideas to haloes identified in N-
body simulations of CDM, as well as haloes identified in PINOCCHIO

(Monaco, Theuns & Taffoni 2002; Monaco et al. 2013), which is
a fast algorithm based on Lagrangian Perturbation Theory (LPT)
which provides positions, velocities and merger histories of dark
matter haloes. The measurements in the N-body simulations consti-
tute a direct test of the excursion set peaks (ESP) formalism (Paran-
jape et al. 2013) which, as we show below, fares very well. The
additional measurements in PINOCCHIO then become a very useful
(and successful) consistency check between PINOCCHIO and the N-
body simulations on the one hand, and between PINOCCHIO and ESP
on the other. Taken together, our results constitute a self-consistent
test of real-space measurements of linear and quadratic bias with
no free parameters.

The paper is organized as follows. In Section 2, we give de-
tails of our simulation data set, including a brief description of the
PINOCCHIO algorithm. Section 3 deals with measuring the bias param-
eters and comparing with theory. We first recapitulate in Section 3.1
the real-space definition of the nth order bias parameters bn and its
relation to Fourier-space definitions such as equation (1). Our mea-
surements and the resulting estimates of b1 and b2 from the data
are described in Section 3.2. We find that these estimates, which we
make at different smoothing scales, are in good agreement with the
corresponding (scale-dependent) predictions of the ESP formalism.
This agreement is important because the measurements themselves
are completely independent of the ESP formalism.

In Section 3.3, we use the reconstruction algorithm mentioned
above, specifically the version described by Paranjape et al. (2013),
to obtain estimates of the scale-independent peak-background split

parameters b10 and b20 from the estimates of b1 and b2. The peak-
background split bias parameters defined in the excursion set ap-
proach directly probe the halo mass function f(δc; m) through

bn0 = f −1
(

− ∂

∂δc

)n

f , (2)

where δc is the usual overdensity threshold predicted by spherical
collapse (Mo & White 1996; Sheth & Tormen 1999).

If the reconstruction works well, then these estimates of bn0

should be independent of the smoothing scale at which the bn

were measured; we find that this is indeed the case. The linear
bias coefficient b10 is also directly probed by the large-scale limit
of Fourier-space measurements such as equation (1) (Paranjape
& Sheth 2012a). We compare our reconstruction of b10 with the
Fourier-space large-scale fit to N-body simulations provided by
Tinker et al. (2010), and find very good agreement. For b20 there are
no previous N-body measurements we can compare with; a com-
parison with the ESP prediction (Paranjape et al. 2013) shows good
agreement. We conclude in Section 4.

We assume a flat "-CDM cosmology with Gaussian initial
conditions and compute transfer functions using CAMB (Lewis,
Challinor & Lasenby 2000)1 for two different sets of parameter val-
ues: (#m, σ8, ns, h,#b) = (0.272, 0.81, 0.967, 0.704, 0.0455) for
the N-body simulations and (0.25, 0.8, 0.95, 0.7, 0.044) for
PINOCCHIO.

2 SI M U L ATI O N S

2.1 N-body

Our CDM simulations were run with 10243 particles in a cubic
box of size 1500 h−1 Mpc, with each particle carrying a mass of
2.37 × 1011 h−1 M#. Gaussian initial conditions were set at a
starting redshift z = 99, with initial particle displacements imple-
mented using second-order LPT (Crocce, Pueblas & Scoccimarro
2006). The simulations were run using GADGET II (Springel 2005).
We use six realizations, with haloes identified using the Spherical
Overdensity (SO) halo finder AHF (Gill, Knebe & Gibson 2004;
Knollmann & Knebe 2009) which uses a redshift-dependent over-
density criterion motivated by spherical collapse (Eke, Cole & Frenk
1996; Bryan & Norman 1998). We only study haloes having at
least 100 particles: this corresponds to halo masses larger than
∼1013.4 h−1 M#.

2.2 PINOCCHIO

For a detailed explanation of the PINOCCHIO code we refer the reader
to the original paper and to the more recent Monaco et al. (2013)
where its parallel implementation and its application to cosmo-
logical volumes are presented. Here, we limit ourselves to a quite
succinct description.

PINOCCHIO starts from a linear density field generated on a grid in
a manner close to the generation of initial conditions in an N-body
simulation. It uses third-order LPT applied to the evolution of a
homogeneous ellipsoid to compute the collapse times of ‘particles’
(grid points); consistently with the excursion set approach, collapse
times are computed for many smoothing radii, thus constructing for
each particle a ‘trajectory’ in the plane defined by mass variance and
inverse collapse time (the inverse of the growth factor at collapse).

1 http://lambda.gsfc.nasa.gov/toolbox/tb_camb_form.cfm
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Detour: Excursion Set Peaks

x = peak curvature;  F(x) = BBKS curvature weight;  V* = characteristic peak volume

Mass Function
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Detour: Excursion Set Peaks
Bias

Bias calculation is identical to that for traditional excursion sets, but keeping track of 
barrier stochasticity.

E.g., linear bias is given by

✏⇥ = 2d lnS⇥/d ln s ; b10 = �@ ln f/@�c ; �cb11 = ⌫2 � �cb10

b1(k) = b10 + (k2s/�2
1)b11


�2
1 ⌘

Z
d ln k�(k)k2W (kR)2

�

b1 = (S⇥/S0)[b10 + ✏⇥b11]

bn ⌘ S
�n/2
0

D
⇢hHn(�0/

p
S0)

E

bn = (S⇥/S0)
n

nX

r=0

✓
n

r

◆
bnr✏

r
⇥ bnr

fESP(⌫) =
m

⇢̄V⇤

Z 1

0
dx

x

�⌫
F (x) p(x, ⌫) ���!

⌫�1

m

⇢̄V⇤
�3⌫3fMS(⌫)

B = �c B(�) B = �c + ��


�2 = s

�
�

fESP(⌫) =
m

⇢̄V⇤

1

�⌫

Z 1

�B0
dx (x� �B0)F (x) p(x,B/�)

fESP(⌫) =

Z
d� p(�)fESP(⌫|�)

=
m

⇢̄V⇤

1

�⌫

Z
d� p(�)

Z 1

��
dx (x� ��)F (x) p(x, ⌫ + �)

(s, s+ ds) b̂1 = S�1
0

NX

i=0

�0i/N bn0

�cb1 =

✓
S⇥
S0

◆ R
d� p(�)B1,ESP(⌫, ✏⇥|�)R

d� p(�)fESP(⌫|�)
,

2

where

✏⇥ = 2d lnS⇥/d ln s ; b10 = �@ ln f/@�c ; �cb11 = ⌫2 � �cb10

b1(k) = b10 + (k2s/�2
1)b11


�2
1 ⌘

Z
d ln k�(k)k2W (kR)2

�

b1 = (S⇥/S0)[b10 + ✏⇥b11]

bn ⌘ S
�n/2
0

D
⇢hHn(�0/

p
S0)

E

bn = (S⇥/S0)
n

nX

r=0

✓
n

r

◆
bnr✏

r
⇥ bnr

fESP(⌫) =
m

⇢̄V⇤

Z 1

0
dx

x

�⌫
F (x) p(x, ⌫) ���!

⌫�1

m

⇢̄V⇤
�3⌫3fMS(⌫)

B = �c B(�) B = �c + ��


�2 = s

�
�

fESP(⌫) =
m

⇢̄V⇤

1

�⌫

Z 1

�B0
dx (x� �B0)F (x) p(x,B/�)

fESP(⌫) =

Z
d� p(�)fESP(⌫|�)

=
m

⇢̄V⇤

1

�⌫

Z
d� p(�)

Z 1

��
dx (x� ��)F (x) p(x, ⌫ + �)

(s, s+ ds) b̂1 = S�1
0

NX

i=0

�0i/N bn0

�cb1 =

✓
S⇥
S0

◆ R
d� p(�)B1,ESP(⌫, ✏⇥|�)R

d� p(�)fESP(⌫|�)
,

B1,ESP(⌫, ✏⇥|�) ⌘
✓

m

⇢̄V⇤

◆
e�(⌫+�)2/2

p
2⇡

⇥ 1

�⌫

Z 1

��
dx (x� ��)F (x)pG(x� �� � �⌫; 1� �2)

⇥

⌫(⌫ + �)� (1� ✏⇥)

�⌫

1� �2
(x� �� � �⌫)

�

2

AP, Sheth & Desjacques 13



Numerical tests:
N-body simulations
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Measurement:
• Find all N halos in mass bin
• Choose      (i.e.,     )
• Estimate, e.g.,                             
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Numerical tests:
N-body simulations
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Measurement:
• Find all N halos in mass bin
• Choose      (i.e.,     )
• Estimate, e.g.,                                     
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Numerical tests:
N-body simulations
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• Find all N halos in mass bin
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• Estimate, e.g.,           and reconstruct                             
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Numerical tests:
PINOCCHIO
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Measurement:
• Find all N halos in mass bin
• Choose      (i.e.,     )
• Estimate, e.g.,           and reconstruct                             

1 Introduction
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Conclusions

•Random walks with correlated steps predict scale-dependent Lagrangian bias.
•This extends to excursion set peaks (ESP) calculations too.
•A simple prescription leads to measurements in simulations that are directly 

comparable to the analytical prediction.

•ESP makes accurate predictions for linear and quadratic bias coefficients.

•Measurement prescription is a fast, useful consistency check for “semi-analytic” 
algorithms (we tested PINOCCHIO).
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•Scale-dependence beyond density
•Predictions for Eulerian bias
•Relevance for observations (?)

Still to do:

Thank you!


