

2494-19

Workshop on High Performance Computing (HPC) Architecture and Applications in the ICTP

14 - 25 October 2013

Overview of Renewable energy in the data centres: status & outlook

C. Onime *ICTP, Trieste*

Overview of Renewable energy in the data centres: status & outlook

Clement Onime

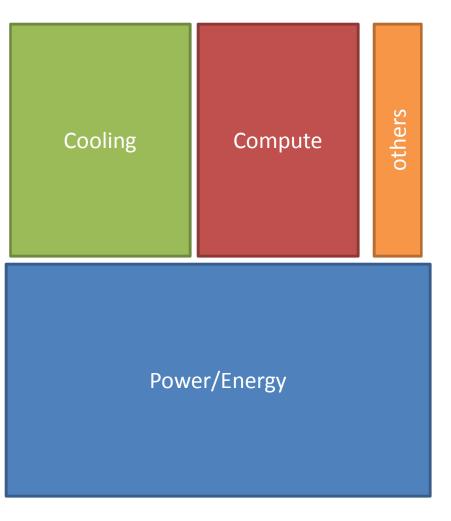
onime@ictp.it

Overview

- Introduction
- Techniques & solutions
- Backup energy
- Alternative energy

INTRODUCTION

Introduction


- Energy is central in data centers
 - Power consumption well over that of normal office
- Global CO2 emission
 - IT data centers account for about 3% GHG but expected to double by 2020*
- Global need to conserve energy
 - Running out of fossil fuels, need to conserve energy
- HPC = High(er) Performance Computing = High(er) Power Computing

Statistics about data center energy costs

- Energy bills are over 10% of running costs in a data center
- Power consumption (U.S.A)
 - 2006: 61billion kWh
 - 2011: 100 billion kWh
- Costs (U.S.A)
 - 2006: 4.5 billion USD
 - 2011: 7.4 billion USD

courtesy of thegreengrid.org

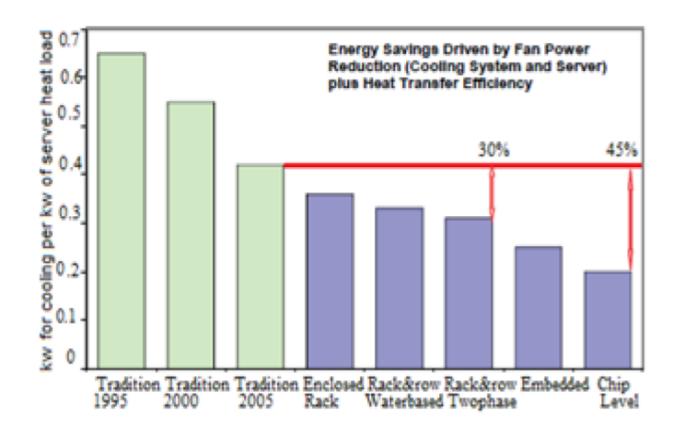
Data centres

- 4 functional activities
 - Power
 - Cooling
 - Compute
 - And storage
 - Others
 - Communications & networking devices

Data center - Devices

- Cooling
 - Room based cooling, in-row or in-rack units
- Redundant power
 - Power GRID (backup & alternative energy sources),
 - UPS (and battery banks)
- Compute
 - Servers and storage
- Redundant communication
 - Switches, modems etc.

Metrics

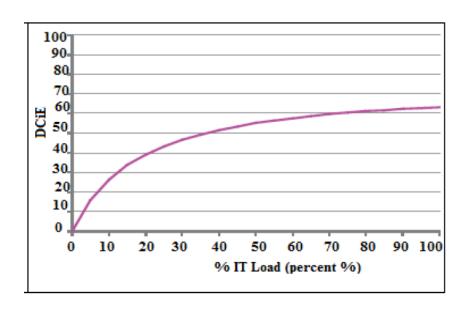

- Power Usage Efficiency
 - PUE = Total data center power/ IT equipment power
 - $(1 \le PUE \le \infty)$, lower is better
 - Also partial pPUE
- Data Center infrastructure Efficiency
 - DCiE = 1 / PUE
- Data center power density
 - DCD = Power of all equipment / area

TECHNIQUES & SOLUTIONS

Cooling systems

- Types
 - Computer Room Air Conditioning (CRAC)
 - Traditional room based cooling
 - Enclosed racks
 - Cold air vents on the floor
 - In-Row/in-rack
 - Hot-air containment
 - Embedded
 - Within server or processor boards
- Costs
 - Initial
 - running

Data center cooling technologies



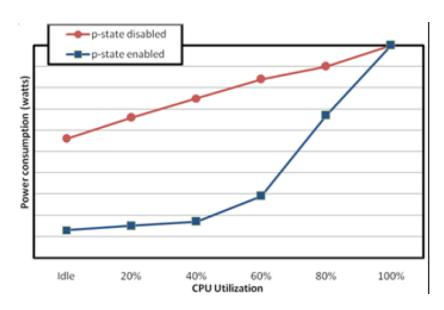
Source: Partha Pratim Ray / Indian Journal of Computer Science and Engineering Vol. 1 No. 4 333-339

Alternative cooling solutions

- Basic principles of cooling servers
 - Good Air flow
 - extractors & filters
- Avoid direct sunlight
 - Shield windows with reflectors/heat shields
- Avoid hot or heated parts of buildings
 - Top-most floor
 - Ground floor

Virtualization

- Increases computing efficiency
- More computing per watt
- Server consolidation
- Over-sizing is necessary to obtain energy gains


Common Virtualization tools

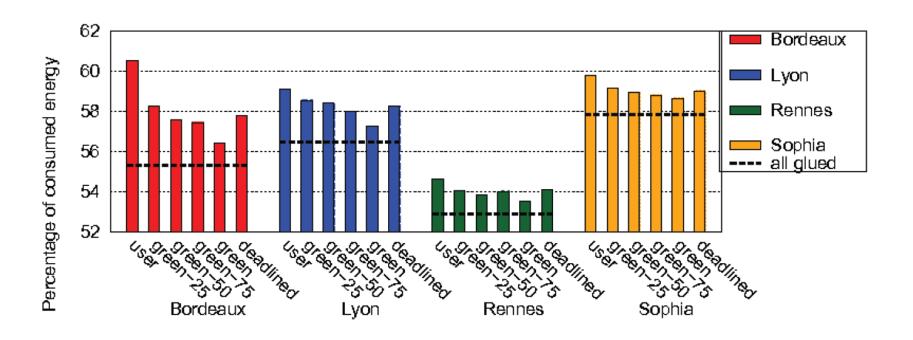
	Qemu	Xen	Virtualbox	Vmware ESXi
Туре	Platform	hypervisor	platform	Hypervisor
Virtual network switch	no	yes	yes	Yes
Host O.S.	Linux & Windows	none	Linux, windows, OS/X, solaris	None
Cost	Free	Free	Free	Free
License	GPL	GPL	GPL/ Proprietary component	Proprietary
Management interface	Virt-manager	Virt-manager	Built-in/ proprietary	Windows client or perl cmdline utilities

Power management

- CPU (transistor gating)
- Turn off portions of CPU when not in use.
 - Coarse or fine
- Clock gating
 - Reduce activity per clock cycle
- Frequency gating
 - Reduce number of clock cycles
- Power gating
 - Turn off cores not in use.
- CPU freq, GPU power state, HDD standby, network speed management, etc..

Power management and consumption

Source: Partha Pratim Ray Indian Journal of Computer Science and Engineering Vol. 1 No. 4 333-339



Source: The GREEN-NET Framework

Using power-gating in HPC

- Enable power management in BIOS
- Install daemon on each worker node to manage clock speed.
- Change performance profile using prolog & epilog scripts of resource manager (pbs_mom)
 - Set High Performance at start of job
 - Set Dynamic or low speed at end of job
 - Minimal latency to jobs as nodes are always on.
- Also possible to force processors to always low performance at all times. Reduces generated heat.
 - Lower high speed network, run infiniband @ ddr instead of qdr

Energy Aware Reservation Infrastructure/whole node gating

All glue = theoretical limit of energy savings EARI uses a predictive algorithm to turn on needed nodes

Source: The GREEN-NET Framework

Whole node gating

- IPMI remote management to switch on/off cluster nodes.
- Simple crontab job on master node.
 - Fixed time node gating
 - Fixed period or fixed duration.
 - On-demand gating
 - Integration with resource manager & scheduler

UPS based whole node gating

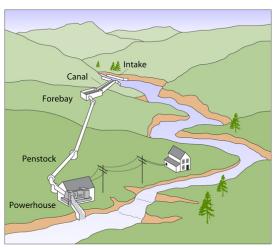
- Variable energy based on UPS remaining time
- Nodes management
 - Using ssh for power off & eth-wake to power on
- On power fail
 - Switch off un-used nodes
 - All compute nodes off at UPS < 8% left
 - Masternode halt (no power off) cycle at < 4%
 - Hardware based watchdog reset set for 15 minutes
- On power return
 - Wait until battery level > 20% before power on nodes.

backup energy sources

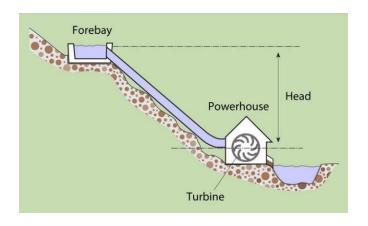
- Battery based systems
 - UPS + GRID
 - Load should be about 50% for best result
 - Only server/compute protection no cooling
- Mixed energy solutions
 - UPS + Diesel generators + GRID
 - Generators also handles cooling
 - Running costs for diesel
 - 100kw @ ¾ load ≈ 20 24 liters/hour

ALTERNATIVE ENERGY

Wind turbine @ 50 kw


- Design lifetime = 20 years
- Start speed = 3m/s
- Rated speed = 10 m/s
- Stop speed = 50 m/s
- Height = 12 30m

Solar @ 20 kw



- Design lifetime = 25 years
- 80 units (1.6m x 1.02m)
 - 35mm 50mm
- Batteries
 - 60pcs for 20kw
 - lifetime = 5 years

MicroHydro

In this microhydropower system, water is diverted into the penstock. Some generators can be placed directly into the stream.

- Head drop
 - Minimum of 61cm
- Flow rate
 - Faster is better
- Quite seasonal
- Estimated output
 - -0.082 * H(m) * F(l/m)
 - -0.1*H(ft)*F(g/m)

That's all folks!! Thank you