Introduction to space-time clustering

Christian Franzke

Meteorologisches Institut, KlimaCampus, Universität Hamburg, Germany

School on Weather Regimes and Weather Types in the Tropics and Extra-tropics: Theory and Application to Prediction of Weather and Climate

ICTP, Trieste, Italy 23 October 2013

Space-Time Clustering

This talk: Introduction to Hidden Markov Models (HMM)

Next talk: - Application of HMMs - Introduction to non-stationary FEM clustering

Next week (workshop): Application of FEM clustering

Outline

- Motivation
- Markov Chain
- Hidden Markov Models
- Gaussian Mixtures
- Number of Regime States
- Markovianity

Grosswetterlagen

Impact of Blocking

Atlantic Ocean North Sea Russia Poland Black Sea Mediterranean Sea Land Surface Temperature Anomaly (°C) -20 0 20

Difference of temperature between December 11–18, 2009 and the 2000–2008 average. Source NASA

Snow cover across UK 7 January 2010 Source: NASA

Impact of North Atlantic Jet Stream

2007 UK Floods

Source: MetOffice

Blackburn et al. 2008

Persistent Weather Events

A dry spring gave way to wet conditions - a rapid transformation

The UK has experienced its "weirdest" weather on record in the past few months, scientists say.

Related Stories

Regimes as Steady State Solutions

- Low-order truncation of barotropic model (only 3 Fourier modes; Charney-DeVore model)
- Topography and thermal forcing
- 2 types of steady states

Steady States and PDF maxima

Charney-DeVore model with weather waves

56 mode barotropic model; low-order truncation is equivalent to Charney-DeVore model Majda et al. 2006, PNAS; Reinhold and Pierrehumbert 1982, Tung and Rosental 1985

Recurrent or Persistent?

More Predictive Skill¹¹

Outline

- Motivation
- Markov Chain
- Hidden Markov Models
- Gaussian Mixtures
- Number of Regime States
- Markovianity

Markov Chain

Weather Evolution in Trieste

Sun Rain Rain Sun Sun Sun Sun Rain Sun Sun Sun Sun Sun Sun Sun Sun Rain Rain Sun Sun Sun Rain Sun Sun Sun Sun Sun Sun Sun Rain Rain Sun Sun Sun Sun

Markov Chain

Outline

- Motivation
- Markov Chain
- Hidden Markov Models
- Gaussian Mixtures
- Number of Regime States
- Markovianity

Hidden Markov Model

Hidden Markov Model

Outline

- Motivation
- Markov Chain
- Hidden Markov Models
- Gaussian Mixtures
- Number of Regime States
- Check for Markovianity

Gaussian Mixture Model

Weighted sum of N Gaussian densities:

$$p(x|\lambda) = \sum_{i=1}^{N} w_i g(x|\mu_i, \Sigma_i)$$

$$g(x|\mu_i \Sigma_i) = \frac{1}{(2\pi)^{D/2} |\Sigma_i|^{1/2}} \exp(-0.5(x-\mu_i)' \Sigma^{-1}(x-\mu_i))$$

Gaussian Mixture Model

Gaussian Mixture Model in Higher Dimensions

25

Space-Time Modelling

HMM Parameter Estimation

Expectation-Maximization Algorithm (Dempster et al. 1977)

- Maximum Likelihood Estimate
- Estimates: Markov Transition Matrix

Gaussian Mixtures Viterbi Path

Tutorial paper on HMM:

Rabiner, 1989: A tutorial on Hidden Markov Models and selected applications in speech recognition. Proc. IEEE, 77, 257-286.

HMM Example

$$A = \begin{bmatrix} 0.99 & 0.01 \\ 0.01 & 0.99 \end{bmatrix}$$

 $B_1 = N(3.0, 1.0); B_2 = N(-3.0, 2.0)$ $B_1 = N(1.0, 1.7); B_2 = N(-0.5, 1.2)$

Outline

- Motivation
- Markov Chain
- Hidden Markov Models
- Gaussian Mixtures
- Number of Regime States
- Markovianity

Number of Regimes?

Transition Matrix: $A = \begin{bmatrix} 0.49 & 0.47 & 0.03 & 0.01 \\ 0.47 & 0.49 & 0.01 & 0.03 \\ 0.02 & 0.01 & 0.53 & 0.44 \\ 0.01 & 0.01 & 0.44 & 0.54 \end{bmatrix}$ Eigenvalues: $\lambda_1 = 1.0$, $\lambda_2 = 0.935$, $\lambda_3 = 0.096$, $\lambda_4 = 0.019$

Reduced transition Matrix

$$A = \begin{bmatrix} 0.96 & 0.04 \\ 0.025 & 0.975 \end{bmatrix}$$
Eigenvalues: $\lambda_1 = 1.0, \lambda_2 = 0.935$ 30

Outline

- Motivation
- Markov Chain
- Hidden Markov Models
- Gaussian Mixtures
- Number of Regime States
- Markovianity

Markovianity

- Model reduction leads to memory effects (Non-Markov)
- Have to check whether Markov assumption still applies
- Can do this by
 a) Coarse graining time series
 b) Embedding (Broomhead and King 1986)
- Test significance against simple model (e.g. AR(p) model)

Markovianity

$$\begin{array}{c|c} x_{1,} & x_{2,} & x_{3,} & x_{4,} & x_{5,} & \cdots \\ \hline x_{1} & x_{2} & x_{2} & x_{2} & x_{3} & x_{4} & x_{5} & x_{4} \\ x_{2} & x_{3} & x_{4} & x_{5} & x_{6} & x_{6} \end{array}$$

Summary

- Persistent regime detection with HMMs
- Regimes evolve according to a Markov chain
- Distribution of observed 'weather' depend on regime state
- Eigenvalue spectrum is used to determine number of persistent regime states
- Need to check for Markovianity of regime state sequence

Literature:

- Rabiner 1989: A tutorial on Hidden Markov Models and selected applications in speech recognition. Proc. IEEE, 77, 257-286.
- Dempster et al. 1977: Maximum likelihood from incomplete data via the EM algorithm. J. Roy. Stat. Soc. B, 39, 1-38.
- Charney and DeVore, 1979: Multiple Flow Equilibria in the Atmosphere and Blocking. J. Atmos. Sci., 36, 1205-1216.
- Broomhead and King, 1986: Extracting qualitative dynamics from experimental data. Physica D, 2, 217-236.
- Majda et al. 2006: Distinct Atmospheric Regimes despite nearly Gaussian Statistics A Paradigm Model. Proc. Natl. Acad. Sci. USA, 103, 8309-8314.
- Franzke et al. 2008: A Hidden Markov Model Perspective on Regimes and Metastability in Atmospheric Flows. J. Climate, 21, 1740-1757.
- Franzke et al. 2011: Persistent Circulation Regimes and Preferred Regime Transitions in the North Atlantic. J. Atmos. Sci., 68, 2809-2825.

HMM source codes

- HMMTool http://iri.columbia.edu/our-expertise/climate/tools/ hidden-markov-model-tool/
- C GHMM http://ghmm.org/

-Matlab toolbox http://www.cs.ubc.ca/~murphyk/Software/HMM/hmm.html

- C++ HMMlib http://www.cs.au.dk/~asand/?page_id=152
- Java jahmm https://code.google.com/p/jahmm/
- R depmixS4 http://CRAN.R-project.org/package=depmixS4
- Java Metamacs http://www.mi.fu-berlin.de/w/CompMolBio/ SoftwareFramework#A_61Metamacs_61