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Teleconnection Patterns

« Atmospheric teleconnections are spatial
patterns that link remote locations across the
globe (Wallace and Gutzler 1981; Barnston
and Livezey 1987)

« Teleconnection patterns span a broad range
of time scales, from just beyond the period
of synoptic-scale variability, to interannual
and interdecadal time scales.



Methods for DeterminingTeleconnection
Patterns

* Empirical Orthogonal Functions (EOFs) (Kutzbach 1967)

» Rotated EOFs (Barnston and Livezey 1987)

e One-point correlation maps (Wallace and Gutzler 1981)

e Empirical Orthogonal Teleconnections (van den Dool 2000)
» Self Organizing Maps (SOMs) (Hewiston and Crane 2002)
» k-means cluster analysis (Michelangeli et al. 1995)



Advantages and Disadvantages of various
techniques

Empirical Orthogonal Functions (EOFs): patterns maximize variance,
easy to use, but patterns orthogonal in space and time, symmetry
between phases, i.e., may not be realistic, can’t identify continuum

Rotated EOFs: patterns more realistic than EOFs, but some arbitrariness,
can’t identify continuum

One-point correlation maps: realistic patterns, but patterns not objective
organized, i.e., different pattern for each grid point

Self Organizing Maps (SOMS): realistic patterns, allows for a
continuum, i.e., many NAO-like patterns, asymmetry between phases,
but harder to use

k-means cluster analysis: Michelangeli et al. 1995



The dominant Northern Hemisphere teleconnection patterns

North Atlantic Oscillation

Pacific/North American pattern
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Aim of EOF, SOM analysis, and k-
means clustering

* To reduce a large amount of data into a
small number of representative patterns that
capture a large fraction of the variability
with spatial patterns that resemble the
observed data



Link between the PNA and Tropical
Convection

Enhanced
Convection

From Horel and Wallace (1981)



P1=1958-1977 A SOM Example

P2=1978-1997 Northern Hemispheric Sea Level Pressure (SLP)
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Another SOM Example (Higgins and Cassano 2009)

Geopotential Height Anomaly at 1000 hPa

Weak Arctic Lows
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A third example

a) 20th Century NDJF SOM Pattern Frequency
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b) 21st - 20th Century NDJF SOM Pattern Frequency
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How SOM patterns are determined

o Transform 2D sea-level pressure (SLP) data onto
an N-dimension phase space, where N Is the
number of gridpoints. Then, minimize the

Euclidean between the daily data and SOM
patterns

|z — m#| = min{|z — m#]]},

where gz is the daily data (SLP) in the N-dimensional phase,
m are the SOM patterns, and i is the SOM pattern number.



How SOM patterns are determined

* E Is the average quantization error,
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The m* (SOM patterns) are obtained by minimizing E.



SOM Learning

Initial Lattice (set of nodes)

BMU

Da Randomly- Convergence: Nodes

chosen vector Match Data



SOM Learning

1. Initial lattice (set of nodes) specified (from random data
or from EOFs)

2. Vector chosen at random and compared to lattice.

3. Winning node (Best Matching Unit; BMU) based on
smallest Euclidean distance Is selected.

4. Nodes within a certain radius of BMU are adjusted.
Radius diminishes with time step.

5. Repeat steps 2-4 until convergence.



How SOM spatial patterns are determined

o Transform SOM patterns from phase space back to physical
space (obtain SLP SOM patterns)

« Each day is associated with a SOM pattern

o Calculate a frequency, f, for each SOM pattern, i.e.,
f (m*) = number of days m# is chosen/total number of days



SOMs are special!

« Amongst cluster techniques, SOM analysis
IS unique In that it generates a 2D grid with
similar patterns nearby and dissimilar
patterns widely separated.



Some Background on SOMs

« SOM analysis is a type of Artificial Neural Network which
generates a 2-dimensional map (usually). This results in a
low-dimensional view of the original high-dimension data,
e.g., reducing thousands of daily maps into a small number
of maps.

o SOMs were developed by Teuvo Kohonen of Finland.



Artificial Neural Networks

Artificial Neural Networks are used in many fields.

They are based upon the central nervous system of animals.
Input = Daily Fields

Hidden = Minimization of

Input .
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A simple conceptual example of SOM analysis
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Uniformly distributed data -
between 0 and 1 in 2-dimensions 148 149 150

F1G. A2. Fine-tuned reference vectors of a 10 X 15 SOM: The
analyzed dataset consists of 10 000 random two-dimensional data
vectors with components normally distributed in x and uniformly
distributed in y.




A table tennis example (spin of ball)

Spin occurs primarily along 2 axes of rotation. Infinite number of angular
velocities along both axes components.
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Bar s moving vertcally
and honzontally

Input - Three senses (sight, sound, touch) feedback as in SOM learning
Hidden - Brain processes information from senses to produce output
Output - SOM grid of various amounts of spin on ball.

SOM grid different for every person



