Self-organizing maps (SOMs) and k-means clustering: Part 1

Steven Feldstein

The Pennsylvania State University

Collaborators: Sukyoung Lee, Nat Johnson

Trieste, Italy, October 21, 2013

Teleconnection Patterns

- Atmospheric teleconnections are spatial patterns that link remote locations across the globe (Wallace and Gutzler 1981; Barnston and Livezey 1987)
- Teleconnection patterns span a broad range of time scales, from just beyond the period of synoptic-scale variability, to interannual and interdecadal time scales.

Methods for DeterminingTeleconnection Patterns

- Empirical Orthogonal Functions (EOFs) (Kutzbach 1967)
- Rotated EOFs (Barnston and Livezey 1987)
- One-point correlation maps (Wallace and Gutzler 1981)
- Empirical Orthogonal Teleconnections (van den Dool 2000)
- Self Organizing Maps (SOMs) (Hewiston and Crane 2002)
- k-means cluster analysis (Michelangeli et al. 1995)

Advantages and Disadvantages of various techniques

- Empirical Orthogonal Functions (EOFs): patterns maximize variance, easy to use, but patterns orthogonal in space and time, symmetry between phases, i.e., may not be realistic, can't identify continuum
- Rotated EOFs: patterns more realistic than EOFs, but some arbitrariness, can't identify continuum
- One-point correlation maps: realistic patterns, but patterns not objective organized, i.e., different pattern for each grid point
- Self Organizing Maps (SOMs): realistic patterns, allows for a continuum, i.e., many NAO-like patterns, asymmetry between phases, but harder to use
- k-means cluster analysis: Michelangeli et al. 1995

North Atlantic Oscillation Pacific/North American pattern January April January April July October July October -60 -45 -30 -15 15 30 45 60 -45 -30 -15 15 30 45 60 -60

The dominant Northern Hemisphere teleconnection patterns

Climate Prediction Center

Aim of EOF, SOM analysis, and kmeans clustering

• To reduce a large amount of data into a small number of representative patterns that capture a large fraction of the variability with spatial patterns that resemble the observed data

Link between the PNA and Tropical Convection

From Horel and Wallace (1981)

A SOM Example P1=1958-1977 P2= 1978-1997 Northern Hemispheric Sea Level Pressure (SLP) P3=1998-2005 1 5 4.1% 4.3% 6.1% 1.9% 5.2% 7.0% 5.0% 5.9% 4.0% 4.6% 7.3% 6.7% 8.1% 4.5% 4.1% 6.1% 5.2% 5.4% 4.3% 6.2% 2.1% 4.9% 4.5% 3.6% 3.7% 4.1% 5.1% 3.1% 7.0% 4.0% 2.7% 2.8% 3.3% 3.2% 4.5% 2.3% 5.7% 4.2% 3 6.8% 3.5% 4.0% 3.3% 4.0% 6.5% 4.9% 4.5% 4.0% 2.8% 4 6.0% 5.5% 4.4% 3.7% 7.9%

Another SOM Example (Higgins and Cassano 2009)

Geopotential Height Anomaly at 1000 hPa

A third example

a) 20th Century NDJF SOM Pattern Frequency

0	0.04%	-0.08%	-0.60%	0.97%	0.74%	0.29%	-0.65%
1 <u> </u>	0.06%	-0.25%	-0.08%	0.93%	0.49%	-0.17%	-0.68%
M Pattern N N	0.01%	-0.17%	-0.78%	0.36%	0.60%	0.15%	0.04%
о З	-0.36%	-0.47%	-0.53%	0.19%	0.19%	-0.87%	1.03%
4	0.15%	-0.43%	-1.11%	-0.49%	0.33%	0.82%	0.32%
	0	1	2	3 M Pattern 1	4	5	6
	Som Fallen No.						

b) 21st - 20th Century NDJF SOM Pattern Frequency

How SOM patterns are determined

• Transform 2D sea-level pressure (SLP) data onto an N-dimension phase space, where N is the number of gridpoints. Then, minimize the Euclidean between the daily data and SOM patterns

$$\|\mathbf{z} - \mathbf{m}_{c}^{*}\| = \min_{i} \{\|\mathbf{z} - \mathbf{m}_{c}^{*}\|\},\$$

where \mathbf{z} is the daily data (SLP) in the N-dimensional phase, \mathbf{m}_c^* are the SOM patterns, and *i* is the SOM pattern number.

How SOM patterns are determined

• *E* is the *average quantization error*,

$$E = \frac{1}{N} \left(\sum_{t=1}^{N} \|\mathbf{z}_t - \mathbf{m}_c^*\| \right)$$

The \mathbf{m}_{c}^{*} (SOM patterns) are obtained by minimizing *E*.

SOM Learning

SOM Learning

- 1. Initial lattice (set of nodes) specified (from random data or from EOFs)
- 2. Vector chosen at random and compared to lattice.
- 3. Winning node (Best Matching Unit; BMU) based on smallest Euclidean distance is selected.
- 4. Nodes within a certain radius of BMU are adjusted. Radius diminishes with time step.
- 5. Repeat steps 2-4 until convergence.

How SOM spatial patterns are determined

- Transform SOM patterns from phase space back to physical space (obtain SLP SOM patterns)
- Each day is associated with a SOM pattern
- Calculate a frequency, f, for each SOM pattern, i.e., $f(\mathbf{m}_c^*) =$ number of days \mathbf{m}_c^* is chosen/total number of days

SOMs are special!

• Amongst cluster techniques, SOM analysis is unique in that it generates a 2D grid with similar patterns nearby and dissimilar patterns widely separated.

Some Background on SOMs

- SOM analysis is a type of Artificial Neural Network which generates a 2-dimensional map (usually). This results in a low-dimensional view of the original high-dimension data, e.g., reducing thousands of daily maps into a small number of maps.
- SOMs were developed by Teuvo Kohonen of Finland.

Artificial Neural Networks

- Artificial Neural Networks are used in many fields.
 They are based upon the central nervous system of animals.
- Input = Daily Fields
- Hidden = Minimization of Euclidean Distance
- Output = SOM patterns

A simple conceptual example of SOM analysis

Uniformly distributed data between 0 and 1 in 2-dimensions

FIG. A2. Fine-tuned reference vectors of a 10×15 SOM: The analyzed dataset consists of 10 000 random two-dimensional data vectors with components normally distributed in x and uniformly distributed in y.

A table tennis example (spin of ball)

Spin occurs primarily along 2 axes of rotation. Infinite number of angular velocities along both axes components.

- Input Three senses (sight, sound, touch) feedback as in SOM learning
- Hidden Brain processes information from senses to produce output
- Output SOM grid of various amounts of spin on ball.
- SOM grid different for every person