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1) Climate variability
2) Atmospheric Data Classification: Weather Regimes

3) Constructing Weather Regimes for Euro-Atlantic Region in summer
1) DATA

2) SOM method
3) Scientific questions

4) Interpretation/Examples:
e Seasonal Cycle
* Transitions
* WR and GCM projection
 WR and Mediterranean SST: Changes at Interannual timescales
* WR and Changes at Interdecadal timescales: frequency & spatial
pattern
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Timescales of Climate variability
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Ocean-Atmosphere Interaction
 The atmosphere and the ocean interact
continuously

— Fluxes of heat, fresh water and momentum

— Surface heat flux: Radiative flux + turbulent fluxes

Radiative flux: Precipi Evapor
Qr.q= Qpsw(1-A) - £o(SST)* + Qpuwy -tation -ation
. S ‘fc
Sensible heat flux: ) windstress Q”I””” l I b21111:§§1y
Qsens < |Uyindl (Tatmos(Zres) — SST) P U aa N layer
|
Latent heat flux: 0
QI-::t = 'Levap E
o |Uyingl (Qatmos (Zref) — Asat(SST)) J
’ From R. Sutton

ICTP Weather Regimes School 2013 | Euro-Atlantic WR | i.polo@reading.ac.uk 5



1) Climate variability
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1) Climate variability
IMPACTS:

Dijon; 15Sep—-30Jan Flights delays
: (one night at the

2009/2010

Lyon airport at
Christmas time)

SLP Observations

Daili averie iressure anomaly (operational analysis wrt 1961-90) December 15t 2009 fo February 258

-12-10 -8 6 4 -2 0 2 4 6 8 10 12

Derailment of a freight train at Carrbridge,

Winter (DJFM) NAO index updated to winter 2010/2011 Badenoch and Strathspey

4 January 2010
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:
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T
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" Autumn-winter 2009/10 = —NAO
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1) Climate variability

Weather Regimes to describe Dijon climate in

Dijon: 15Sep-30Jan autumn/winter 20097

2009/2010

msl Sep2009 msl 0ct2009
ERA=int MSL ) ) _ ERA=int MSL

From WR we can: Discriminate important information from huge amount of data for autumn/winter 2009, But:
Can we say anything about the seasonal cycle?

Can we say anything about the interannual variability?

Can we say anything about the decadal variability?

8
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Why the statistics?

* |large datasets

— i.e., model/reanalysis grids or observation '
networks, CMIP5 archive...

* redundant information
— i.e., strong correlation between nearby grid-boxes
* noisy data

— e.g., weather “noise” masking decadal variability
or long-term trends o NOUH

> extract “relevant” information from
large datasets
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Atmospheric data
classification: some History

Weather Regime approach

Climatology: How to compose a conceptual construction of what is
really observed and felt (indexes, statistical and dynamical models, etc..)
in order to better understand the climate system.

— Before XVIIth century: Empirical knowledge of climate conditions (e.g. seasonal
monsoon, dry/wet season,...)

— Between XVIIth and XIXth:
. Thermometer, anemometer, rain gauges

. G. Hadley (1735): relationship between trade winds and Earth rotation
. B. Franklin (1785): first map of the « Gulf stream »

— From XXth century:

. G. Walker (1920): relationship between ~Azores and ~Icelandic barometric
conditions = NAO

. G. Walker (1923): relationship between eastern and western pacific barometric
conditions = El Nino



Atmospheric data
classification: some History

All the attempts to explain climate conditions / variability through gradients,
oscillations, dipolar structures, etc. = first kind of statistical summary of the
complex climate variability

From the middle of the XXth: « meteorological conditions recorded at one
station depend on geographical characteristics but also on synoptical
atmospheric circulation »

=» A kind of local/regional meteorological condition is often associate with a
kind of synoptical circulation that appears regularly and could stay several
consecutive days

From the 70s: The question is: « is there always a link between the felt and
measured weather at one point and one type of synoptical circulation ? »

=» birth of the synoptical/dynamical meaning of « weather classifications »
and concepts such as « cyclonic and rainy weather », « zonal and mild
weather », etc. (also thanks to technologic development such as aviations,
aerology and metorological satelites that offers new atmospheric datas)



Atmospheric data
classification: some History

 Weather classification was forgotten in climatology until the 90s and then
back in fashion with (I) spatialization of atmospheric data (ii) reanalysis that
offers the possibility of using robust statistical/mathematical algorithms for
clustering and (ii) with the study of the climate as a multiscalar dynamical
system.

* E.g.first « main » papers presenting the classification of an atmospheric
field:

e Vautard in 1990: clustering algorithms applied on gridded (10°) daily 700
hPa geopotential heigh = 4 weather regimes for the northern hemisphere

* Michelangeli in 1995: clustering algorithm used with the first reanalysis
fields of the NOAA (700 hPa) = 4 weather regimes for the northern
Atlantic

. Weather classification into « weather regimes » also back in fashion with the
development of GCM’s = a good tool to validate global climate models and to
project circulation in the future



* And today, questions are still posed:

Atmospheric data
classification: some History

are there links between the
regional/local atmospheric
conditions and some recurrent kind
of atmospheric circulations ?

hemispheric

Weather regimes

What are « multilateral » interactions Synoptical features
between the different spatio- |
temporal modes of atmospheric
variability that could explain

« teleconnections » between scales ?

How the « system » works ? Is is B oo
. >00gle earth

predlcta ble ? We” reprOduced In 6°19'33.99" 2°16'53.46°0° &lév. O'm altitude 1100100 km &)

numerical simulations ? Figure courtesy of A. Ulmann

Weather regimes are one of the spatio-temporal modes of
atmospheric variability (~ 30-40 millions km2, 2-10 days)



1) Weather Regimes

Weather Regime

Climate variability could be defined by non-linear methods
extracting ‘weather regimes’

“weather regimes”: preferred atmospheric states. They are

stablished by using their properties:

1) Recurrence (maximum probability of ocurrence)

2) Persistence (>= 2 days)

3) Quasi-stationarity (in the statistical sense, atmosphere states in
which the large-scale movements are stationary)

We need the probability density function of the atmospheric
variablesin a region and using techniques based on clusters

“The present knowledge of the atmosphere allows us to infer that low-frequency
variability in the extratropics is mainly due to the alteration between several
Weather regimes, during which the large-scale atmosphere is quasi-stationary
interrupted by transitions periods” (Vautard, 1990)



2) Weather Regimes

Weather Types

Vautard and Legrad (1988) with non-linear method and from daily
Z700 data for 37 winters (1949-1985) finding 4 main types
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2) Weather Regimes?

Weather Types

(e) BL (17%) (f) AR (22%)

from Oct-March SLP daily ERA40, Ullmann and Moron (2006)
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2) Weather Regimes

Weather Types

NAO+ 1,485 days (30%)

NAO- 1,021 days (20%)
P {

Scandinavian blocking 1,339 days (27%)

Atlantic ridge 1,146 days (23%)

From winter z500 daily ERA40, Cassou (2008)

—200 -100 0 100 200 Z500 (m)
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2) Weather Regimes

Weather Types

JF cluster 1 (1067 days, 12%) JF cluster 6 (904 days, 10%)

7ON[=g’
BON |,
5ON |

40N

30N

From JF SLP daily EMULATE, Fereday et al (2008)



2) Weather Regimes
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Weather Types
What about the summer?

MA cluster 2
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3) Summer WR

Weather Types
What about the summer?

* For weather classification we need:
-DATA: Summer variables over Euro-Atlantic
-METHOD: SOM
-SCIENTIFIC QUESTIONS:

* Characterization of summer WR?

* Do the GCMs project onto WR? (i.e. Models reproduce natural
variability?)
* Do changes in boundary conditions change WR features? (i.e. if

North Atlantic is warm do | get more —NAQ??. If the Mediterranean Sea is
warm do the WR frequency change?




Multivariate data
 Variables: INPUT data ERA-int

-Sea Level Pressure , 7 time
-700hPa geopotential height >
-specific humidity at 700hPa o 7

* Time-step: Daily
— Daily Iﬁput data X

— May-June-July-August-September-October
— and period 1989-2008

* Each grid point characterized by 3 dimensions: longitude,
latitude and variables (SLP*700hPa)

e Standardized units for more than 1 variable

ICTP Weather Regimes School 2013 | Euro-
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3) Summer WR

Self Organizing Maps

e SOMs is an unsupervised neuronal network method used to
visualize and interpret large high-dimensional data sets. It has
been invented in the 80’s by Teuvo Kohonen

 Map of a regular grid of “NEURONS”". The map attempts to
represent all the available observations with optimal accuracy
using a restricted set of patterns. At the same time the
patterns become ordered on the grid so that similar patterns
are close to each other and dissimilar patterns far from each
other

* The algorithm exposes the input data X to a layer of neurons
which have a weight verctor of Ndimension



o Self Organizing Maps

* Phase 0): Initialization of (a priori)

- Number neurons: 25
- Neighbourhood function => Gaussian

- Learning rate coefficient (determine the velocity of system
to adjust in time) =>0< a <1

- Lattice (how the neurons are connected, i.e. topological
map) => hexagonal grid

Initialization linear:
5 Weight vectors are <
spanned in subspace

NODE of the

neurological
network

of 2 leading Eigvectors
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mmmmm

INPUT LAYER N-dimension Xi= 1=1--m
NEURONS N-dimension j=1--n
WEIGHT VECTOR W,

Phase 1) At each X new input is exposed to the
Neurons in an iterative process, where:

* Neurons compete for being the “winner” Wc or
Best Matching Unit (BMU)

d =|X -Wc|= mjin\x -W;| v



3) Summer WR

Self Organizing Maps

* Phase 2): BMU and its neighbours are updated onto

. . dW
direction of X , @ X —Wc) jeN, |
dt Learning
dW coefficient
i 0 ieN O<a<1
dt 1

-The process continues in random order until Wj are
stabilized (convergence)

=» Finally each daily field is classified into one and only one of

the BMUs (criterion of minimum Euclidean distance)
Composite map = SOM; SOM+ Persistence(>2days) = WR

* ? g
1

21




=
2y

o
T

WR 23 (M-J
gt

Polo et al., JClimate, 2011 e L
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3) Summer WR

Character:
Seasonal cycle

mean frequency along the season for each WR
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3) Summer WR

Character: Transitions

1926 JOURNAL OF THE ATMOSPHERIC SCIENCES VoL. 47, No. 15

WRB N wRaunsh WU T
R : e |

NOTES AND CORRESPONDENCE
Statistical Significance Test for Transition Matrices of Atmospheric Markov Chains

e g - -
confidence level for the probability of transition i - j : RoBerr VAUTARD
Lab, ire de i ique, Paris, France
KINGTSE C. MO
254 - Clismate Analysis Center, NME/NWS/NOAA, Washington, District of Columbia
24 4 - MICHAEL GHIL
2 3 - - Climate Dynamics Center, Department of Atmospheric Sciences, and Institute of Geophysics and Planetary Physics,
University of California, Los Angeles, California
224 - 17 October 1989 and 22 January 1990
214 ABSTRACT
20 Low-frequency variability of large- by a Markov
chain of multiple flow regimes. Thls Markov chain contains useful mformnmn for the 1dng-nlls= forecaster,
159 1 ~ provided that the statistical significance of the associated transition matrix can be reliably tested. Monte Carlo
simulation yields a very reliable significance test for the elements of this matrix. The results of this test agree
1R 4 n - with previously used empirical formulae when each cluster of maps identified as a distinct flow regime is
sufficiently large and when they all contain a comparable number of maps. Monte Carlo simulation provides
174 a more reliable way to test the statistical significance of transitions to and from small clusters. It can determine

16 the most likely transitions, as well as the most unlikely ones, with a prescribed level of statistical significance.
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_ * For each WR (t) compute frequency
WR J 1o 20 304080 e 0 a0 0 (t+1) =» Transition Matrix
Polo et al., JClimate, 2011 * Significance for transitions with
MonteCarlo test
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Example: Model projection

* Are the AGCM reproducing variability (WR)?
How different is from observations?

— The reproduce some part of the variability of the
real world BUT with a bias

Table 2. Weather Regime Frequency of Occurrence in the ERA40
Reanalysis and in the CNTL Experiment for the Five AGCMs,
Shown as a Difference to ERA40"

Weather Regimes (%)

BL Z0 AR GA
ERA40 24 30 24 22
ARP +2 0 —9 +7
HAD 0 +1 —6 +5
ECH +1 -3 -3 +5
[AP —2 —4 —4 +10)
CAM —1 —4 —1 6
“The significant differences at 95% significance level are indicated in
bold. Sanchez-Gomez et al., GRL, 2008
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Example: Model projection

* Projection consists in classifying each X input
model data according with the observed SOM

Proj[m,nt]=SOM [ns,m]*Ens[nt,ns] /max& >0

Dist = /ZSOM—Ens / min
j

+ Persistence

M2
f\\

+ a) Model M1

PDF

Significance: Permute Ens
if Proj>ProjPerm =» c=c+1

= Sig=(1-c/nperm)100




Example: Model projection
2 AGCMs: UCM (UCLA) and CNRM (ARPEGE)

= Ensemble Mean of 10 runs each CTRL (forced
with global SST climatology)

CTRLENS x S0M3
= —

CTRL ENS x SOM1 CTRL ENS x 5OM2

CTRL ENS x 5OM8

LG B St RCR . J9F
X feCSS TG =

CTRL ENS x SOM12 CTRL ENS x SOM13 CTRL ENS x SOM14
=2 | o=, T ]
!-.

. =

o & | - . S : o . AT "

CTRL ENS x SOM16 CTRL ENS x 50M17 CTRL ENS x SOM18

R ( NRre

CTRL ENS x SOM22

Bl
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Example: Air-sea interaction
* Changes in WR frequency due to SST forcing

— Interannual change in the WR frequency due to
Temperature anomalies over the Mediterranean Sea

AMMA: Multi-model study of the atmospheric
response to anomalous Mediterranean SST and
West African Monsoon

ARPEGE-Chmat Version 3 IPCC-AR4 in truncature 42
with 45 levels run at CNRM (Centre National de
Recherches Méteorologiques, Méteo-France)

ECHAM Version 4 in truncature 30 with 32 levels run
at ENEA (Italian National Agency for New Techno-
logies, Energy and Environment)

LMDZ Version 4 (96 lone. 71 lat and 19 levels) run at
SC (Institut Paul-Simon Laplace)
UCLA Version 7.3 (27 long x 2.5%1at, 29 levels)
UCM (Universidad Complutense de Madrid)

m at

(b) boundary conditions (JASO)
(=
0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 [BC]

(p) JAS:W-Ctl(ucla)

18°N -
12°N (S
6°N . . T TRX
GITI i e IR A
555'1'“':“”:-'._”'I'+\'
24°W 12°W 0° 12°E 24°E

Fontaine et al., ClimDyn, 2010
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Example: Air-sea interaction
* Changes in WR frequency due to SST forcing

— Forced experiment: Med Positive, Med Negative and

climatology elsewhere

(a) EMCA x SST (JASO)
. .
I|I1 —~ ?\FL‘ Y |/_‘?V:=f\
S o gy LNy \\.\ r
| ~ >'\| e \
/ N § =y I\ S
¢ fo U
o ' ~\ QTO ="
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A b ) 5 f
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EMCA x psi850 , T850 (JASO)
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(b) boundary conditions (JASO)

SR 5
f T J 4
/ —~— \ y L “~
—_— —_ T\ e v
g —~ AU -
g _/ U ™o~ ™y D
/ e 1 N i eV ]
) ¥ia mW o
Lo
[ Ve B8 < £
s ‘
// o iy
_.f( T /
[ 8] :
|\
\-\\‘.-I,-_\
]
0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
[°C]

0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
-0.1
-0.2
-0.3
-0.4
-0.5
-0.6
-0.7
-0.8

[°C]

ICTP Weather Regimes School 2013 | Euro-Atlantic WR | i.polo@reading.ac.uk 33

Garcia-Serrano et al., ClimDyn, 2013



Example: Air-sea interaction

* Changes in WR frequency due to SST forcing

— Interannual change in the atmosphere due to
Temperature anomalies over the Mediterranean Sea

() AGCM-P psiB50 T850 (JASO) (b) AGCM-N psi850 T850 (JASO)

0.8 0.8
0.7 0.7
0.6 0.6
0.5 0.5

0.4 0.4

| 0.3 0.3
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-0.1 -0.1
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o -0.5
-0.6 o8
92 -0.7
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[°C] [°C]
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Example: Air-sea interaction
* Changes in WR frequency due to SST forcing

— Interannual change in the WR frequency due to

WR20

(SNAO-)

Frequency | CTRLENS |  ENS ENS | OBS l
JA(K) | UCMCNRM | MED-POS | MED-NEG :
WR20 SNAO- | 1622 173 103 102
WR5 SNAO+ | 119 42 16.3 185 :
‘:

WR5 !

(SNAO+) 3k

Temperature anomalies over the Mediterranean Sea?

Dif Freq POS-NEG

(1)

AL g ' 44

]
48 48 4 4 A3 A 0 B A A Mo

Polo et al., EGUp 2010
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Example: Air-sea interaction
* Changes in WR frequency due to SST forcing

— These changes are also true for the observations

WR20
(SNAO-

—

WR5
(SNAO+)

diff freq Med+/Med— 90%
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Example: Inter-decadal variability
* Changes in WR frequency due to SST forcing

— AGCM have their own internal variability: noise

— Atmosphere will respond to the boundary
conditions (SST) forced variability: signal

* Changes in WR frequency/spatial pattern
— Changes between periods
| P2=[1979:2008]
P1=[1957:1978]

— Projection WR onto GCMs outputs:

1 member of UCM- AMIP simulation

3 members of IPSL- AMIP simulation




Example: Inter-decadal variability

Number of days [Period2-Period1] & Sigma

a0 | I I I I
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ap L . ; n_l::ise-I ]
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Periodo 1 SLP(per2—per1)/sigma SOM 5 Periodo 1 SLP(per2Z—per1)/sigma SOM 22 Periodo 1 SLP(per2—peri)/sigma SOM 25
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Periodo 1 SLP totalper SOM 5 Periada 1 SLP totalper SOM 22 Periodo 1 SLP totalper SOM 25
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........................
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Example: impact on the tropical
climate?

difference of mean frequency WAM +/- CL=90%

— 201 11

151 ]

= b3 e B LROOh = 00D
TR T T T T T T T

TOBE ANSWERED 45— = = =
ON MONDAY... T
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Summary

In the Euro-Atlantic sector, Weather Regimes are linked to
perturbations of the Jet Streams

Weather Regime approach is useful to find preferred states of
the atmosphere that define from synoptic to low-frequency
atmospheric variability

Low frequency can be interpreted as a change in the
amplitude/frequency of the WR or in the preferred transitions
between them

Ocean-Atmosphere interaction brings variability to the climate
system at many timescales

Mediterranean SST positive (negative) anomalies could be a
precursor of more frequency of particular WR related to summer
negative (positive) NAO.



