
2499-2

International Training Workshop on FPGA Design for Scientific
Instrumentation and Computing

Cristian SISTERNA

11 - 22 November 2013

National University of San Juan

San Juan

Argentina

Introduction to VHDL for Implementing Digital Designs into FPGAs

ICTP2013Cristian Sisterna 1

Introduction to VHDL for
Implementing Digital Designs
into FPGAs

ICTP2013Cristian Sisterna

Introduction

V
H
D
L

Very High Speed
ICs

Language

Hardware

Description

2

ICTP2013Cristian Sisterna

Hardware Description Language

FPGA ASIC

ActelXilinx Altera Lattice

HDL
(VHDL/Verilog)

3

ICTP2013Cristian Sisterna

Hardware Description Language

High level of abstraction

Easy to debug

Parameterized designs

Re-uso
IP Cores (free) available

if(reset=‘1’) then
count <= 0;

elsif(rising_edge(clk)) then
count <= count+1;

end if;

4

ICTP2013Cristian Sisterna

What is not VHDL

Verilog o VHDL IS NOT A programming
language; IT IS A HARDWARE
DESCRIPTION LENGUAGE

Verilog o VHDL is not (yet) a highly abstract
language:

y(n) = 0.75y(n-1) + 0.3x(n) ;
(Simulink/FPGA design flow)

5

ICTP2013Cristian Sisterna

HDL Synthesis Sub-Set

VHDL
Synthesizable

VHDL

Used to write code
to simulate the
behavior of a design

Used to implement
the design into
hardware (for
instance in FPGA)

6

ICTP2013Cristian Sisterna

VHDL - Synthesis

Synthesis
Tool

VHDL
Code

FPGA Library
of Components

Design
Constraints

Design
Attributes

FPGA list of
Components and

Connections

7

with tmp select
j <= w when “1000”,

x when “0100”,
y when “0010”,
z when “0001”,

'0‘when others;

Virtex 4
Spartan 6

NET CLOCK PERIOD = 50 ns;
NET LOAD LOC = P

attribute syn_encoding of my_fsm:
type is “one-hot”;

ICTP2013Cristian Sisterna

VHDL ‘Description’ Examples

x

y
z

sel

0

1

if(sel=‘1’) then
z <= y;

else
z <= x;

end if;

z <= y when sel=‘1’ else x;

8

ICTP2013Cristian Sisterna

VHDL ‘Description’ Ejemplos

d q

clk

if(clk)then
q <= d;

else
q <= q;

end if;

if(clk)then
q <= d;

end if;

9

if(rising_edge(clk))then
q <= d;

end if;

ICTP2013Cristian Sisterna

VHDL – Module Structure

d q

clk

entity

architecture

I/O

Functionality

ff.vhd

10

ICTP2013Cristian Sisterna

VHDL–Estructura de un módulo

d q

clk

entity ff is
port(

d,clk : in std_logic;
q : out std_logic);

end ff;

architecture test of ff is
begin
process(clk)
begin
if(rising_edge(clk)) then

q <= d;
end if;
end test;

ff.vhd
entity f
port(

end ff;

architecture test of ff is
begin
process(clk)
begin

end test;

11

ICTP2013Cristian Sisterna

VHDL Code – Is it really Works? ?

Unit Under Test

Test Bench

Stimulus
Signals

Tested
Signals

12

ICTP2013Cristian Sisterna

VHDL – Simulation / Verification

13

ICTP2013Cristian Sisterna

VHDL-FPGA Flujo de Diseño

Compilation

Functional
Verification

Synthesis &
Optimization

Place & Route

Timing
Verification

Back-end Tools

Front-end Tools

14

ICTP2013Cristian Sisterna

Design Implemented in the FPGA

15

ICTP2013Cristian Sisterna

Software to Use: Xilinx ISE 13.3

16

ICTP2013Cristian Sisterna

FPGA Board to Use

17

ICTP2013Cristian Sisterna 18

VHDL
Basic Language Elements

ICTP2013Cristian Sisterna

Identifiers

A basic identifier:
May only contain alphabetic letters (A to Z and a to z),
decimal digits (0 to 9) and the underline character (_)
Must start with an alphabetic letter
May not end with an underline character
May not include two successive underline characters
VHDL is not case-sensitive
No blank space(s) are allowed
Examples:

Same identifier
Txclk, TxClk, TXCLK, TxCLK

Legal identifiers
Rst, Three_State_Enable, CS_244, Sel7D

Illegal identifiers
_Set, 80X86, large#bits, m__RAM, add_

19

ICTP2013Cristian Sisterna

Data Objects

Each data object has a type and a class
The type indicates what type of data can be hold
by the data object
The class indicates what can be done with the
data object

Constant

Variable

Classes

Signal

File
20

std_logic
std_ulogic

integer

Types boolean

bit
std_logic_vector

unsigned . . .

ICTP2013Cristian Sisterna

Signal Class

Signals are used to connect concurrent elements (like
wires)

A new value is not immediately assigned

Different values can be assigned to a signal at different
times using signal assignment statements

A Data Object of class signal can hold information not
only about the value of the data, but also the time at
which the signal takes the new value

21

ICTP2013Cristian Sisterna

Signal Class

Signals represent physical interconnect (wire) that
communicate between processes as well as the I/O of the
system

Functional
Block

Functional
Block

PROCESS PROCESS
Signals

Signals Signals

Signals

22

ICTP2013Cristian Sisterna

Signal Declaration in the Architecture

Signal Declarations:
A signal is declared in the declarative part of an architecture,
and it has two parts:

signal count_i: std_logic;

Signal Name
(identifier)

Signal Type

std_logic/std_ulogic

unsigned
signed
integer

boolean

std_(u)logic_vector

23

Signal Keyword

ICTP2013Cristian Sisterna

Signal Declarations–Entity Port Declarations
Port declarations appear in the port section of an
entity declaration
Each port declaration is separated by semicolon
from the others
A port declaration has three parts:

[signal] reset_n: in std_logic;

Signal Name
Signal Type

Port Mode

in
out
inout
buffer

std_logic/std_ulogic

unsigned
signed
integer

boolean

std_(u)logic_vector

24

ICTP2013Cristian Sisterna

Port Modes

Mode in: cannot be assigned a value to, so it can only be
read and it appears on the RHS of the signal assignment

Mode out: can only be assigned to, so it can appear on
the LHS of the signal assignment

Mode inout: can be assigned to and be read, so in can
appear on either side of an assignment. It is intended to
be used only for bidirectional kind of I/O ports

Mode buffer: can be assigned to and be read, so in can
appear on either side of an assignment. However, do not
use mode buffer !

25

ICTP2013Cristian Sisterna

Simple Signal Assignment

count <= count + 1;
carry_out <= (a and b) or (a and c) or (b and c);
Z <= y;

Left Hand Side (LHS)
Target Signal

Right Hand Side (RHS)
Source Signal(s)

RHS Signal TypeLHS Signal Type

26

ICTP2013Cristian Sisterna

Signal Used as Interconnect

Signal declaration
inside architecture

• r, t, g, h, and qb are signals (by default)
• qa is a buried signal and needs to be

declared

LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;

ENTITY simp IS
PORT (

r, t, g, h : IN STD_LOGIC;
qb : OUT STD_LOGIC

);
END ENTITY simp;

ARCHITECTURE logic OF simp IS
SIGNAL qa : STD_LOGIC;

BEGIN

qa <= r OR t;
qb <= (qa AND NOT (g XOR h));

END ARCHITECTURE logic;

qb

qar

t

g

h

27

ICTP2013Cristian Sisterna

Signals – Initial Values

All signal have an initial value by the simulator when
simulation begins (elaboration phase of the
simulation):

It can be assigned in the signal declaration
signal ini_cnt: std_logic_vector(3 downto 0):= “1111”;

It will be given by default depending on the type of the signal:
It will be the first value of the type: for type bit is ‘0’; for type std_logic is ‘U’

signal counter: std_logic_vector(7 downto 0);
signal flag: boolean;
constant bus_width: integer := 16;
signal full_fifo: bit;
signal addr: std_logic_vector(bus_width-1 downto 0);
signal data: std_logic_vector(bus_width*2-1 downto 0);

28

ICTP2013Cristian Sisterna

Signals – Initial Values

For synthesis, there is no hardware interpretation of
an intial value -> SYNHESIS IGNORES INTIAL
VALUES

Missmatch between SIMULATION & HARDWARE !

Designer is responsable for setting the
Hardware in a known intial state

29

ICTP2013Cristian Sisterna

Signal Declarations and Visibility

package my_packg

signal A;

use my_packg.all;

entity test

port (B ...

architecture example of test is

signal C: ...

begin

...

my_process: process

signal D: …

A

B

C

D

30

ICTP2013Cristian Sisterna

Assigning Values to Signals

Examples
All bits

temp <= “10101010”;
temp <= x”aa” ; -- Hexadecimal

VHDL also supports ‘o’ for octal and ‘b’ for binary

Bit-slicing
temp (7 DOWNTO 4) <= “1010”;

Single bit
temp(7) <= ‘1’;

- Different values at different times
rst <= x”00”, x”AA” after 50 ns, x”FF” after 100 ns; -- just for simulation

Use double-quotes (“ “) to assign multi-bit values and single-
quotes (‘ ‘) to assign single-bit values

signal temp : std_logic_vector (7 downto 0);

31

ICTP2013Cristian Sisterna

Signals Resume

Not immediately updated
Declared within:

Architecture
Blocks
Packages
Implicit declaration in the entity declaration

Visible for all the processes in the architecture
In a combinatorial process synthesize as
combinatorial logic
In a sequential process synthesize as registers
Used to communicate between processes and
as I/O

32

ICTP2013Cristian Sisterna

Variable Class

A Data Object of class variable can hold a
simple value of a specific type

Variables are allowed in process, procedures and functions

Variables are used to hold intermediate values between
sequential instructions (like variable in the conventional
software languages)

Variable takes a new value immediately

Different values can be assigned to a variable at different
times using variable assignment statement

33

ICTP2013Cristian Sisterna

Variable Class

Variable declaration syntax:
variable <do_identifier> : <type> [:=initial value];

variable counter: integer range 0 to 10;
variable ASK: boolean;

Variable assignment statement

<variable> := <expression>;

counter := 5;

ASK := TRUE;

34

ICTP2013Cristian Sisterna

Variable Class

Can be declared in an architecture only inside a
process or in a subprogram

A process declared variable is never reinitialized

A sub-program declared variable is initialized for
each call to the subprogram

Value assignment has immediate effect

35

ICTP2013Cristian Sisterna

Variable Class

The variable assignments have no time dimension
associated with them. That is, the assignments take their
value immediately

Variables has no direct analogue in hardware

Variable can only be used within sequential areas, within a
process, in subprograms (functions and procedures) but
not in concurrent statements in the architecture body

36

ICTP2013Cristian Sisterna

Example: Variable vs Signal
--===================--

-- example of

-- bad use of signal

-- ===================--

entity cmb_var is

port (i0: in std_logic;

i1: in std_logic;

a: in std_logic;

q: out std_logic);

end cmb_var;

architecture bad of cmb_var is
signal val:integer range 0 to 1;
begin
test: process(i0, i1, a)
begin

if (a='0') then
val <= 1;

else
val <= 0;

end if;
case val is

when 0 =>
q <= i0;

when 1 =>
q <= i1;

end case;
end process test;
end bad;

--Example de MAL USO de SIGNALS
-- Referencia: ALTERA pg. 70

37

ICTP2013Cristian Sisterna

Example: Variable vs Signal

-- ---------------------- --
-- example of good use
-- of variables
-- ---------------------- --
entity cmb_var is

port (i0: in std_logic;

i1: in std_logic;

a: in std_logic;

q: out std_logic);
end cmb_var;

architecture good of cmb_var is

begin

test: process(i0, i1, a)

variable val:integer range 0 to 1;

begin

if (a='0') then

val := 1;

else

val := 0;

end if;

case val is

when 0 => q <= i0;

when 1 => q <= i1;

end case;

end process;

end good;

38

ICTP2013Cristian Sisterna

Signals vs Variables

 SIGNALS VARIABLES

Assign utility
<=

Represent circuit
interconnection

:=

Represent local storage

Scope
Global scope, comunication
between process

Local scope

Behavior
Update at the end of the
process statement

Update immediately

39

ICTP2013Cristian Sisterna

Constant Class

A Data Objects of class constant holds a single value
of a specific type

The value is assigned to the constant during its
declaration and the value can not be changed

Constant declaration:

constant <identifier>: type := value;

40

ICTP2013Cristian Sisterna

Constants - Examples

constant Bus_Width: integer := 16;

constant GNDLogic: bit := '0';

constant AnchoBus: integer := 16;

constant Message: string := “End of simulation";

constant error_flag:boolean := true;

constant ClkPeriod: time:= 50 ns;

constant RiseTime: time:= 5 ns;

41

ICTP2013Cristian Sisterna

Constant Examples

-- case 1
architecture ej_constant of ej1 is

constant tpo_delay: time := 10 ns;
begin

....
end architecture ej_constant;

-- case 2
proc_ejemplo: process(A, B)

constant t_hold: time:= 5 ns;
begin

....
end process;

42

ICTP2013Cristian Sisterna

Constant Examples

-- case 4
entity CPU is

generic (Add_width:integer:= 15);-- implicit constant
port(Input_CPU: in bit_vector(Add_width-1 downto 0);

Output_CPU: out bit_vector(31 downto 0));
end CPU;

-- case 3
package my_package is
constant mi_contador: integer:= 5;
constant max_cuenta: std_logic_vector(3 downto 0):= "1111";

end package;

43

ICTP2013Cristian Sisterna

Literals

Values assigned to objects or used within expressions.
The value is not always explicit

Characters: An ASCII character enclosed in single quotation
marks

‘1’, ‘Z’, ‘A’
The character is valid depending on the type of the data
object

String: A sequence of characters enclosed in double quotation
marks. A string may be assigned to an array of data objects
(bit_vector, std_logic_vector, string)

“00100”, “ZZZZZZZZ”, “a string”

44

ICTP2013Cristian Sisterna

Literals

Bit string: represent a sequence of ‘1’ and ‘0’ enclosed by double
quotation marks. A base specifier can be used

B”10010110” B”1001_0110”
X”FA”

Numeric: Integer and real
0 /= 0.0

Based:
2#100100001# = 145 16#FFCC# = 65484

45

ICTP2013Cristian Sisterna 46

Entity and Architecture

ICTP2013Cristian Sisterna

ENTITY Declaration

ENTITY <entity_name> IS
Generic declarations
Port Declarations

END ENTITY <entity_name> ; (1076-1993 version)

47

ICTP2013Cristian Sisterna

ENTITY : Port Declarations

Structure : <class> object_name : <mode> <type> ;
<class> : what can be done to an object
object_name : identifier (name) used to refer to object
<mode> : directional

IN (input) OUT (output)
INOUT (bidirectional) BUFFER (output w/ internal feedback)

<Type> : what can be contained in the object (discussed later)

ENTITY <entity_name> IS
GENERIC declarations
PORT (

SIGNAL clk : IN bit;
--Note: SIGNAL is assumed and is not required
q : OUT bit

);
END ENTITY <entity_name> ;

48

ICTP2013Cristian Sisterna

ENTITY : Generic Declaration

Generic values can be overwritten during compilation
i.e. Passing in parameter information

Generic must resolve to a constant during compilation

ENTITY <entity_name> IS
GENERIC (

CONSTANT tmax_cnt : integer = 324;
-- Note CONSTANT is assumed and is not required
default_value : INTEGER := 1;
cnt_dir : STRING := “up”

);
PORT declarations

END ENTITY <entity_name> ; --(1076-1993 version)

49

ICTP2013Cristian Sisterna

ARCHITECTURE

Analogy- schematic
Describes the functionality and timing of a model

Must be associated with an ENTITY
ENTITY can have multiple architectures
ARCHITECTURE statements execute concurrently (processes)
ARCHITECTURE styles

Behavioral : how designs operate
RTL : designs are described in terms of registers
Functional : no timing

Structural : netlist
Gate/component level

Hybrid : mixture of the two styles
End architecture with

END ARCHITECTURE <architecture_name>; -- VHDL ’93 & later
END ARCHITECTURE; -- VHDL ’93 & later
END; -- All VHDL versions

50

ICTP2013Cristian Sisterna

ARCHITECTURE

ARCHITECTURE <identifier> OF <entity_identifier> IS
--ARCHITECTURE declaration section (list does not include all)

SIGNAL temp : INTEGER := 1; -- signal declarations with optional default values
CONSTANT load : boolean := true; --constant declarations
--Type declarations (discussed later)
--Component declarations (discussed later)
--Subprogram declarations (discussed later)
--Subprogram body (discussed later)
--Subtype declarations
--Attribute declarations
--Attribute specifications

BEGIN
PROCESS statements
Concurrent procedural calls
Concurrent signal assignment
Component instantiation statements
Generate statements

END ARCHITECTURE <architecture_identifier>;

51

ICTP2013Cristian Sisterna

VHDL - Basic Modeling Structure

ENTITY entity_name IS
generics
port declarations

END ENTITY entity_name;

ARCHITECTURE arch_name OF entity_name IS
internal signal declarations
enumerated data type declarations
component declarations

BEGIN
signal assignment statements
PROCESS statements
component instantiations

END ARCHITECTURE arch_name;

52

ICTP2013Cristian Sisterna

a

Putting It All Together

ENTITY cmpl_sig IS
PORT (

a, b, sel : IN BIT;
x, y, z : OUT BIT

);
END ENTITY cmpl_sig;

ARCHITECTURE logic OF cmpl_sig IS
BEGIN

-- simple signal assignment
x <= (a AND NOT sel) OR (b AND sel);
-- conditional signal assignment
y <= a WHEN sel='0' ELSE

b;
-- selected signal assignment
WITH sel SELECT

z <= a WHEN '0',
b WHEN '1',

'0' WHEN OTHERS;
END ARCHITECTURE logic;

ARCHITECTURE

a

b
sel

x

a

b
sel

y

a

b
sel

z

ENTITY

b

sel

x

y

z

53

ICTP2013Cristian Sisterna 54

VHDL Types

ICTP2013Cristian Sisterna

VHDL Types Defined in STANDARD Package

Type BIT
2 logic value system (‘0’, ‘1’)

SIGNAL a_temp : BIT;
Bit_vector array of bits

SIGNAL temp : BIT_VECTOR (3 DOWNTO 0);
SIGNAL temp : BIT_VECTOR (0 TO 3);

Type BOOLEAN
(False, true)

Type INTEGER
Positive and negative values in decimal

SIGNAL int_tmp : INTEGER; -- 32-bit number
SIGNAL int_tmp1 : INTEGER RANGE 0 TO 255; --8 bit number

55

ICTP2013Cristian Sisterna

Other Types Defined in Standard Package

Type NATURAL
Integer with range 0 to 232

Type POSITIVE
Integer with range 1 to 232

Type CHARACTER
ASCII characters

Type STRING
Array of characters

Type TIME
Value includes units of time (e.g. ps, us, ns, ms, sec, min, hr)

Type REAL
Double-precision floating point numbers

56

ICTP2013Cristian Sisterna

Types Defined in STD_LOGIC_1164 Package

Type STD_LOGIC
9 logic value system (‘U’, ‘X’, ‘0’, ‘1’, ‘Z’, ‘W’, ‘L’, ‘H’, ‘-’)

Resolved type: supports signals with multiple drivers
Driving multiple values onto same signal results in known value

Type STD_ULOGIC
Same 9 value system as STD_LOGIC
Unresolved type: Does not support multiple signal drivers

Driving multiple values onto same signal results in error

‘1’: Logic high
‘0’: Logic low
‘X: Unknown
‘Z’: (not ‘z’) Tri-state
‘-’: Don’t Care

‘U’: Undefined
‘H’: Weak logic high
‘L’: Weak logic low
‘W’: Weak unknown

57

ICTP2013Cristian Sisterna

Types

VHDL has built-in data types to model hardware
(e.g. BIT, BOOLEAN, STD_LOGIC)
VHDL also allows creation of brand new types for
declaring objects (i.e. constants, signals,
variables)

Subtype
Enumerated Data Type
Array

58

ICTP2013Cristian Sisterna

Subtype

A constrained type
Synthesizable if base type is synthesizable
Use to make code more readable and flexible

Place in package to use throughout design

ARCHITECTURE logic OF subtype_test IS

SUBTYPE word IS std_logic_vector (31 DOWNTO 0);
SIGNAL mem_read, mem_write : word;

SUBTYPE dec_count IS INTEGER RANGE 0 TO 9;
SIGNAL ones, tens : dec_count;

BEGIN

59

ICTP2013Cristian Sisterna

Enumerated Data Type

Allows user to create data type name and values
Must create constant, signal or variable of that type to use

Used in
Making code more readable
Finite state machines

Enumerated type declaration
TYPE <your_data_type> IS

(data type items or values separated by commas);

TYPE enum IS (idle, fill, heat_w, wash, drain);
SIGNAL fsm_st : enum;

…
drain_led <= ‘1’ WHEN fsm_st = drain ELSE ‘0’;

60

ICTP2013Cristian Sisterna

Array

Creates multi-dimensional data type for storing
values

Must create constant, signal or variable of that type

Used to create memories and store simulation
vectors
VHDL 2008 allows unconstrained elements
Array type Declaration

TYPE <array_type_name> IS ARRAY (<integer_range>) OF
<data_type>;

array depth

what can be stored in each array address

61

ICTP2013Cristian Sisterna

Array Example

ARCHITECTURE logic OF my_memory IS
-- Creates new array data type named mem which has 64
-- address locations each 8 bits wide
TYPE mem IS ARRAY (0 to 63) OF std_logic_vector (7 DOWNTO 0);

-- Creates 2 - 64x8-bit array to use in design
SIGNAL mem_64x8_a, mem_64x8_b : mem;

BEGIN
…
mem_64x8_a(12) <= x“AF”;
mem_64x8_b(50) <= “11110000”;
…

END ARCHITECTURE logic;

62

ICTP2013Cristian Sisterna 63

Concurrent Signal Assignment

ICTP2013Cristian Sisterna

Concurrent Signal Assignments

Used to assign values to signals using
expressions
Represent implied processes that execute in
parallel

Process sensitive to anything on read (right) side of assignment

Three types
Simple signal assignment
Conditional signal assignment
Selected signal assignment

64

ICTP2013Cristian Sisterna

Simple Signal Assignment Statement

Format: <signal_name> <= <expression>;

Example:

Expressions use VHDL operators to describe behavior

2 implied
processes

qa <= r OR t ;
qb <= (qa AND NOT (g XOR h));

Parenthesis () give the
order of operation

r

t

g

h

qb

65

ICTP2013Cristian Sisterna

Conditional Signal Assignment Statement

q <= a WHEN sela = ‘1’ ELSE
b WHEN selb = ‘1’ ELSE
c;

<signal_name> <= <signal/value> WHEN <condition_1> ELSE
<signal/value> WHEN <condition_2> ELSE

…
<signal/value> WHEN <condition_n> ELSE
<signal/value>;

c

b
selb a

sela

q

Format:

Example:

66

ICTP2013Cristian Sisterna

Selected Signal Assignments

WITH <expression> SELECT
<signal_name> <=<signal/value> WHEN <condition_1>,

<signal/value> WHEN <condition_2>,
…

<signal/value> WHEN OTHERS;

a

d
sel

2

b
c q

Implied process

WITH sel SELECT
q <= a WHEN “00”,

b WHEN “01”,
c WHEN “10”,
d WHEN OTHERS;

Format:

Example:

67

ICTP2013Cristian Sisterna

Selected Signal Assignments

All possible conditions must be considered
WHEN OTHERS clause evaluates all other
possible conditions that are not specifically stated

See next slide

68

ICTP2013Cristian Sisterna

Selected Signal Assignment

• What are the values for a
STD_LOGIC data type

• Answer: {‘0’,’1’,’X’,’Z’ … }

• Therefore, is the WHEN OTHERS
clause necessary?

• Answer: YES

sel is of STD_LOGIC data type

LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;

ENTITY cmpl_sig IS
PORT (

a, b, sel : IN STD_LOGIC;
z : OUT STD_LOGIC

);
END ENTITY cmpl_sig;

ARCHITECTURE logic OF cmpl_sig IS
BEGIN

-- Selected signal assignment
WITH sel SELECT

z <= a WHEN '0',
b WHEN '1',
'0' WHEN OTHERS;

END ARCHITECTURE logic;

69

ICTP2013Cristian Sisterna

VHDL Model - Concurrent Signal Assignments

• The signal assignments execute in
parallel, and therefore the order we list
the statements should not affect the
outcome

LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;

ENTITY cmpl_sig is
PORT (

a, b, sel : IN STD_LOGIC;
x, y, z : OUT STD_LOGIC

);
END ENTITY cmpl_sig;

ARCHITECTURE logic OF cmpl_sig IS
BEGIN

-- Conditional signal assignment
y <= a WHEN sel='0' ELSE

b;
-- Selected signal assignment
WITH sel SELECT

z <= a WHEN '0',
b WHEN '1',
‘X' WHEN OTHERS;

-- Simple signal assignment
x <= (a AND NOT sel) OR (b AND sel);

END ARCHITECTURE logic;

a

ARCHITECTURE

a

b
sel

x

a

b
sel

y

a

b
sel

z

ENTITY

b

sel

x

y

z

70

ICTP2013Cristian Sisterna 71

Sequential Statements

Intro

ICTP2013Cristian Sisterna

Sequential Statements

The order or sequence of sequential statements is
very important

Allow to describe the behavior of a
circuit as a sequence of related events

Can be used to model, simulate and synthesize:
Combinational logic circuits
Sequential logic circuits

They are used inside of:
Processes
Functions
Procedures

72

ICTP2013Cristian Sisterna

Process Statement

A process, with all the sequential statements, is a
simple concurrent statement. That is, a process is
executed in just one delta time

From the traditional programming view, it is an
infinite loop

Multiple processes can be executed in parallel

A process is a concurrent statement, but
it is the primary mode of introducing

sequential statements

73

ICTP2013Cristian Sisterna

Anatomy of a Process

execution

wait

A process has two states: execution and wait

Once the process has been executed, it will wait for the
next satisfied condition

Until a
condition is
satisfied

74

ICTP2013Cristian Sisterna

process - Syntax

process sensitivity_list
[declarations;]

begin
sequential_statements;

end process;

process
[declarations;]

begin
sequential_statements;
wait on sensitivity_list;

end process;

1

2

75

ICTP2013Cristian Sisterna

process Syntax

[process_label:] process [(sensitivity_list)]
[is]
[process_data_object_declarations]

begin
variable_assignment_statement
signal_assignment_statement
wait_statement
if_statement
case_statement
loop_statement
null_statement
exit_statement
next_statement
assertion_statement
report_statement
procedure_call_statement
return_statement
[wait on sensitivity_list]

end process [process_label];

Sequential
statements

76

ICTP2013Cristian Sisterna

Parts of a Process

sensitivity_list
List of all the signals that are able to trigger the process
Simulation tools monitor events on these signals
Any event on any signal in the sensitivity list will cause to
execute the process at least once

sequential_statements
All the sequential statements that will be executed each
time that the process is activated

declarations
Declarative part. Types, functions, procedures and
variables can be declared in this part
Each declaration is local to the process

77

ICTP2013Cristian Sisterna

Signal Behavior in a process

While a process is running ALL the SIGNALS in the

system remain unchanged -> Signals are in effect

CONSTANTS during process execution, EVEN after

a signal assignment, the signal will NOT take a new

value

SIGNALS are updated at the end of a
process or in a wait statement

78

ICTP2013Cristian Sisterna

Signal - process

Signals are the interface between VHDL’s concurrent
domain and the sequential domain within a process

Signals are a mean of communication between
processes -> VHDL can be seen as a network of

processes intercommunicating via signals

79

ICTP2013Cristian Sisterna

Variable Behavior in a process

While a process is running ALL the Variables in the

system are updates IMMEDIATELY by a

variable assignment statement

80

ICTP2013Cristian Sisterna

Clocked process

If a signal is not assigned a value in a clocked
process, the signal will retain the old value

Clocked processes lead to all the signals assigned inside
the process resulting in a flip-flop

Variables can also give a flip-flop in a clocked process. If a
variable is read before it is assigned a value, it will result in
a flip-flop for the variable (bad practice!)

A clocked process can result in combinational logic
besides the flip-flop(s). All logic caused by a signal
assignment in a clocked process will end up on the “left”
of the flip-flop (before the flip-flop’s input)

81

ICTP2013Cristian Sisterna

Clocked process

entity ff_example is
port(

d : in std_logic;
clk : in std_logic;
q : out std_logic);

end entity;

architecture rtl of ff_example is
begin
ff_d: process (clk)
begin

if (rising_edge(clk)) then
q <= d;

end if;
end process ff_d;
end rtl;

82

ICTP2013Cristian Sisterna

Clocked process
entity ff_example is
port(

d, clk, rst: in std_logic;
q : out std_logic);

end entity;
architecture rtl of ff_example is
begin
ff_d_srst: process (clk)
begin

if (rising_edge(clk)) then
if (rst=‘1’) then

q <= ‘0’;
else

q <= d;
end if;

end if;
end process ff_d_srst;
end rtl;

83

ICTP2013Cristian Sisterna

Clocked process

entity ff_example is
port(

d, clk, rst: in std_logic;
q : out std_logic);

end entity;
architecture rtl of ff_example is
begin
ff_d_arst: process (clk, rst)
begin

if (rst=‘1’) then
q <= ‘0’;

else if (rising_edge (clk)) then
q <= d;

end if;
end process ff_d_arst;

end rtl;

84

ICTP2013Cristian Sisterna

Clocked process
architecture rtl of example is
signal q: std_logic;
begin
FD1_B1: process (clk, rst)

begin
if (rst='1') then

q <= '0';
elsif (clk'event and clk='1') then

if (en='1') then
q <= …;-- some boolean expression(B1)

end if;
end if;

end process;
q1 <= q and -- some boolean expression(B2)

end rtl;

85

ICTP2013Cristian Sisterna

Clocked process - Counter

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

entity counter_ud is
generic(cnt_w: natural:= 4)
port (

-- clock & reset inputs
clk : in std_logic;
rst : in std_logic;
-- control input signals
up_dw : in std_logic;
-- ouptuts
count : out std_logic_vector(cnt_w-1 downto 0));

end counter_ud;

86

ICTP2013Cristian Sisterna

Clocked process - Counter
architecture rtl of counter_ud is
-- signal declarations
signal count_i: unsigned(cnt_w-1 downto 0);

begin
count_proc: process(clk, rst)
begin

if(rst='0') then
count_i <= (others => '0');

elsif(rising_edge(clk)) then
if(up_dw = '1') then -- up

count_i <= count_i + 1;
else -- down

count_i <= count_i - 1;
end if;

end if;
end process count_proc;

count <= std_logic_vector(count_i);

end architecture rtl;

87

ICTP2013Cristian Sisterna

Combinational process

In a combinational process all the input signals must
be contained in the sensitivity list

If a signal is omitted from the sensitivity list, the
VHDL simulation and the synthesized hardware will
behave differently

All the output signals from the process must be
assigned a value each time the process is executed.
If this condition is not satisfied, the signal will retain
its value (latch !)

88

ICTP2013Cristian Sisterna

Combinational process

entity example3 is
port (a, b, c: in bit;

z, y: out bit);
end example3;
architecture beh of example3 is
begin
process (a, b, c)
begin
if c='1' then

z <= a;
else

y <= b;
end if;

end process;
end beh;

89

ICTP2013Cristian Sisterna

Combinational vs Clocked process
. . . .
architecture rtl of com_ex is
begin
ex_c: process (a,b)
begin

z <= a and b;
end process ex_c;
end rtl;

. . . .
architecture rtl of reg_ex is
begin
ex_r: process (clk)
begin

if (rising_edge(clk)) then
z <= a and b;

end if;
end process ex_r;
end rtl;

90

ICTP2013Cristian Sisterna 91

Sequential Statement

if-then-elsif-end if

ICTP2013Cristian Sisterna

if-then-elsif-else-end if

if <boolean_expression> then
<sequential_statement(s)>

[elsif <boolean_expression> then
<sequential_statement(s)>]
. . .
[else
<sequential_statement(s)>]

end if;

Syntax

92

ICTP2013Cristian Sisterna

if-then-elsif-else-end if

• An if statement can have one or more branches,
controlled by one or more conditions.

• There can be any number of elsif branches to an if
statement.

• There may be only one else branch to the if statement,
and if it’s present it must be the last branch. It can also be
omitted.

• Each branch of an if statement can contain any number of
statements, it is not limited to a single statement.

• An if statement must always be terminated with an end if

93

ICTP2013Cristian Sisterna

if-then-elsif-else-end if

entity if_example_1 is
port(

a,b: in std_logic_vector(7 downto 0);
z : out std_logic);

end entity;
architecture rtl of if_example_1 is
begin
if_ex: process (a,b)
begin

if (a = b) then
z <= ‘1’;

else
z <= ‘0’;

end if;
end process if_ex;
end rtl;

Combinational process example:

94

ICTP2013Cristian Sisterna

if-then-elsif-else-end if

entity if_example_2 is
port(

a,b: in std_logic_vector(7 downto 0);
z : out std_logic);

end entity;
architecture rtl of if_example_2 is
begin
if_ex2: process (a,b)
begin

z <= ‘0’;
if (a = b) then

z <= ‘1’;
end if;

end process if_ex2;
end rtl;

Assigning values by default :

95

ICTP2013Cristian Sisterna

if-then-elsif-else-end if

entity if_example_3 is
port(

a,b,c,sel1,sel2: in std_logic;
z : out std_logic);

end entity;
architecture rtl of if_example_3 is
begin
if_ex3: process (a,b,c,sel1,sel2)
begin

if (sel1 = ‘1’) then
z <= a;

elsif (sel2 = ‘1’) then
z <= b;

else
z <= c;

end if;
end process if_ex3;
end rtl;

96

ICTP2013Cristian Sisterna

if-then-elsif-else-end if

library ieee;
use ieee.std_logic_1163.all;

entity if_example_9 is
port(

sel1,a1,b1: in std_logic;
sel2,a2,b2: in std_logic;
sel3,a3,b3: in std_logic;
y1,y2,y3 : out std_logic);

end entity;

architecture rtl of if_example_9 is
begin

y1 <= a1 when sel1=‘1’ else b1;

97

ICTP2013Cristian Sisterna

if-then-elsif-else-end if

if_ex9_1: process (sel2,a2,b2)
begin

y2 <= b2;
if (sel2 = ‘1’) then

y2 <= a2;
end if;

end process if_ex9_1;
if_ex9_2: process (sel3,a3,b3)

if (sel3 = ‘1’) then
y3 <= a3;

else
y3 <= b3;

end if;
end process if_ex9_2;
end rtl;

98

ICTP2013Cristian Sisterna

if-then-elsif-else-end if

entity if_decoder_example is
port(

a: in std_logic_vector(2 downto 0);
z: out std_logic_vector(7 downto 0);

end entity;
architecture rtl of if_decoder_example is
begin
if_dec_ex: process (a)
begin

if (a = “000”) then z <= “00000001”;
elsif (a = “001”) then z <= “00000010”;
elsif (a = “010”) then z <= “00000100”;
. . .
elsif (a = “110”) then z <= “010000000”;
else z <= “10000000”;
end if;

end process if_dec_ex;
end rtl;

99

ICTP2013Cristian Sisterna

if-then-elsif-else-end if

The conditions in the successive branches of an if
statement are evaluated independently

Due to the structure of the if statement, the earlier
conditions are tested first => There is a priority

There can be any number of conditions, each
of which will be independent of the others

100

ICTP2013Cristian Sisterna

if-then-elsif-else-end if

In a multi-branch if statements, each condition can be,
and will normally be, dependent on different signals
and variables.

A case statement should be used when every branch
is dependent on the same signal or variable.

It’s important to remember the prioritization of the
conditions to avoid redundant tests

101

ICTP2013Cristian Sisterna

if-then-elsif-else-end if

If the target signal is part of a combinatorial circuit, it
has to gets a value under all possible conditions of the if
statement

• There are two usual situations where a signal does
not receive a value:
• A missing else statement
• When the signal is not assigned to in some branches

of the if statement

The signal preserve the previous value

Latch !
102

ICTP2013Cristian Sisterna

if-then-elsif-else-end if

Make sure that every signal that gets a
value in an if statement also get assigned
on every branch of the if and in the else
part

Initialize the signals in the if statement in
an unconditional assignment before the if

Two ways of avoiding generating unwanted latches

103

ICTP2013Cristian Sisterna

if-then-elsif-else-end if

entity if_example_4 is
port(

d, clk: in std_logic;
q : out std_logic);

end entity;
architecture rtl of if_example_4 is
begin
if_ex4: process (clk)
begin

if (clk’event and clk = ‘1’) then
q <= d;

end if;
end process if_ex4;
end rtl;

Clocked process example:

104

ICTP2013Cristian Sisterna

if-then-elsif-else-end if

entity if_example_5 is
port(

d, clk: in std_logic;
q : out std_logic);

end entity;
architecture rtl of if_example_5 is
begin
if_ex5: process (clk)
begin

if (clk’event and clk = ‘1’) then
q <= d;

else
q <= d;

end if;
end process if_ex5;
end rtl;

Clocked process example:

105

ICTP2013Cristian Sisterna

if-then-elsif-else-end if

architecture rtl of if_expl_6 is
begin
if_ex6: process (a,b,c)
begin

if (c = ‘1’) then
z <= a;

else
y <= b;

end if;
end process if_ex6;
end rtl;

106

ICTP2013Cristian Sisterna

if-then-elsif-else-end if

example 4 example 4_1

example 4_3example 4_2

Describe in VHDL the following circuits:

107

ICTP2013Cristian Sisterna

if-then-elsif-else-end if

example 4_4

Describe in VHDL the following circuit:
Case A – set and rst asynchronous
Case B - set and rst synchronous

108

ICTP2013Cristian Sisterna

if-then-elsif-else-end if

The same rules we have seen for signals, apply for
variables. However, unlike signals, the reading and
writing of variables in the same process will result in

feedback only if the read occurs earlier in the process
then the write

Variables get registered when there is a
feedback of a previous variable value

Use of variables within if statements

109

ICTP2013Cristian Sisterna

if-then-elsif-else-end if

architecture rtl of if_expl_7 is
begin
if_ex7: process (clk)
variable count: unsigned(7 downto 0);
begin

if (rising_edge (clk)) then
if(rst = ‘1’) then
count := (others => ‘0’);

else
count := count + 1;

end if;
end if;
result <= count;

end process if_ex7;
end rtl;

Use of variables within if statements, example:

110

ICTP2013Cristian Sisterna

if-then-elsif-else-end if

Synthesis result

111

ICTP2013Cristian Sisterna

Example Counter – Using Integer

112

ICTP2013Cristian Sisterna

Example Counter – Using Usigned

113

ICTP2013Cristian Sisterna

if-then-elsif-else-end if

Conclusions
The inadequate use of the if statement can generate
unwanted logic
Using nested if-then it is possible:

Introduce priority
Use more logic
Generate latches

114

ICTP2013Cristian Sisterna 115

Sequential Statements

when-case statement

ICTP2013Cristian Sisterna

Statement: case - Syntax

[case label:]case <selector_expression> is

when <choice_1> =>

<sequential_statements> -- branch #1

when <choice_2> =>

<sequential_statements> -- branch #2

. . .

[when <choice_n to/downto choice_m > =>

<sequential_statements>] -- branch #n

....

[when <choice_x | choice_y | . . .> =>

<sequential_statements>] -- branch #...

[when others =>

<sequential_statements>]-- last branch

end case [case_label];

116

ICTP2013Cristian Sisterna

Statement: case

There must exactly one choice for each possible value
of the <selector_expression> (mutually exclusive)

The value of the <selector_expression> is used
to select which statements to execute

The <selector_expression> can be a signal,
variable, any discrete type: integer or enumerated, or an
array

The <choices> are values that are compared with the
value of the <selector_expression>

117

ICTP2013Cristian Sisterna

Statement: case

The case statement finds the branch with exactly the
same choice value as the <selector_expression> and
executes the statements in that branch

• More than one choice can be included in each branch
by writing the choices separated by the “|” symbol (it can
be read as ‘or’)

The type of each choice must be of the same type as the
type resulting from the <selector_expression>

118

ICTP2013Cristian Sisterna

Statement: case

The special choice others is used to handle all
possible values of <selector_expression> not
mentioned on previous alternatives.

The optional choice [when <choice_n to/downto
choice_m > specify a discrete range of values. If the
value of the <selector_expression> matches any of
the values in the range, the statements in the branch
are executed. This option can be used only if the
<selector_expression> is of a discrete type.

If it is included, there must only be one branch that
uses the others choice, and it must be the last
alternative in the case statement.

119

ICTP2013Cristian Sisterna

Statement: case

entity mux is
port(sel : in std_logic;

a, b: in std_logic;
z : out std_logic);

end entity;

architecture behavioral of mux is
begin
mux_proc: process(a,b,sel)
begin

case sel is
when '0' =>

z <= a;
when '1' =>

z <= b;
end case;

end process mux_proc;
end behavioral;

120

ICTP2013Cristian Sisterna

Statement: case
example 1 mux

121

ICTP2013Cristian Sisterna

Statement: case
entity mux is

port(sel : in std_logic;
a, b: in std_logic;
z : out std_logic);

end entity;
architecture behavioral of mux is
begin
process(a,b,sel)
begin

case sel is
when '0' =>

z <= a;
when '1' =>

z <= b;
--….. ??

end case;
end process;

end behavioral;
122

ICTP2013Cristian Sisterna

Statement: case

entity mux4 is
port (sel : in std_ulogic_vector(1 downto 0);

d0, d1, d2, d3 : in std_ulogic;
z : out std_ulogic);

end entity mux4;
architecture demo of mux4 is
begin
out_select : process (sel, d0, d1, d2, d3) is

begin
case sel is

when “00” => z <= d0;
when “01” => z <= d1;
when “10” => z <= d2;
when others => z <= d3;

end case;
end process out_select;

end architecture demo;

123

ICTP2013Cristian Sisterna

Statement: case

124

ICTP2013Cristian Sisterna

Statement: case

type opcode is(nop, add, substract, load, store,
jump, jumsub, branch, halt);

. . .

case opcode is
when load | add | substract =>

operand <= memory_operand;
when store | jump |jumpsub | branch =>

operand <= address_operand;
when others =>

operand <= ‘0’;
end case;

125

ICTP2013Cristian Sisterna

Statement: case

type opcode is(nop, add, substract, load, store,
jump, jumsub, branch, halt);

. . .

case opcode is
when add to load =>

operand <= memory_operand;
when branch downto store =>

operand <= address_operand;
when others =>

operand <= ‘0’;
end case;

126

ICTP2013Cristian Sisterna

Statement: case
mux_mem_bus :process

(cont_out,I_P0,I_P1,I_A0,I_A1,Q_P0,Q_P1,Q_A0,Q_A1)
begin
mux_out <= I_P0;
case (cont_out) is

when "00" =>
if(iq_bus = '0') then

mux_out <= I_P0;--I_A0;
else

mux_out <= Q_P0;--Q_A0;
end if;

when "01" =>
if(iq_bus = '0') then

mux_out <= I_A0;--I_P0;
else

mux_out <= Q_A0;--Q_P0;
end if;

-- continue on next page . . .

127

ICTP2013Cristian Sisterna

Statement: case

when "10" =>
if(iq_bus = '0') then

mux_out <= I_P1;
else

mux_out <= Q_P1;
end if;

when "11" =>
if(iq_bus = '0') then

mux_out <= I_A1;
else

mux_out <= Q_A1;--Q_P1;
end if;

when others =>
mux_out <= I_P0;

end case;
end process mux_mem_bus;

128

ICTP2013Cristian Sisterna

Statement: case
architecture no_good_def_out of case_example is
type my_fsm is(idle, run);
signal current_State, present_state: my_fsm;
begin
process(current_state)
begin

case current_state is
when idle =>

q1 <= '1';
q2 <= '0';

when run =>
q1 <= '0';
q2 <= '1';

when others =>
q1 <= '0';
q2 <= '0';

end case;
end process;

end no_good_def_out;
129

ICTP2013Cristian Sisterna

Statement: case

-- correct way of coding
...
process(current_state)
begin
q1 <= '0';
q2 <= '0';

case current_state is
when idle =>

q1 <= '1';
when run =>

q2 <= '1';
when others =>

null;
end case;

end process;
end good;

130

ICTP2013Cristian Sisterna

Statement: case
-- Example of using ‘case’ with vectors --
entity ex_vector is

port(a: in std_logic_vector(4 downto 0);
q: out std_logic_vector(2 downto 0));

end ex_vector ;
architecture bad of ex_vector is
begin
process(a)
begin

case a is
when "00000" =>

q <= "011";
when "00001" to "11100" => -- error

q <= "010";
when others =>

q <= "000";
end case;

end process;
end bad;

131

ICTP2013Cristian Sisterna

Statement: case

architecture good of ex_vector is
begin
process(a)
variable int: integer range 0 to 31;

begin
int := to_integer(unsigned(a));
case int is

when 0 =>
q <= "011";

when 1 to 30 =>
q <= "010";

when others =>
q <= "000";

end case;
end process;

end good;

132

ICTP2013Cristian Sisterna

Statement: case

• Use of case
– Flat: do not induce unwanted prioritization
– Device logic utilization is more predictable
– Compiler force you to cover all cases
– Easier to read
– “truth-table-like”

133

ICTP2013Cristian Sisterna 134

Sequential Statements

for-loop

ICTP2013Cristian Sisterna

Statement: loop

[loop_label]:<iteration_scheme> loop

<sequential_statements>

end loop [loop_label];

-- first case of iteration scheme

for <identifier> in <discrete_range>

-- second case of iteration scheme

while <boolean_expresion | condition>

-- third case of iteration scheme

loop

135

ICTP2013Cristian Sisterna

Statement: loop

A loop is a mechanism for repeating a section of VHDL
code

Simple loop continues looping indefinitely
while-loop continues looping an unspecified number of times until
a condition becomes false
for-loop continues looping a specified number of times

The synthesis interpretation of loops is to replicate the
hardware described by the contents of the loop

statement once for each pass round of the loop.

The only synthesizable loop statement
it is the for-loop

136

ICTP2013Cristian Sisterna

Statement: for-loop - Syntax

[loop_label]: for identifier in discrete_range loop

<sequential_statements>

end loop [loop_label];

• The identifier is called loop parameter, and for each
iteration of the loop, it takes on successive values of the
discrete range, starting from the left element

• It is not necessary to declare the identifier
• By default the type is integer
• Only exists when the loop is executing

<identifier>

137

ICTP2013Cristian Sisterna

Statement: for-loop

--===--

-- Identifier declared in the loop is local to the loop

--==--

process

variable a, b: int;

begin

a:=10;

for a in 0 to 7 loop

b:=a;

end loop;

-- a = ?; b = ?

end process;

138

ICTP2013Cristian Sisterna

Statement: for-loop – Example 1

entity match_bit is
port (a, b : in std_logic_vector(7 downto 0);

matches: out std_logic_vector(7 downto 0));
end entity;
architecture behavioral of match_bit is
begin

process (a, b)
begin

for i in a’range loop
matches(i) <= not (a(i) xor b(i));

end loop;
end process;

end behavioral;

-- process (a, b)
-- begin
-- matches(7) <= not (a(7) xor b(7));
-- matches(6) <= not (a(6) xor b(6));
-- ..
-- matches(0) <= not (a(0) xor b(0));
-- end process;

139

ICTP2013Cristian Sisterna

Synthesis Example 1

Example
for_loop_1.vhd:
match_bit

140

ICTP2013Cristian Sisterna

Statement: for-loop – Example 2

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

entity count_ones is
port(vec: in std_logic_vector(15 downto 0);

count: out std_logic_vector(3 downto 0))
end count_ones;
architecture behavior of count_ones is

begin
cnt_ones_proc: process(vec)

variable result: unsigned(3 downto 0);
begin

result:= (others =>'0');
for i in vec’range loop

if vec(i)='1' then
result := result + 1;

end if;
end loop;
count <= std_logic_vector(result);

end process cnt_ones_proc;
end behavior;

141

ICTP2013Cristian Sisterna

Synthesis Example 2

142

ICTP2013Cristian Sisterna

Statement: for-loop – Example 3

library ieee;

use ieee.std_logic_1164.all;

entity generic_??? is

generic(width: positive := 3);

port (

sel : in std_logic_vector(width-1 downto 0);

en : in std_logic;

y_n : out std_logic_vector((2**width)-1 downto 0)

);

end generic_???;

143

ICTP2013Cristian Sisterna

Statement: for-loop – Example 3

architecture behavior of generic_??? is

begin

gen_proc: process (sel, en)

begin

y_n <= (others => ’1’) ;

dec_loop:for i in y_n’range loop

if (en=‘1’ and to_integer(unsigned(sel))= i) then

y_n(i) <= ’0’ ;

end if ;

end loop dec_loop;

end process;

end behavior;

144

ICTP2013Cristian Sisterna

Synthesis – Example 3

145

ICTP2013Cristian Sisterna

Statement: for-loop -

In practice, the array attributes are used to specify the
loop bounds:

for i in vec’range loop
for i in vec’reverse_range loop
for i in vec’low to vec’high loop
for i in vec’high downto vec’low loop

Because the hardware interpretation of a for loop,
the bounds of the loop must be constant

146

ICTP2013Cristian Sisterna

Statement: exit

--======================================
-- exit syntax
--======================================

exit [loop_label] [when <condition>]

Allows the execution of a for loop to be stopped,
even tough it has not completed all its iterations

147

ICTP2013Cristian Sisterna

Statement: exit – Example 4

entity find_one is
port(vec : in std_logic_vector(7 downto 0);

count: out std_logic_vector(2 downto 0));
end find_one ;

architecture behavior of find_one is
begin

find_one_proc: process(vec)
variable result: unsigned(3 downto 0);

begin
result:= (others =>'0');
for i in vec’reverse_range loop

exit when vec(i) = '1'
result := result + 1;

end loop;
count <= std_logic_vector(result);

end process find_one_proc;
end behavior;

148

ICTP2013Cristian Sisterna

Synthesis Example 4

149

ICTP2013Cristian Sisterna

Statement: next

Rather than exit the loop completely, the next statement
skips any statements remaining in the current iteration of
the loop and skips straight onto the next iteration

A next statement can be a good substitute for an if
statement for conditionally executing a group of
statements. The hardware required to implement the next
statement is the same as the hardware required to
implement the equivalent if statement

--==

-- next syntax

--==

next [loop_label] [when <condition>]

150

ICTP2013Cristian Sisterna

Statement: next – Example 5

entity count_ones is
port(vec : in std_logic_vector(15 downto 0);

count : out std_logic_vector(3 downto 0));
end count_ones;

architecture behavior of count_ones is
begin

process(vec)
variable result: unsigned(3 downto 0);

begin
result:= (others =>'0');
for i in vec’range loop

next when vec(i) = ‘0‘;
result := result + 1;

end loop;
count <= result;

end process;
end behavior;

151

ICTP2013Cristian Sisterna

Synthesis - Example 5

152

ICTP2013Cristian Sisterna

Signals and Variables: loop

library ieee;
use ieee.std_logic_1164.all;

entity signal_variable_loop is
port(

clk, data: in std_logic;
ya, yb : out std_logic_vector(3 downto 0));

end signal_variable_loop ;

architecture beh of signal_variable_loop is
signal pipe_b: std_logic_vector(3 downto 0);
begin
. . . .

153

ICTP2013Cristian Sisterna

Signals and Variables: loop

var_loop: process(clk)
variable pipe_a: std_logic_vector(3 downto 0);

begin
if(rising_edge(clk)) then

for i in 3 downto 1 loop
pipe_a(i) := pipe_a(i-1);

end loop;
pipe_a(0) := data;
ya <= pipe_a;

end if;
end process var_loop;
end beh;

154

ICTP2013Cristian Sisterna

Signals and Variables: loop

library ieee;
use ieee.std_logic_1164.all;

entity signal_variable_loop is
port(

clk, data: in std_logic;
ya, yb : out std_logic_vector(3 downto 0));

end signal_variable_loop ;

architecture beh of signal_variable_loop is
signal pipe_b: std_logic_vector(3 downto 0);
begin
. . . .

155

ICTP2013Cristian Sisterna

Signals and Variables: variable loop

var_loop: process(clk)
begin

if(rising_edge(clk)) then
pipe_a(0) := data;
for i in 1 to 3 loop

pipe_a(i) := pipe_a(i-1);
end loop;
ya <= pipe_a;

end if;
end process var_loop;
end beh;

pipe_a(0) := data;
pipe_a(1) := pipe_a(0);
pipe_a(2) := Pipe_a(1);
pipe_a(3) := pipe_a(2);

156

ICTP2013Cristian Sisterna

Signals and Variables: variable loop

157

ICTP2013Cristian Sisterna

Signals and Variables: signal loop

sig_loop: process(clk)
begin

if(rising_edge(clk)) then
pipe_b(0) <= data;
for i in 1 to 3 loop

pipe_b(i) <= pipe_b(i-1);
end loop;
yb <= pipe_b;

end if;
end process sig_loop;
end beh;

pipe_b(0) <= data;
pipe_b(1) <= pipe_b(0);
pipe_b(2) <= Pipe_b(1);
pipe_b(3) <= pipe_b(2);

158

ICTP2013Cristian Sisterna

Signal Implementation

159

ICTP2013Cristian Sisterna

Signal Implementation

160

ICTP2013Cristian Sisterna 161

Sequential Statements

assert

ICTP2013Cristian Sisterna

Statement: assert

One of the reasons for writing models of computer
systems is to verify that a design functions correctly

We can test a model by applying sample inputs and
checking that the outputs meet our expectations

Assert statements can check that the expected
conditions are met within the model

162

ICTP2013Cristian Sisterna

Statement: assert

Assert makes possible to test function and time
constraints on a VHDL model

Using assert it is possible to test prohibited signal
combinations or whether a time constraints is not
being met

It is not synthesizable

163

ICTP2013Cristian Sisterna

Statement: assert

assert <boolean_expression>
[report <string_expression>

[severity <severity_level>];

-- severity must be a value of severity_level:
-- NOTE, WARNING, ERROR, FAILURE

-- report syntax --
[report <string_expression>

[severity <severity_level>];

164

ICTP2013Cristian Sisterna

Statement: assert

If the boolean expression is not meet during simulation of a
VHDL design, a message of a certain severity is sent to the
designer

There are four different severity (error) levels
note
warning
error
failure

The message (from report <string_expression>)
and error level are reported to the simulator and are usually
displayed in the command window of the VHDL simulator

165

ICTP2013Cristian Sisterna

Statement: assert

Severity (error) levels indicate the degree to which the
violation of the assertion affects the operation of the
model

note: can be used to pass informative messages out

assert (free_memory => low_mem_limit)
report “low in memory…!”

severity note;

166

ICTP2013Cristian Sisterna

Statement: assert

– warning : can be used if an unusual situation
arises in which the model can continue to execute,
buy may produce unusual results

assert (packet_length /= 0)
report “empty network packet received”

severity warning;

167

ICTP2013Cristian Sisterna

Statement: assert

error : can be used to indicate that something
has definitely gone wrong and that corrective action
should be taken

assert (clock_pulse_width => min_clock_width)
report “clock width problems…!”

severity error;

168

ICTP2013Cristian Sisterna

Statement: assert

–failure : can be used to detect inconsistency that
should never arise

assert ((last_pos–first_pos)+1 = number_entries)

report “inconsistency in buffer model!”

severity failure;

169

ICTP2013Cristian Sisterna

Statement: assert - Example

process (clk)

begin
assert (now < 90 ns)

report “-- Stopping simulator --”

severity FAILURE;

end process;

now: is defined in the VHDL standard, it contains the simulator’s internal
absolute time

Using assert to stop a simulation (test bench)

170

ICTP2013Cristian Sisterna 171

Component Declaration –
Component Instantiation
Hierarchical VHDL

ICTP2013Cristian Sisterna

The Role of Components in RTL VHDL

Hierarchy in VHDL Components

Divide & Conquer

Each subcomponent can be designed and completely tested

Create library of components (technology independent if possible)

Third-party available components

Code for reuse

172

ICTP2013Cristian Sisterna

Hierarchy in VHDL - Components

High-Speed
DDR ADC

RS-232

173

ICTP2013Cristian Sisterna

Hierarchy in VHDL - Components

174

ICTP2013Cristian Sisterna

Components

Components are design entities that are used in
other design entities

In order to use an entity within another entity, a
component declaration is necessary for the entity
to be used

The interconnections between the component and
the entity’s signals is declared in the component
instantiation

175

ICTP2013Cristian Sisterna

Component Declaration

Define a sub-component within an entity
(component)

It can be declared in the architecture declarative
part or in the package declaration (items
declared in a package can be used in an entity-
architecture pair by using the library and the
package names)

Specify the component external interface: ports,
mode and type and also the component name (it
looks like an entity declaration)

176

ICTP2013Cristian Sisterna

Component Declaration

component comp_name [is]
[generic

(generic_interface_list);]
port (port_interface_list);

end component [component_name];

Syntax:

port_interface_list must be identical to that in the
component’s entity
generic_interface_list do not need to be declared in
the component declaration

177

ICTP2013Cristian Sisterna

Component Declaration

Top

Nand2

D_FF

Counter

BRAM

OutputsInputs

178

ICTP2013Cristian Sisterna

Component Declaration
entity nand2 is

port (a, b: in std_logic,
z: out std_logic);

end;
architecture rtl of nand2 is
…
end;

entity top is
port(…

);
end;
achitecture structural of top is
component nand2

port (a, b: in std_logic,
z : out std_logic);

end component;
…
begin
….
end;

179

ICTP2013Cristian Sisterna

Component Instantiation

component_label it labels the instance by giving a
name to the component to be instanced

generic_assocation_list assign new values to the
default generic values (given in the entity declaration)

port_association_list associate the signals in the
top entity/architecture with the ports of the component.
There are two ways of specifying the port map:
• Positional Association / Name Association

component_label: component_name

[generic map (generic_assocation_list)]

port map (port_association_list);

180

ICTP2013Cristian Sisterna

Positional Association

Each actual in the component instantiation is mapped by
position with each port in the component declaration

That is, the first port in the component declaration
corresponds to the first actual in the component
instantiation, the second with the second and so on

The I/Os on the component declaration, are called formals

In positional association, an association list is of the form

(actual1, actual2, actual3, … actualn);

181

ICTP2013Cristian Sisterna

Positional Association
-- component declaration

component NAND2

port (a, b: in std_logic,

z: out std_logic);

end component;

-- component instantiation

U1: NAND2 port map (S1, S2, S3);

-- S1 associated with a

-- S2 associated with b

-- S3 associated with z

actuals

formals

182

ICTP2013Cristian Sisterna

Named Association
In named association, an association list is of the form

(formal1=>actual1, formal2=>actual2, … formaln=>actualn);

-- component declaration

component NAND2

port (a, b: in std_logic;

z: out std_logic);

end component;

-- component instantiation

U1: NAND2 port map (a=>S1, z=>S3, b=>S2);

-- S1 associated with a,S2 with b and S3 with z

Connected to Component I/O Port
Internal Signal or Entity

I/O Port

183

ICTP2013Cristian Sisterna

Association Rules

The type of the formal and the actual being associated
must be the same

The modes of the ports must conform the rule that if the
formal is readable, so must the actual be. If the formal is
writable so must the actual be

If an actual is a port of mode in, it may no be associated
with a formal of mode out or inout

If the actual is a port of mode out, it may not be
associated with a formal of mode in or inout

If the actual is a port of mode inout, it may be associated
with a formal of mode in, out or inout

184

ICTP2013Cristian Sisterna

Unconnected Outputs

When a component is instanced, one of the outputs
sometimes has to be unconnected

This can be done using the keyword open

architecture rtl of top_level is

component ex4

port (a, b : in std_logic;

q1, q2: out std_logic;

end component;

begin

U1: ex4 port map(a=>a, b=>b, q1=>dout, q2=>open);

end;

185

ICTP2013Cristian Sisterna

Unconnected inputs

Leaving floating inputs is a very bad poor technique

If an input on a component is not to be used, the signal
should be connected to VCC or GND.

VHDL ’87: It is not permissible to map the input directly in
the port map, an internal signal must be used

186

ICTP2013Cristian Sisterna

Unconnected inputs

architecture rtl of top_level is

component ex4

port (a, b: in std_logic;

q1, q2: out std_logic;

end component;

signal gnd: std_logic;

begin

gnd <= ‘0’;

U1: ex4 port map(a=>gnd, b=>b, q1=>dout, q2=>open);

end;

187

ICTP2013Cristian Sisterna

Unconnected inputs

architecture rtl of top_level is

component ex4

port (a, b : in std_logic;

q1, q2: out std_logic;

end component;

begin

U1: ex4 port map(a=>’0’, b=>b, q1=>dout, q2=>open);

end rtl;

188

ICTP2013Cristian Sisterna

component - Example

entity GATING is
port (A, CK, MR, DIN: in BIT;

RDY, CTRLA: out BIT);
end GATING;

architecture STRUCT of GATING is
component AND2
port(X, Y: in bit;

Z: out bit);
end component;

component DFF
port (D, CLOCK: in BIT;

Q, QBAR: out BIT);
end component;

component NOR2
port (DA, DB: in BIT;

DZ: out BIT);
end component;

signal S1, S2: BIT;
begin
D1: DFF port map (A, CK, S1, S2);
A1: AND2 port map (S2, DIN, CTRLA);
N1: NOR2 port map (S1, MR, RD1);
end STRUCT;

189

ICTP2013Cristian Sisterna

Generic Map

If generic components have been specified in the component to be
instanced, their value can be changed during instantiation using the
command generic map

By using generics, it is possible to design components which can be
parameterized

Positional and named association can be used

generic map (generic_assocation_list);

190

ICTP2013Cristian Sisterna

component - Example
ARCHITECTURE ejemplo OF regist_variable IS

COMPONENT dff

GENERIC (width: POSITIVE);

PORT (rst, clk: IN std_LOGIC;

d: IN STD_LOGIC_VECTOR(width-1 downto 0);

q: OUT STD_LOGIC_VECTOR(width-1 downto 0));

END COMPONENT;

CONSTANT width_8: POSITIVE:= 8;

CONSTANT width_16: POSITIVE:= 16;

CONSTANT width_32: POSITIVE:= 32;

SIGNAL d8, q8: STD_LOGIC_VECTOR(7 DOWNTO 0);

SIGNAL d16, q16: STD_LOGIC_VECTOR(15 DOWNTO 0);

SIGNAL d32, q32: STD_LOGIC_VECTOR(31 DOWNTO 0);

191

ICTP2013Cristian Sisterna

component - Example (cont’)

BEGIN

FF8: dff GENERIC MAP(width_8)

PORT MAP (rst, clk, d8, q8);

FF16: dff GENERIC MAP(width_16)

PORT MAP (rst, clk, d16, q16);

FF32: dff GENERIC MAP(width_32)

PORT MAP (rst=>rst,clk=>clk,d=>d32, q=>q32);

END ejemplo;

192

ICTP2013Cristian Sisterna 193

Concurrent Statements

generate

ICTP2013Cristian Sisterna

Generate Statements

Concurrent statements can be conditionally selected
or replicated using the generate statement

Generate is a concurrent statement containing
further concurrent statements that are to be
replicated

There are two forms of the generate statement:
for-generate scheme: concurrent statements can be
replicated a predetermined number of times
if-generate scheme: concurrent statements can be
conditionally elaborated

194

ICTP2013Cristian Sisterna

Generate Statements

Generate statement resembles a macro expansion

If the same component has to be instanced several
times in the same architecture, it will be very effective
to include the port map statement in a loop

195

ICTP2013Cristian Sisterna

for-generate

G_LABEL: FOR <identifier> IN <discrete_range> GENERATE

[block_declarative_part]

[begin]

concurrent_statements;

END GENERATE [G_LABEL];

• The value in the discrete range must be globally static

• During the elaboration phase, the set of concurrent statements are
replicated once for each value of the discrete range

• There is an implicit declaration for the generate identifier. No
declaration is necessary for this identifier

• A label is required in the generate statement

Concurrent statements are repeated a predetermined
number of times

196

ICTP2013Cristian Sisterna

for-generate
entity reg_xx is

generic (bus_w:integer := 32);
port(clk, clr: in std_logic;

d : in std_logic_vector (bus_w-1 downto 0);
q : out std_logic_vector (bus_w-1 downto 0));

end reg_xx;
architecture estructural of reg_xx is

-- component declaration
component dff is

port (clk, clr, d, pr: in std_logic;
q: out std_logic);

end component;
-- signal declaration
signal gnd: std_logic;

begin
gnd <= '0';
-- component instantiation
reg_xx: for i in d’range generate

bit: dff port map (clk=>clk, clr=>clr, d=>d(i), q=>q(i), pr=>gnd);
end generate reg_xx;

end estructural;

197

ICTP2013Cristian Sisterna

for-generate

198

ICTP2013Cristian Sisterna

for-generate Scheme
entity FULL_ADD4 is
port (A, B: in std_logic_vector(3 downto 0);
CIN: in std_logic_vector;
SUM: out std_logic_vector (3 downto 0); COUT: out std_logic);

end FULL_ADD4;
architecture FOR_GENERATE of FULL_ADD4 is
component FULL_ADDER
port (PA, PB, PC: in std_logic;

PCOUT, PSUM: out std_logic);
end component;
signal CAR: std_logic_vector (4 downto 0);
begin
CAR(0) <= CIN;
GK: for K in 0 to 3 generate
FA:FULL_ADDER port map(CAR(K),A(K),B(K),CAR(K+1),SUM(K));
end generate GK;
COUT <= CAR(4);

end FOR_GENERATE;

199

ICTP2013Cristian Sisterna

for-generate Scheme
--- the previous generate statement is expanded to the
--- following four blocks
GK: block
constant K: INTEGER := 3;
begin
FA: FULL_ADDER port map (CAR(K), A(K), B(K), CAR(K+1), SUM(K));

end block GK;

GK: block
constant K: INTEGER := 2;
begin
FA: FULL_ADDER port map (CAR(K), A(K), B(K), CAR(K+1), SUM(K));

end block GK;

. . . .
GK: block
constant K: INTEGER := 0;
begin
FA: FULL_ADDER port map (CAR(K), A(K), B(K), CAR(K+1), SUM(K));

end block GK

200

ICTP2013Cristian Sisterna

for-generate

Example 1

201

ICTP2013Cristian Sisterna

for-generate Scheme

High-Speed
ADC

(Max104)

x8

x8

FPGA

.

.

.

DDR Clock

IBUFDS

IBUFDS

202

ICTP2013Cristian Sisterna

for-generate Scheme
library IEEE;
use IEEE.STD_LOGIC_1164.all;
package VCOMPONENTS is

. . . .

-- IBUFDS: Differential Input Buffer
-- Virtex-II/II-Pro, Spartan-3
-- Xilinx HDL Libraries Guide version 11.1i

component IBUFDS
generic map (IOSTANDARD => "LVDS_25")
port map (

O => O, -- buffer output
I => I, -- Diff_p clock buffer input
IB => IB -- Diff_n clock buffer input);

end component;
. . . .
end package VCOMPONENTS;

I

IB
O

203

ICTP2013Cristian Sisterna

for-generate Scheme
abus_diff_sstl2: for i in 0 to 7 generate

u_abus: IBUFDS
--generic map (IOSTANDARD => "SSTL2_II")
port map(

O => a_bus(i),
I => a_bus_p(i),
IB=> a_bus_n(i)
);

end generate abus_diff_sstl2;

pbus_diff_sstl2: for i in 0 to 7 generate
u_pbus: IBUFDS

--generic map (IOSTANDARD => "SSTL2_II")

port map(
O => p_bus(i),
I => p_bus_p(i),
IB=> p_bus_n(i)
);

end generate pbus_diff_sstl2;

204

ICTP2013Cristian Sisterna

if-generate

• The if-generate statement allows for conditional selection of
concurrent statements based on the value of an expression

• The expression must be a globally static expression

• The if-generate statement does not have else, elsif, endif

G_LABEL: IF <condition> GENERATE

[begin]

concurrent_statements;

END GENERATE [G_LABEL];

Syntax: if-generate, concurrent statements can be condicionally
elaborated

205

ICTP2013Cristian Sisterna

if-generate

206

ICTP2013Cristian Sisterna

if-generate

Example 2

207

ICTP2013Cristian Sisterna

if-generate

Another important use of conditional generate
statements is to conditionally include or omit part of the
design. Usually depending on the value of a generic
constant.

Typical examples:
Logic added just for debugging purposes
Additional processes or component instances used
only during simulation

208

ICTP2013Cristian Sisterna

if-generate

entity my_system is
generic (debug: boolean := true)
port (

. . .
);

end entity my_system;

architecture rtl of my_system is
. . .
begin
. . .
debug_comp: if debug generate

.. .
end generate debug_comp;
. . .
end architecture;

209

ICTP2013Cristian Sisterna 210

Finite State Machine

ICTP2013Cristian Sisterna

FSM Review

A sequential circuit that is implemented in a fixed
number of possible states is called a Finite State
Machine (FSM).

Finite state machines are critical for realizing the
control and decision-making logic in a digital system.

Finite state machines have become an integral part of the
system design.

VHDL has no formal format for modeling finite state
machines.

To model a finite state machine in VHDL certain
guidelines must be followed.

211

ICTP2013Cristian Sisterna

Outputs
Inputs

Next
State
Logic

Current
State
Logic Current

State

Next
State

Output
Logic

CLK
RST

State Machine General Diagram 1

212

ICTP2013Cristian Sisterna

Outputs

Next
State

Inputs
Next
State
Logic

Current
State
Logic

Current
State Output

Logic

CLK
RST

State Machine General Diagram 2

OOOSync
Output

FFs

213

ICTP2013Cristian Sisterna

Outputs

Next
State

Inputs
Next
State
Logic

Current
State
Logic Current

State

CLK
RST

State Machine Diagram 3

Sync
Output

FFs

214

ICTP2013Cristian Sisterna

Output A

Next
State

Inputs
Next
State
Logic

Current
State
Logic

Current
State

CLK
RST

State Machine General Diagram 4

Sync
Output

FFs

Sync
Output

FFs
Output Z

. . . .

215

ICTP2013Cristian Sisterna

State Machine VHDL General Flow

Specification

Understand the Problem

Draw the ASM or State Diagram

Define FSM Enumerated Type

Define FSM Signals

Select One Coding Style

Write the Code

216

ICTP2013Cristian Sisterna

State Machine General Diagram

Different processes

Coding Style Current State
Clocked Process

Next State Logic Output Logic

Style A (Comb)
Style B
Style C
Style D
Style E (Seq)

Combined processes

217

ICTP2013Cristian Sisterna

Declare an enumerated data type with values the states of
the state machine:

-- declare the states of the state-machine
-- as enumerated type
type FSM_States is(IDLE,START,STOP_1BIT,PARITY,SHIFT);

The only values that current_state and next_state can hold
are: IDLE,START,STOP_1BIT,PARITY,SHIFT

State Machine: Declarative Part

-- declare signals of FSM_States type
signal current_state, next_state: FSM_States;

Declare the signals for the next state and current state of the
state machine as signal of the enumerated data type already
defined for the state machine:

218

ICTP2013Cristian Sisterna

State Machine: Clocked Process

The clocked process decides when the state machine
should change state

This process is activated by the state machine’s clock
signal

Depending on the present state and the value of the input
signals, the state machine can change state at every
active clock edge

Current state gets the value of the next state on the active
edge of the clock

Next state value is generated in the state transition
process, depending on the values of current state and the
inputs

219

ICTP2013Cristian Sisterna

State Machine: Combinatorial Process

Assigns the output signals their value depending on
the present state

Next state logic and output logic is best modeled
using case statements are better for this process

All the rules of combinatorial process have to be
followed to avoid generating unwanted latches

For Mealy Machines if-then-else statement is
used to create the dependency between the current
state, the input signal and output signal

220

ICTP2013Cristian Sisterna

State Machine: Reset behavior

Asynchronous reset: ensure that the state machine
is always initialized to a known valid state, before
the first active clock transition and normal operation
commences

No reset or a synchronous reset: there is no way to
predict the initial value of the state register flip-
flops. It could power up and become permanently
stuck in an uncoded state.

221

ICTP2013Cristian Sisterna

S1S0 X = 0
Z = 1

X = 0
Z = 0

X = 1
Z = 0

X = 1
Z = 1

S1
Z = 1

S0
Z = 0 X = 0X = 0

X = 1

X = 1

Mealy FSM

Moore FSM

FSM Style Descriptions - Example

222

ICTP2013Cristian Sisterna

process (state, X)
begin
case state is

when S0 =>
if(X=‘0’) then

next_state <= S0;
else(X=‘1’) then

next_state <= S1;
end if;

when S1 =>
if ….

next_State <=..;
….

end case;
end process;

process (clk, rst)
begin
if(rst = ‘1’) then

state <= S0;
elsif (rising_edge(clk))

then
state <= next_state;

end if;
end process;

process (state)
begin

case state is
when S0 => Z <=‘0’;
when S1 => Z <=‘1’;

end case;
end process;

Os

Next State Logic

Present State Logic Output Logic

Clock

Is

Reset

Style A - Moore State Machine

223

ICTP2013Cristian Sisterna

process (clk, rst)
begin

if(rst = ‘1’) then
state <= S0;

elsif (rising_edge(clk)) then
state <= next_state;

end if;
end process;

process (state, X)
begin

case state is
when S0 => if (X = ‘0’) then

Z <=…;
else

Z <=... ;
end if;

when S1 => if (X = ‘1’) then
.... ;

else
.... ;

end if;
end case;

end process;

Os

Next State Logic

Present State Logic Output Logic

Clock
Reset

Is

Style A - Mealy State Machine

process (state, X)
begin
case state is

when S0 =>
if(X=‘0’) then

next_state <=S0;
else(X=‘1’) then

next_state <=S1;
end if;

when S1 =>
if ….

next_State <=..;
….

end case;
end process;

224

ICTP2013Cristian Sisterna

Style A - Synthesis

Mealy

Moore

225

ICTP2013Cristian Sisterna

Is Os

State, Next State and Output Logic

Clock
Reset

Style B - Moore State Machine

process(clk, rst)
begin

if(rst = ‘1’) then
state <= S0;
Z <= ‘0’;

elsif (rising_edge(clk)) then
case state is

when S0 =>
if (X=’0’) then

state <= S0;
elsif (X=’1’) then

state <= S1;
end if;
Z <=‘0’;

when S1 =>
if (X = ‘0’) then

. . .
end if;
Z <= ‘1’ ;

end case;
end if;

end process;

226

ICTP2013Cristian Sisterna

Is

process(clk, rst)
begin

if(rst = ‘1’) then
state <= S0;
Z <= ‘0’;

elsif (rising_edge(clk)) then
case state is

when S0 =>
if (X=’0’) then

state <= ;
Z <= ... ;

elsif (X=’1’) then
state <= ;
Z <= ... ;

end if;
when S1 =>

if (X = ‘0’) then
. . .

end if;
end case;

end if;
end process;

Os

State, Next State and Output Logic

Clock
Reset

Style B - Mealy State Machine

227

ICTP2013Cristian Sisterna

Style B - Synthesis

Moore

Mealy

228

ICTP2013Cristian Sisterna

process (clk, rst)
begin

if(rst = ‘1’) then
State <= S0;

elsif (rising_edge(clk)) then
case state is

when S0 =>
if(X =’1’) then

state <=S1;
end if;

when S1 =>
if(X = ‘1’) then

state <=S0;
end if;

end case;
end if;

end process;

process (state)
begin

case state is
when S0 => Z <=‘0’;
when S1 => Z <=‘1’;

end case;
end process;

Os

Present State and Next State Logic

Output Logic

Clock

Is

Reset

Style C - Moore State Machine

229

ICTP2013Cristian Sisterna

process (clk, rst)
begin

if(rst = ‘1’) then
state <= S0;

elsif (rising_edge(clk)) then
case state is

when S0 =>
if(X =’1’) then

state <= ... ;
end if;

when S1 =>
if(X = ‘1’) then

state <= ... ;
end if;

end case;
end if;

end process;

process (state, X)
begin

case state is
when S0 =>

if(X=’1’) then
Z <= ... ;

else
Z <= ... ;

end if;
when S1 =>

if(X=’1’) then
Z <= ... ;

else
Z <= ... ;

end if;
end case;

end process;

Os

Present State and Next State Logic
Output Logic

Clock

Is

Reset

Style C - Mealy State Machine

230

ICTP2013Cristian Sisterna

Style C - Mealy State Machine

Moore

Mealy

231

ICTP2013Cristian Sisterna

process (state, X)
begin

next_state <= state;
case state is

when S0 =>
if(X =’1’) then

next_state <=S1;
end if;
Z <=‘0’;

when S1 =>
if(X = ‘1’) then

next_state <=S0;
end if;
Z <=‘1’;

end case;
end process;

process (clk, rst)
begin

if(rst = ‘1’) then
state <= S0;

elsif (rising_edge(clk)) then
state <= next_state;

end if;
end process;

OsNext State and Output Logic

Present State Logic

Clock

Is

Reset

Style D - Moore State Machine

232

ICTP2013Cristian Sisterna

process (state, X)
begin

next_state <= state;
Z <= ... ;

case state is
when S0 =>

if(X =’1’) then
next_state <= ... ;
Z <= ... ;

end if;
when S1 =>

if(X = ‘1’) then
next_state <= ... ;
Z <= ... ;

end if;
end case;

end process;

process (clk, rst)
begin

if(rst = ‘1’) then
state <= S0;

elsif (rising_edge(clk)) then
state <= next_state;

end if;
end process;

OsNext State and Output Logic

Present State Logic

Clock

Is

Reset

Style D - Mealy State Machine

233

ICTP2013Cristian Sisterna

Style D - Mealy State Machine

Moore

Mealy

234

ICTP2013Cristian Sisterna

process (clk, rst)
begin

if(rst = ‘1’) then
state <= S0;

elsif (rising_edge(clk)) then
state <= next_state;

end if;
end process;

process (clk, rst)
begin

if(rst = ‘1’) then
state <= S0;

elsif (rising_edge(clk)) then
case state is

when S0 => Z <=‘0’;
when S1 => Z<= ‘1’;

end case;
end process;

Os

Next State Logic

Present State Logic Seq. Output Logic

Clock
Reset

Is

Style E - Moore State Machine

process (state, X)
begin
case state is

when S0 =>
if(X=‘0’) then

next_state <=S0;
else(X=‘1’) then

next_state <=S1;
end if;

when S1 =>
if ….

next_State <=..;
….

end case;
end process;

235

ICTP2013Cristian Sisterna

Xilinx XST State Encoding Techniques

Auto-State Encoding

One-Hot Encoding

Gray State Encoding

Compact State Encoding

Johnson State Encoding

Sequential State Encoding

Speed1 State Encoding

User State Encoding

XST supports the following state encoding techniques:

236

ICTP2013Cristian Sisterna

XST State Encoding Techniques

Declare the attribute as follows:

attribute fsm_encoding: string;

Specify as follows:

attribute fsm_encoding of {entity_name|signal_name }: {entity
|signal} is "{auto|one-hot|compact|sequential|gray|johnson|
speed1|user}";

The default is auto

FSM_ENCODING (FSM Encoding Algorithm) Algorithm VHDL Syntax

237

ICTP2013Cristian Sisterna

Override the default FSM Compiler encoding for a FSM
Possible values:

• Default: assign an encoding style based on the number
of states:

• Sequential for 0 - 4 enumerated types

• One-hot for 5 - 24 enumerated types

• Gray for > 24 enumerated types

• Sequential: 000 001 010 011 100 101 110 111

• One-hot: 0000001 00000010 00000100 . . .

• Gray: 000 001 011 010 110 111 101 100

• Safe: default encoding + reset logic to a known state

syn_encoding - Synplify

238

ICTP2013Cristian Sisterna

syn_encoding - Synplify

-- declare the (state-machine) enumerated type
type my_state_type is (SEND, RECEIVE, IGNORE, HOLD, IDLE);
-- declare signals as my_state_type type
signal nxt_state, current_state: my_state_type;
-- set the style encoding
Attribute syn_encoding: string;
attribute syn_encoding of current_state: signal is one-hot;

Syntax (source code)

syn_encoding in SCOPE

239

ICTP2013Cristian Sisterna

Possible values:

• Binary

• Onehot

• Twohot

• Gray

• Random

-- Declare the (state-machine) enumerated type
type my_state_type is (SEND, RECEIVE, IGNORE, HOLD, IDLE);
-- Set the TYPE_ENCODING_STYLE of the state type
attribute TYPE_ENCODING_STYLE of my_state_type:type is ONEHOT;

type_encoding_style – Precision

240

ICTP2013Cristian Sisterna

type_encoding allows to fully control the state
encoding hard code the state code in the source code

-- Declare the (state-machine) enumerated type
type my_state_type is (SEND, RECEIVE, IGNORE, HOLD, IDLE);
-- Set the type_encoding attribute
attribute type_encoding of my_state_type:type is

("0001","01--","0000","11--","0010");

State
Table

Note: LeonardoSpectrum allows to use ‘-’. It can be
used to reduce the size of the circuit

type_encoding - Precision

241

ICTP2013Cristian Sisterna

State Machine Coding: Residual States

If one-hot state coding is not used, the
maximum number of states is equal to 2**N,
where N is the vector length of the state vector

In state machines where not all the states are
used, there are three options:

Let chance decide what is to happen if the machine
goes to an undefined state
Define what is to happen if the state machine goes
to an undefined state by ending the case statement
with when others
Define all the possible states in the VHDL code

242

ICTP2013Cristian Sisterna

State Machine Coding: Simulation

243

ICTP2013Cristian Sisterna

State Machine Coding: Synthesis

Synplify FSM Report:

244

ICTP2013Cristian Sisterna

State Machine Coding: Synthesis

==
* Advanced HDL Synthesis *
==
Analyzing FSM <FSM_0> for best encoding.
Optimizing FSM <rs232_tx/tx_current_state/FSM> on signal
<tx_current_state[1:3]> with sequential encoding.

State | Encoding

idle | 000
start | 001
shift | 010
parity | 011
stop_1bit | 100

XST FSM Report:

245

ICTP2013Cristian Sisterna

Realizar la descripción en VHDL de un receptor y
transmisor serie tipo RS-232. El dato recibido y el dato a
transmitir debe tener el siguiente formato:

1 bit de start
8 bits de datos
Paridad programable: paridad/no paridad, par/impar
1 bit de stop
Frecuencia de transmisión por defecto es de 9600
Bauds, pero el código debe permitir también otras
frecuencias como: 4800, 38400, 115200 Bauds.

FSM Example

246

ICTP2013Cristian Sisterna

FSM Example

RS-232 Tx format

247

ICTP2013Cristian Sisterna

Reg
Desplaza

miento

FSM
RS232 Tx Controller

Parity

DatoSent

StartTx

SysClock

SysReset

Dato(7:0)

StartStopBit

Sel1, Sel0

Done

00

01

10

E1

E0

DatoSerie

FSM Example

248

ICTP2013Cristian Sisterna 249

Subprogramas

ICTP2013Cristian Sisterna

Subprograms

Sequence of statements that can be executed
from multiple locations in the design

Provide a method for breaking large segments
of code into smaller segments

Types of subprograms:

Functions: used to calculate and return one
value

Procedures: used to define an algorithm
which affects many values or no values

250

ICTP2013Cristian Sisterna

Procedure

- Return zero or several values

- Can or can not be executed in zero simulation
time (wait statement)

Function

- Return only one value

- Executed in zero simulation time

- Can be invoked from an expression

Subprograms

251

ICTP2013Cristian Sisterna

Function

Provides a method of performing simple algorithms
Produce a single return value

Invoked by an expression

Can not modify parameters. Only mode allowed:

IN (read only)

wait statements are NOT permitted in a function

252

ICTP2013Cristian Sisterna

function function_name(parameters_list)return return_type is

function_declarations;

begin

sequential_statements;

return simple_value;

end [function] [function_name];

Function Syntax

Behavioral part

Declarative part

253

ICTP2013Cristian Sisterna

Function Parts - Definitions

<parameters_list>

- mode in only

- signals only

<sequential_statements>

- sequential instructions only

- always has to end with a return statement

[function_declarations]

-- the only class declarations allowed are:

Variables Constants

254

ICTP2013Cristian Sisterna

Variables can be used to accumulate
results or hold intermediate values. But,

variables declared within the function do not
keep the value between executions

Initial values assigned to variables are
synthesizable

Function can have more than one return,
however just one is executed

It is useful to declare the parameters as
undefined for a general use of the function

Function Key Concepts

255

ICTP2013Cristian Sisterna

package my_pack is
function max(a,b: in std_logic_vector)

return std_logic_vector;
end package;

package body of my_pack is
function max(a,b: in std_logic_vector)

return std_logic_vector is
begin

if a> b then
return a;

else
return b;

end if;
end function;

end package body;

Function Example 1

256

ICTP2013Cristian Sisterna

library ieee;
use ieee.std_logic_1164.all;

package my_pack is
function max(a,b: in std_logic_vector)

return std_logic_vector;
end package;

package body my_pack is
function max(a,b: in std_logic_vector)

return std_logic_vector is
begin

if a> b then
return a;

else
return b;

end if;
end function;

end package body;

Function Example 1

257

ICTP2013Cristian Sisterna

-- use of the function declared in the package
use work.my_pack.all;
...
entity example is

port(...);
end;
architecture beh of example is
begin

...
q_d1d2 <= max(d1,d2); -- concurrent call

process(d3,d4)
begin

q_d3d4 <= max(b=>d3, a=>d4); -- sequential call
end process;
end;

Note: d1, d2, data and g have to be std_logic_vector type

Function Usage - Example 1

Parameter passing list:
by position

Parameter passing list:
by name

Package holding function
declaration and behavior

258

ICTP2013Cristian Sisterna

-- convert Boolean to Bit
function bool_to_bit(b:Boolean) return bit is
begin
if b then
return '1';

else
return '0';

end if;
end function bool_to_bit;

Function Example 2

259

ICTP2013Cristian Sisterna

function sehctam_tnuoc (a, b: bit_vector) return natural is
variable va : bit_vector(a'length-1 downto 0):= a;
variable vb : bit_vector(b'length-1 downto 0):= b;
variable cnt: natural := 0;

begin
assert va'length = vb'length
report ”the vectors have different size”

severity failure;
for i in va'range loop

if va(i) = vb(i) then
cnt := cta + 1;

end if;
end loop;
return cnt;

end funciton;

Function Example 3

260

ICTP2013Cristian Sisterna

-- FUNCTION BIN2GRAY(VALUE)
-- Used to convert Binary into Gray-Code
function bin2gray(value:std_logic_vector)return

std_logic_vector is
variable grayval:std_logic_vector((value'length-1) downto 0);
variable result: std_logic_vector((value'length-1) downto 0);
begin

l_oop:for i in 0 to (value'length-1) loop
if(i=value'length-1) then

grayval(i) := value(i);
else

grayval(i) := value(i+1) xor value(i);
end if;

end loop l_oop;
result := grayval;

return result;
end function bin2gray;

Function Example 4

261

ICTP2013Cristian Sisterna

-- integer to bit_vector conversion
-- result'low is the lsb
function to_vector (nbits: positive; int_val: natural)

return bit_vector is
variable m1: natural := 0;
variable result:bit_vector(nbits-1 downto 0):=(others => '0');
begin
m1 := int_val;
for j in result'reverse_range loop
if (m1/mod2) = 1 then
result(j) := '1';

else
result(j) := '0';

end if;
m1 := m1/2;

end loop m1;
return result;

end function to_vector;

Function Example 5

262

ICTP2013Cristian Sisterna

Procedure

Provides a method of performing complex
algorithms
May produce multiple return (output) values

Invoked by a statement

Can affect input parameters

Parameter’s mode:

IN: read only

OUT: write only

INOUT: read/write

263

ICTP2013Cristian Sisterna

procedure proced_name (parameter_list) is

[procedure_declarations]

begin

sequential_statements;

end [procedure] [proced_name];

Procedure Syntax

Behavioral part

Declarative part

264

ICTP2013Cristian Sisterna

<procedure_declarations>

-- the only class declarations allowed are:

Procedure Definitions

<parameter_list>
in mode: to receive values
out mode: to return values
inout mode: to receive/return values
Parameters can be signals, variables and constants.
By default in = constant, out = variable
Can return as many values as are needed using the
out parameters

Variables Constants
Functions Types

265

ICTP2013Cristian Sisterna

Procedure Calls
Can be used in sequential or concurrent
statements areas

Concurrent calls are activated by changes in
any signal associated with a parameter of
mode IN or INOUT

Sequential calls is executed whenever the
procedure is encounter during the execution
of the sequential code

Passing parameter list:

Association by name

Association by position

266

ICTP2013Cristian Sisterna

procedure calc(a,b: in integer;
avg, max: out integer) is

begin
avg<= (a+b)/2;
if a>b then

max<=a;
else

max<=b;
end if;

end calc;

Procedure Example 1

267

ICTP2013Cristian Sisterna

-- sum, cout as variables
procedure full_adder (a,b,c: in bit; sum, cout: out bit) is
begin

sum := a xor b xor c;
cout := (a and b) or (a and c) or (b and c);

end full_adder;

Procedure Example 2

268

ICTP2013Cristian Sisterna

-- sum, cout as variables
procedure full_adder(a,b,c:in bit; signal sum, cout: out bit)is
begin

sum <= a xor b xor c;
cout<= (a and b) or (a and c) or (b and c);

end full_adder;

Procedure Example 3

269

ICTP2013Cristian Sisterna

entity adder4 is
port (a,b : in bit_vector(3 downto 0);

cin : in bit;
sum : out bit_vector(3 donwto 0);
cout: out bit);

end entity;
architecture behavioral of adder4 is
begin

process (a, b, cin)
variable result: bit vector(3 downto 0);
variable carry : bit:

begin
full_adder(a(0), b(0), cin, result(0), carry);
full_adder(a(1), b(1), carry, result(1), carry);
full_adder(a(2), b(2), carry, result(2), carry);
full_adder(a(3), b(3), carry, result(3), carry);
sum <= result;
cout <= carry;

end process;
end behavioral;

Procedure Example 3

270

ICTP2013Cristian Sisterna

architecture rtl of ex2 is
procedure calc (a,b: in integer; avg, max: out integer) is
begin

avg:= (a+b)/2;
if a>b then

max:=a;
else

max:=b;
end if;

end calc;
begin

calc(d1,d2,d3,d4); -- concurrent call. ok?
process(d3,d4)
variable a,b: integer;

begin
calc(d3,d4,a,b); -- sequential call. ok?
q3<=a;
q4<=b;

....
end process;

end;

Procedure Example 4

271

ICTP2013Cristian Sisterna

architecture rtl of ex3 is
procedure calc(a,b:in integer; signal avg, max:out integer)is
begin

avg<= (a+b)/2;
if a>b then

max<=a;
else

max<=b;
end if;

end calc;
begin

calc(d1,d2,d3,d4); -- concurrent call. ok?
process(d3,d4)
variable a,b: integer;

begin
calc(d3,d4,a,b); -- sequential call. ok?
q3<=a;
q4<=b;
....

end process;
end;

Procedure Example 4

272

ICTP2013Cristian Sisterna

procedure echo(constant str : in string) is
variable l: line;

begin
write(l, string'("<"));
write(l, time'(now));
write(l, string '("> "));
write(l, str);
writeline(output,l);

end echo;

Procedure Example 5

273

ICTP2013Cristian Sisterna

--

procedure echo_now(constant str : in string) is
variable l : line;

begin
write(l, str);
write(l, string'(" @ <--"));
write(l, time'(now));
write(l, string'("--> "));
writeline(output, l);

end echo_now;;

Procedure Example 6

274

ICTP2013Cristian Sisterna

When two or more subprograms have the same name
but different types in the list of parameters

function max (a, b: in std_logic_vector)

return std_logic_vector);

function max (a, b: in bit_vector)

return bit_vector);

function max (a, b: in integer)

return integer;

Subprograms Overloading

275

ICTP2013Cristian Sisterna 276

Package

ICTP2013Cristian Sisterna

package <package_name> is
[subprograma_declarations];
[constant_declarations];
[type_declarations];
[component_declarations];
[attribute_declarations];
[attribute_specifications];

end <package_name>;

package body <package_name> is
[subprogram_bodies];
[internal_subprogram_declarations];
[internal_constant_declaration];
[internal_type_declaration];

end <package_name>;

Package Syntax

277

ICTP2013Cristian Sisterna

Package

A package declaration contains a set of
declarations that may possible be shared by
many design units. Common declarations are
constants, functions, procedures and types

A package body contains the hidden details of a
package, such as the behavior of the
subprograms

Items declared in a package can be accessed by
other design unit by using the library and use
clauses

278

ICTP2013Cristian Sisterna

-- package declaration
package my_package is

constant word_size: positive:=16;
subtype word is bit_vector (word_size-1 downto 0);
subtype address is bit_vector(address_size-1 downto 0);
type status_value is

(halted, idle, fetch, mem_read, mem_wr, io_read);
function int_to_bit_vector (int_valor: integer)

return bit_vector;
end my_package;

-- package body
package body my_package is

function int_to_bit_vector (int_vector: integer)
return bit_vector is

begin
...
...

end int_to_bit_vector;
end my_package;

Function
Declaration

Function
Body

Declaring Subprograms in Packages

279

ICTP2013Cristian Sisterna

Package .vhd File
library ieee;
use ieee.std_logic_1164.all;
-- package declaration
package my_pack is

constant width: integer := 8;
function max(a, b: in std_logic_vector)

return std_logic_vector;
end;
-- package body
package body my_pack is
function max(a, b: in std_logic_vector)

return std_logic_vector is
begin

if a> b then
return a;

else
return b;

end if;
end;

end;
280

ICTP2013Cristian Sisterna

Package Usage
library ieee;
use ieee.std_logic_1164.all;
use work.my_pack.all; -- make the package available

entity package_test_2 is
port(d1,d2,d3: in std_logic_vector(width-1 downto 0);

z: out std_logic_vector(width-1 downto 0);
q: out std_logic_vector(width-1 downto 0));

end;

architecture beh of package_test_2 is
begin
q <= max(d1,d2); -- concurrent call of the function

process(d2,d3)
begin
z <= max(d3, d2); -- sequential call of the function

end process;
end;

281

ICTP2013Cristian Sisterna

Package Common Usage

package my_pack is
-- constants declarations
constant bus_width : natural:=2;
-- component declaration
component bcd_7segm is

port(led_outs : out std_logic_vector(6 downto 0);
bcd_inps : in std_logic_vector(3 downto 0)
);

end component;

component mux is
port(inf_inputs: in std_logic_vector(3 downto 0);

sel : in std_logic_vector(1 downto 0);
output : out std_logic);

end component;
end package my_pack;

282

ICTP2013Cristian Sisterna

Package Common Usage
library ieee;
use ieee.std_logic_1164.all;
use work.my_pack.all; -- make the package available

entity bcd_7seg_top is
port (. . .

. . .);
end;

architecture beh of package_test_2 is
begin

U1: bcd_7segm
port map (. . .);

U2: mux
port map (. . .);

. . .
end beh;

283

ICTP2013Cristian Sisterna

Package Common Usage
library ieee;
use ieee.std_logic_1164.all;
use work.my_pack.all; -- make the package available

entity bcd_7seg_top is
port (. . .

. . .);
end;

architecture beh of package_test_2 is
begin

U1: bcd_7segm
port map (. . .);

U2: mux
port map (. . .);

. . .
end beh;

284

ICTP2013Cristian Sisterna 285

Validation

ICTP2013Cristian Sisterna

Verification

It’s an IMPORTANT part of the design process:
how de I know that the design works as expected?

It’s IMPORTANT/NECESSARY to verify the
behavior of the design in at least one of following
parts of the design process:

Functional Verification / Pre-synthesis Verification
Post-synthesis
Timing Verification / Post-Place & Route
Verification

286

ICTP2013Cristian Sisterna

Verification – Where?

Compilation

Functional
Verification

Synthesis &
Optimization

Place & Route

Timing
Verification

Post_Synthesis
Verification

287

ICTP2013Cristian Sisterna

Verification – Where??

Post-synthesis Verification:
Not necessary unless several synthesis attributes
were used and it’s necessary to verify the behavior
after synthesis

Functional Verification / Pre-synthesis Verification:
Where most errors can and should be found
Use this verification ALWAYS

Timing Verification / Post-Place & Route Verification:
Necessary in high frequency designs, in the order of
>100MHz
Very slow process (very long verification time)

288

ICTP2013Cristian Sisterna

Verification – Test Bench

Test bench

a VHDL model which generates stimulus
waveforms to be used to test a digital circuit

described in VHDL

289

ICTP2013Cristian Sisterna

Test Bench - Overview

A model used to exercise and verify the
correctness of a hardware design

Besides synthesis, VHDL can also be used as
a Test Language

Very important to conduct comprehensive
verification on your design

To simulate your design you need to produce
an additional entity and architecture design

290

ICTP2013Cristian Sisterna

Test Bench

Test bench should be created by a DIFFERENT
engineer than the one who created the module
under test

It has three main purposes:

◦ To generate stimulus for simulation

◦ To apply this stimulus to the entity under test and to
collect output responses

◦ To compare output responses with expected values

291

ICTP2013Cristian Sisterna

Test Bench

Test Bench

Stimulus
Signals

Tested
Signals

Device Under Test
(DUT)

292

ICTP2013Cristian Sisterna

Test Bench - Components

TB entity:

Empty declaration

TB architecture:
Component declaration

Local signal declaration

Component instantiation

Stimulus statements

Check values statements

293

ICTP2013Cristian Sisterna

Test Bench–Components

Comb.
Logic

Comb.
Logic

Comb.
Logic

Data
Generation

Clock
Generation

Reset
Generation

Test Bench
Processes

Data
Verification

DUT

Simulator

294

ICTP2013Cristian Sisterna

Test Bench – Simulation Results

295

ICTP2013Cristian Sisterna

Test Bench - Components
library ieee;
use ieee.std_logic_1164.all;

entity test_my_design is
end test_my_design;

architecture testbench of test_my_design is
component my_design is

port (a,b : in std_logic;
x,y : out std_logic);

end component;

signal as,bs : std_logic:=‘1’;
signal xs,ys : std_logic;

begin
uut : my_design port map

(a=>as, b=>bs, x=>xs, y=>ys);

as <= not(as) after 50 ns;

process begin
bs <= '1'; wait for 75 ns;
bs <= '0'; wait for 25 ns;

end process;
end testbench;

ch of test_my_desi

Define library, same as in VHDL
source code

VHDL model without entity interface

Component declaration of the
device to test

Define signal names

Instantiated UUT in test
bench

Define the stimulus of the test

296

ICTP2013Cristian Sisterna

Test Bench – VHDL Template
library ieee;
use ieee.std_logic_1164.all;

-- TB entity declaration del TB (empty entity)
entity testbench is
end testbench;

-- architecture declaration
architecture tb of testbench is
-- component declaration: component to test

component device_under_test
port(list_of_ports);

end component;

-- local signal declarations. Used to:
-- stimulate the DUT’s inputs
-- test the DUT’s outputs

<local_signal_declarations;>

297

ICTP2013Cristian Sisterna

Test Bench – VHDL Template (cont)
begin
-- component instantiation:
-- associate the top-level (TB)
-- signals to their equivalent DUT’s signals

DUT: entity_under_test port map(list_of_ports);

-- stimulus statements for the input signals.
-- values are assigned at different times per each input

generate_input_waveforms;

-- ouptut signals’ check

monitor_output_statements;

end tb;

298

ICTP2013Cristian Sisterna

Test Bench – Use of wait

The wait statement can be located anywhere
between begin and end process

Basic Usages:

wait for time;

wait until condition;

wait on signal_list;

wait;

299

ICTP2013Cristian Sisterna

Test Bench – Use of wait 1

process
. . .
J <= ‘1’;
wait for 50 ns;-- process is suspended for 50 ns after J is
. . . -- assigned to ‘1’

end process;

process
. . .
wait until CLK = ‘1’;-- sync with CLK rising edge before

-- continuing of simulation
. . .

end process;

300

ICTP2013Cristian Sisterna

Test Bench – Use of wait 2
process
. . .

wait on A until CLK = ‘1’;-- the process is resumed
-- after a change on A signal,
-- but only when the value of
-- the signal CLK is equal to ’

. . .
end process;

process
rst <= ‘1’;
wait for 444 ns;
rst <= ‘0’;

wait; -- used without any condition,
-- the process will be suspended
-- forever

end process;

301

ICTP2013Cristian Sisterna

Test Bench – Clock Generation 1

architecture testbench of test_my_design is
signal clk_50 : std_logic := ‘1’;
signal clk_75 : std_logic := ‘0’;
constant clk_period : time := 100 ns;
constant h_clk_period: time := 50 ns;

begin

-- case 1: concurrent statement
clk_50 <= not(clk_50) after h_clk_period;-- 50% duty

-- case 2: sequential statement
clk_75_proc: process
begin

clk_75 <= '1';
wait for 75 ns; -- 75% duty
clk_75 <= '0';
wait for 25 ns;

end process clk_75_proc;
. . .
. . .
end testbench;

clk_50

50 100

clk_75

302

ICTP2013Cristian Sisterna

Test Bench – Clock Generation 2

architecture testbench of test_my_design is

signal clk: std_logic := ‘0’;
constant period: time := 40 ns;

begin

diff_duty_clk_cycle: process
begin

clk <= ‘0’;
wait for period * 0.60;
clk <= ‘1’;
wait for period * 0.40; -- 60% duty cycle

end process diff_duty_clk_cycle;

. . .
end architecture testbench;

303

ICTP2013Cristian Sisterna

Test Bench – Clock Generation 3

architecture testbench of test_my_design is

signal clk: std_logic:= ‘0’;
constant half_period: time := 20 ns;

begin

clk_cycle: process
begin

clk <= ‘0’;
wait for half_period; -- the clock will toggle
clk <= ‘1’;
wait for half_period; -- as long as the simulation

-- is running
end process clk_cycle;
. . .

end architecture testbench;

304

ICTP2013Cristian Sisterna

Test Bench – Data Generation

Avoid race conditions between data and clock
Applying the data and the active edge of the clock
simultaneously might cause a race condition

• To keep data synchronized with the clock
while avoiding race condition, apply the data
at a different point in the clock period that at
the active edge of clock

305

ICTP2013Cristian Sisterna

Test Bench – Data Generation 1
clk_gen_proc: process

begin

Clk <= ’0’;

wait for 25 ns;

clk<= ’1’;

wait for 25 ns;

end process clk_gen_proc;

data_gen_proc: process

while not (data_done) loop

DATA1 <= X1;

DATA2 <= X2;

...

wait until falling_edge(clk);

end loop;

end process data_gen_proc;

Example of Data
generation on

inactive clock edge

Clock
generation

process

Data
generation

process

306

ICTP2013Cristian Sisterna

Test Bench – Data Generation 2

architecture relative_timing of myTest is

signal Add_Bus : std_logic_vector(7 downto 0);

begin
patt_gen_proc: process
begin
Add_Bus <= “00000000”;
wait for 10 ns;

Add_Bus <= “00000101”;
wait for 10 ns;

Add_Bus <= “10101010”;
wait for 10 ns;

end process patt_gen_proc;
. . .
end relative_timing;

00000000
00000101

10 20 30

10101010

Relative time: signal waveforms that are specified to change at
simulation times relative to the previous time, in a time

accumulated manner

00000000
00000101

X”00” X”05” X”AA” X”00”

307

ICTP2013Cristian Sisterna

Test Bench – Data Generation 3

architecture absolute_timing of testbench is
signal A_BUS : std_logic_vector(7 downto 0);

begin
A_BUS <= “00000000”,

“00000101” after 10 ns,
“00001010” after 20 ns;

-- etc.
. . .
end absolute_timing; 00000101

00001010

10 20 30

00000000

Absolute time: signal waveforms that are specified to change at
simulation times absolute since the moment that the simulation

begin

X”00” X”05” X”0A”

308

ICTP2013Cristian Sisterna

Test Bench – Data Generation 3

-- 2 bits test pattern
begin

test0 <= ‘0’, ‘1’ after 10 ns, ‘0’ after 20 ns,
‘1’ after 30 ns;

test1 <= ‘0’,
‘1’ after 20 ns;

. . .

test0

test1

Absolute time: signal waveforms that are specified to change at
simulation times absolute since the moment that the simulation

begin

309

ICTP2013Cristian Sisterna

Test Bench – Data Generation 4
architecture array_usage of in_test_benches is

signal Add_Bus : std_logic_vector(7 downto 0);
-- type & signal declarations: 5 data for 8 bits
type stimulus is array (0 to 4) of

std_logic_vector (7 downto 0);

constant DATA : stimulus :=
(“00000000”, -- declare the stimulus
“00000001”, -- as an array.
“00000010”, -- these values will be
“00000011”, -- used to stimulate the
“00000100”); -- inputs

begin
stim_proc: process
begin
for i in 0 to 4 loop -- for loop that assign

Add_BUS <= DATA(i); -- to Add_Bus a new value
wait for 10 ns; -- from stimulus every 10ns

end loop;
end process stim_proc;

. . .
end array_usage;

310

ICTP2013Cristian Sisterna

Test Bench – Data Generation 5

architecture array_usage of in_test_benches is

-- same declarations as previous example

begin
process
begin
for i in 0 to 4 loop

Add_BUS <= DATA(i);
for k in 1 to 7 loop

wait until rising_edge(clk);
end loop;
wait until falling_edge(clk);

end loop;
end process;

. . .
end array_usage;

In this case each pattern in the sequence is held for how
many clock cycles???

311

ICTP2013Cristian Sisterna

Test Bench – Reset Generation

-- asynchronous desassert reset

reset: process

begin

rst <= ’1’;

wait for 23 ns;

rst <= ’0’;

wait for 1933 ns;

rst <= ’1’;

wait for 250 ns;

rst <= ’1’;

wait;

end process;

312

ICTP2013Cristian Sisterna

Test Bench – Reset Generation

-- synchronous desassert reset

sreset: process

begin

rst <= ’1’;

for i in 1 to 5 loop

wait until clk = ‘1’;

end loop;

rst <= ’0’;

end process;

313

ICTP2013Cristian Sisterna

Test Bench Simple – Ex. Decoder 2:4

entity dcd_2_4 is
port (in1 : in std_logic_vector (1 downto 0);

out1 : out std_logic_vector (3 downto 0));
end dcd_2_4;
--
architecture dataflow of dcd_2_4 is
begin
with in1 select
out1 <= "0001" when "00",

"0010" when "01",
"0100" when "10",
"1000" when "11",
"0000" when others;

end dataflow;

314

ICTP2013Cristian Sisterna

Test Bench Simple – Ex. Decoder 2:4
-- Test Bench to exercise and verify
-- correctness of DECODE entity
entity tb2_decode is
end tb2_decode;

architecture test_bench of tb2_decode is

type input_array is array(0 to 3) of
std_logic_vector(1 downto 0);

constant input_vectors: input_array :=
("00", "01", "10", "11");

signal in1 : std_logic_vector (1 downto 0);
signal out1 : std_logic_vector (3 downto 0);

component decode
port (

in1 : in std_logic_vector(1 downto 0);
out1: out std_logic_vector(3 downto 0));

end component;
315

ICTP2013Cristian Sisterna

Test Bench Simple – Ex. Decoder 2:4

begin

decode_1: decode port map(

in1 => in1,

out1 => out1);

apply_inputs: process

begin

for j in input_vectors‘range loop

in1 <= input_vectors(j);

wait for 50 ns;

end loop;

end process apply_inputs;

Component
Instantiation

Inputs
Stimulus and
Outputs port

map

Data
generation

Stimulus to the Inputs and Component Instantiation:

316

ICTP2013Cristian Sisterna

Test Bench Simple – Ex. Decoder 2:4 (1)

test_outputs: process

begin

wait until (in1 = "01");

wait for 25 ns;

assert (out1 = "0110")

report"Output not equal to 0110"

severity ERROR;

… -- check the other outputs

end process test_outputs;

Input
stimulus

Wait on
certain time

Check the
output

Data verification:

317

ICTP2013Cristian Sisterna

Test Bench Elaborated: Decoder 2:4 (2)

318

-- Test Bench to exercise and verify
-- correctness of DECODE entity
entity tb3_decode is
end tb3_decode;

architecture test_bench of tb3_decode is
type decoder_test is record
in1: std_logic_vector(1 downto 0);
out: std_logic_vector(3 downto 0);

end record;
type test_array is array(natural range <>) of decoder_test;
constant test_data: test_array :=

(("00", "0001"),
("01", "0010"),
("10", "0100"),
("11", "1000"));

-- same component declaration as before
signal in1_tb : std_logic_vector(1 downto 0);
signal out1_tb: std_logic_vector(3 downto 0);

ICTP2013Cristian Sisterna

Test Bench Elaborated: Decoder 2:4 (3)

319

begin

decode_1: decode port map(

in1 => in1_tb,

out1 => out1_tb);

apply_in_check_outs: process

begin

for j in test_data’range loop

in1_tb <= test_data(j).in1);

wait for 50 ns;

assert (out1_tb = test_data(j).out1)

report "Output not equal to the expected value,

error en indice ” & integer’image(j);

severity ERROR;

end loop;

end process apply_in_check_outs;

ICTP2013Cristian Sisterna

Test Bench Elaborated: Decoder 2:4 (4)

begin
…

apply_inputs: process

begin

for j in test_data’range loop

in1 <= test_data(j).in1);

wait for 50 ns;

end loop;

end process apply_inputs;

data_verif: process

begin

wait for 25 ns;

assert (out1 = test_data(j).out1)

report "Output not equal to the expected
value"

severity ERROR;

wait for 50 ns;

end process data_verif;
320

ICTP2013Cristian Sisterna

Test Bench Elaborated 2: Decoder 2:4 (5)

entity dcd_2_4 is
port (in1 : in std_logic_vector(1 downto 0);

clk : in std_logic ;
out1 : out std_logic_vector(3 downto 0));

end dcd_2_4;
architecture dataflow of dcd_2_4 is
signal out1_i: std_logic_vector (3 downto 0);
begin
with in1 select

out1_i <= "0001" when "00",
"0010" when "01",
"0100" when "10",
"1000" when "11",
"0000" when others;

reg_proc: process(clk)
begin

if(rising_edge(clk)) then
out1 <= out1_i;

end if;
end process reg_proc;
end dataflow;

321

ICTP2013Cristian Sisterna

Test Bench – Example 74LS194

322

ICTP2013Cristian Sisterna

Test Bench – Example 74LS194

323

ICTP2013Cristian Sisterna

Test Bench – Example 74LS194 (1)

-- example of a 4-bit shift register

-- LS194 4-bit bidirectional universal shift register

library ieee;

use ieee.std_logic_1164.all;

entity ls194 is

port(

clk,mr_n,s0,s1,dsr,dsl_ser: in std_logic;

p : in std_logic_vector(3 downto 0);

q : out std_logic_vector(3 downto 0)

);

end ls194;

324

ICTP2013Cristian Sisterna

Test Bench – Example 74LS194 (2)
architecture behav of ls194 is

signal temp: std_logic_vector(3 downto 0);

signal ctrl: std_logic_vector (1 downto 0);

begin

ctrl <= s0 & s1;

shift_proc: process(clk, mr_n)

begin

if (mr_n = '0') then

temp <= (others => '0');

elsif (rising_edge(clk)) then

case ctrl is

when "11" => temp <= p;
when "10" => temp <= dsr & temp(3 downto 1);
when "01"=> temp <= temp(2 downto 0) & dsl;

when others => temp <= temp;

end case;

end if;

end process;

q <= temp; end behav;

325

ICTP2013Cristian Sisterna

Test Bench – Example 74LS194 (3)
-- example of test bench to test the ls194
library ieee;
use ieee.std_logic_1164.all;

entity test_bench is
end test_bench;
architecture tb of test_bench is
component ls194 is

port(
clk,mr_n,s0,s1,dsr,ds: in std_logic;
p : in std_logic_vector(3 downto 0);
q : out std_logic_vector(3 downto 0));

end component;
-- internal signals
signal clk_tb: std_logic:= ‘1’;
signal s0_tb, s1_tb, mr_tb_n, dsr_tb, dsl_tb: std_logic:=

'0';
signal p_tb, q_tb : std_logic_vector (3 downto 0);

326

ICTP2013Cristian Sisterna

Test Bench – Example 74LS194 (4)
-- constant declarations

constant clk_period: time := 200 ns;

begin

-- component instantiation

U1: ls194 port map(

clk => clk_tb,

mr_n => mr_tb_n,

s0 => s0_tb,

s1 => s1_tb,

dsr => dsr_tb,

dsl => dsl_tb,

p => p_tb,

q => q_tb);

-- clock generation

clk_tb <= not clk_tb after clk_period/2;

327

ICTP2013Cristian Sisterna

Test Bench – Example 74LS194 (5)

main_proc: process
begin

-- check_init_proc
wait for 10 ns;
assert q_tb = "0000"

report " Initialization Error "
severity ERROR;

wait for 20 ns;
mr_tb_n <= '1’;

-- check synchronous load
s0_tb <= ‘1’;
s1_tb <= ‘1’;
p_tb <= "0110";

328

ICTP2013Cristian Sisterna

Test Bench – Example 74LS194 (6)

wait for clk_period;
-- wait until falling edge clk_tb
wait until clk_tb = ‘0’;

assert q_tb = "0110"
report " Load Error "
severity ERROR;

-- check shift left
s0_tb <= ‘0’;
-- wait until falling edge clk_tb
wait until clk_tb = ‘0’;

assert q_tb = "1100"
report " Error: Shift left Failed "
severity ERROR;

329

ICTP2013Cristian Sisterna

Test Bench – Example 74LS194 (7)

-- three more shift left
for i in 0 to 2 loop

if i = 1 then
dsl_tb <= ‘0’;

else
dsl_tb <= ‘1’;

end if;
wait until clk_tb = ‘0’;

end loop;

assert q_tb = "0101"
report " Error: serial left shift failed "
severity ERROR;

wait;
end process;
end tb;

330

ICTP2013Cristian Sisterna

Test Bench – Example 74LS194 (8)

331

ICTP2013Cristian Sisterna

Test Bench - Conclusion

TB is done in VHDL code

Emulate the Hardware

Use all the power of VHLD

There is no size limit

TB is the top-level unit

Usually is more complex than the design itself

332

ICTP2013Cristian Sisterna 333

Attributes

ICTP2013Cristian Sisterna

Attributes
It’s a way of extracting information from a type, from the
values of a type or it might define new implicit signals
from explicitly declared signals

It’s also a way to allow to assign additional information
to objects in your design description (such as data
related to synthesis)

Pre-defined
Attributes

User-defined/Synthesis
Attributes

Only
Simulation

Simulation &
Synthesis

334

ICTP2013Cristian Sisterna

Predefined Attributes

Syntax:

<data_object/type/block>’attribute_identifier;

335

ICTP2013Cristian Sisterna

Array Attributes

Array attributes are used to obtain information
on the size, range and indexing of an array

It’s good practice to use attributes to refer to the
size or range of an array. So, if the size of the
array is change, the VHDL statement using

attributes will automatically adjust to the change

336

ICTP2013Cristian Sisterna

Array Attributes

Array Attributes – Value Related

A’left Returns the left-most bound of a given type or
subtype

A’right Returns the left-most bound of a given type or
subtype

A’ high Returns the upper bound of a given type or subtype

A’low Returns the lower bound of a given type or subtype

A’length Return the length (number of elements of an array)

A’ascending Return a boolean true value of the type or subtype
declared with an ascending range

337

ICTP2013Cristian Sisterna

Array Attributes

Array Attributes – Range Related

A’range Returns the range value of a constrained array

A’reverse_range Returns the reverse value of a constrained array

338

ICTP2013Cristian Sisterna

Array Attributes - Examples
type bit_array_1 is array (1 to 5) of bit;

variable L: integer:= bit_array_1'left; -- L = 1

variable R: integer:= bit_array_1'right; -- R = 5

type bit_array_2 is array (0 to 15) of bit;

variable H: integer:= bit_array_2'high; -- H = 15

type bit_array_3 is array (15 downto 0) of bit;

variable L: integer:= bit_array_3'low; -- L = 0

variable LEN: integer:= bit_array_3'length; -- L = 16

variable A1: boolean := bit_array_1'ascending;-- A1 = true

variable A2: boolean := bit_array_3'ascending;-- A2 = false

type states is (init, reset, cnt, end);

signal Z, Y: states;

Z <= estados'left; -- Z = init

Y <= estados'right; -- Y = end

339

ICTP2013Cristian Sisterna

Array Attributes

variable w_bus: std_logic_vector(7 downto 0);

then:

w_bus’range will return: 7 downto 0

and:

w_bus’reverse_range will return: 0 to 7

range and reverse_range usage:

340

ICTP2013Cristian Sisterna

Array Attributes

function parity(D: std_logic_vector) return std_logic is

variable result: std_logic := '0';

begin

for i in D'range loop

result := result xor D(i);

end loop;

return result;

end parity;

341

ICTP2013Cristian Sisterna

Array Attributes

for i in D'range loop

for i in D‘reverse_range loop

for i in D‘low to D’high loop

for i in D‘high to D’low loop

342

ICTP2013Cristian Sisterna

Attributes of Signals

Attributes of Signals

S’event True if there is an event on S in the current
simulation cycle, false otherwise

S’active True if there is an transaction S in the current
simulation cycle, false otherwise

S’ last_event The time interval since the last event on S

S’last_active The time interval since the last transaction on S

S’last_value The value of S just before the last event on S

Attributes that return information about signals such
as previous value, value change, etc.

343

ICTP2013Cristian Sisterna

Attributes of Signals - Example

process

constant setup_time: time :=1.2 ns;

begin

wait until clk = ‘0’;

assert (data'stable(setup_time))

report “Setup Violation"

severity warning;

end process;

344

ICTP2013Cristian Sisterna

User-defined/Synthesis Attributes

VHDL provides designers/vendors with a way of
adding additional information to the system to be
synthesized

Synthesis tools use this features to add timing,
placement, pin assignment, hints for resource locations,
type of encoding for state machines and several others
physical design information

The bad side is that the VHDL code becomes synthesis
tools/FPGA dependant, NO TRANSPORTABLE ….

345

ICTP2013Cristian Sisterna

User-defined/Synthesis Attributes

attribute syn_preserve: boolean;

attribute syn_preserve of ff_data: signal is true;

type my_fsm_state is (reset, load, count, hold);

attribute syn_encoding: string;

attribute syn_encoding of my_fsm_state: type is “gray”;

attribute attr_name: type;

attribute attr_name of data_object: ObjectType is AttributeValue;

Syntax

Ejemplos

346

ICTP2013Cristian Sisterna

User-defined/Synthesis Attributes

type ram_type is array (63 downto 0) of

std_logic_vector (15 downto 0);

signal ram: ram_type;

attribute syn_ramstyle: string;

attribute syn_ramstyle of ram: signal is “block_ram”;

Example:

347

ICTP2013Cristian Sisterna

User-defined/Synthesis Attributes

attribute pin_number of out_en: signal is P14;

attribute max_delay of in_clk: signal is 500 ps;

attribute syn_encoding of my_fsm: type is “one-hot”;

Synthesis Attribute

Example:

348

ICTP2013Cristian Sisterna 349

Bibliography

349

ICTP2013Cristian Sisterna

Books

1. VHDL for Logic Synthesis, Andy Rushton. John Wiley & Sons, 2011.
2. RTL Hardware Design Using VHDL, Chu, IEEE Wiley Interscience, 2006
3. Advanced FPGA Design, Steve Kilts, IEEE John Wiley & Sons, 2007.
4. A VHDL Primer, J. Bhasker, Prentice Hall, 1995.
5. VHDL Made Easy, D. Pellerin and D. Taylor, Prentice Hall, 1997.
6. Digital Design and Modeling with VHLD and Synthesis, K. C. Chang, IEEE Computer

Society Press, 1997.
7. A VHDL Modeling and Synthesis Methodology for FPGAs, C. Sisterna, Arizona State

University, 1998.
8. Digital Design using Field Programmable Gate Arrays, Pak Chan and Samiha Mourad,

Prentice Hall, 1994.
9. VHDL for Desginers, Stefan Sjoholm and Lennert Lindh, Prentice Hall, 1997.
10. Digital Design Principles and Practices, Third Edition, John Wakerly, Prentice Hall, 2000.
11. Digital Design with FPGAs using VHDL, C. Sisterna, Arizona State University, 1997.
12. The Designer's Guide to VHDL, Peter Ashenden, Morgan Kaufman, 1996.
13. Synthesis and Optimization of Digital Circuits, Giovanni De Micheli, Mc Graw-Hill, 1994.
14. HDL Chip Design, A Practical Guide for Designing, Synthesizing and Simulationg ASICs

and FPGAs using VHDL or Verilog, Douglas Smith, Doome Publications, 1998.

350

ICTP2013Cristian Sisterna

Others

Altera Corporation (www.altera.com)
Application Notes
Datasheets

C7 Technology (www.c7t-hdl.com)
Application Notes
Technical Notes

Actel Corporation (www.actel.com)
Xilinx Corporation (www.xilinx.com)
Intel Corporation (www.intel.com)
Lattice Semiconductors (www.latticesemi.com)
Blog: http://hdl-fpga.blogspot.com.ar/ (spanish)
Blog: http://fpga-hdl.blogspot.com.ar/ (english)

351

