

2499-4

International Training Workshop on FPGA Design for Scientific Instrumentation and Computing

11 - 22 November 2013

Introduction to VLSI Degital Design Transistors

> Sandro BONACINI CERN, Geneva Switzerland

Outline

- Introduction
- Transistors
 - DC behaviour
 - MOSFET capacitances
- The CMOS inverter
- Technology
- Scaling
- Gates
- Sequential circuits
- Storage elements

Many slides are a courtesy of Paulo Moreira

"Making Logic"

- Logic circuit "ingredients":
 - Power source
 - Switches
 - Inversion
 - Power gain (for multiple stages)
- Power always comes from some form of external generator.
- NMOS and PMOS transistors:
 - Can perform the last three functions
 - They are the building blocks of CMOS technologies!

Light ON = $(A + \overline{B})\overline{D} + C$

Silicon switches: the NMOS

Silicon switches: the NMOS

Silicon switches: the PMOS

Sandro Bonacini

MOSFET equations

• Cut-off region:

• Linear region:

$$I_{ds} = 0 \quad \text{for} \quad V_{gs} - V_T < 0 \qquad (1)$$

$$I_{ds} = \mu \cdot C_{ox} \cdot \frac{W}{L} \cdot \left[\left(V_{gs} - V_T \right) \cdot V_{ds} - \frac{V_{ds}^2}{2} \right] \cdot \left(1 + \lambda \cdot V_{ds} \right) \text{ for } 0 < V_{ds} < V_{gs} - V_T \qquad (2)$$

• Saturation:

$$I_{ds} = \frac{\mu \cdot C_{ox}}{2} \cdot \frac{W}{L} \cdot \left(V_{gs} - V_T\right)^2 \cdot \left(1 + \lambda \cdot V_{ds}\right) \text{ for } V_{ds} > V_{gs} - V_T \quad (3)$$

• Oxide capacitance

$$C_{OX} = \frac{\varepsilon_{OX}}{t_{OX}} \left(F / m^2 \right)$$

Process "transconductance"

$$\mu \cdot C_{ox} = \frac{\mu \cdot \varepsilon_{ox}}{t_{ox}} \quad \left(\mathbf{A} / \mathbf{V}^2 \right)$$

 $\frac{0.25 \mu m \text{ process}}{t_{ox}} = 5 \text{ nm} (~10 \text{ atomic layers})$ $C_{ox} = 5.6 \text{ fF}/\mu m^2$

d,

$$\frac{65 \text{ nm process}}{t_{ox}} = 2.4 \text{ nm } (\sim 5 \text{ atomic layers})$$
$$C_{ox} = 15 \text{ fF}/\mu\text{m}^2$$

Sandro Bonacini

MOS output characteristics

- Linear region:
 V_{ds}<V_{qs}-V_T
 - Voltage controlled resistor
- Saturation region: $V_{ds} > V_{qs} V_T$
 - Voltage controlled current source
- Curves deviate from the ideal current source behavior due to:
 - Channel modulation effects

• $(V_{qs0} \text{ is the maximum } V_{qs}, I_{ds0} \text{ is the maximum } I_{ds})$

MOS output characteristics

Is the quadratic law valid?

Transistors

Temperature dependence

- Transistor characteristics are influenced by temperature (T)
 - V_T decreases linearly with T
 - $-~~\mu$ decreases with T
 - I_{leakage} increases with T
- Circuit performances are worst at high temperature

10

Bulk effect

- The threshold depends on:
 - Gate oxide thickness
 - Doping levels
 - Source-to-bulk voltage
- If V_{sb} > 0 the threshold voltage is higher than V_{sb} = 0

Sandro Bonacini

Weak inversion

Gain & Inversion

- Gain:
 - Signal regeneration at every logic operation
 - "Static" flip-flops
 - -> clock can be turned off
 - "Static" RW memory cells
- Inversion:
 - Intrinsic to the commonsource configuration
- The gain cell load can be:
 - Resistor
 - Current source
 - Another gain device (PMOS)

Outline

- Introduction
- Transistors
 - DC behaviour
 - MOSFET capacitances
 - MOSFET model
- The CMOS Inverter
- Technology Scaling
- Gates
- Sequential circuits
- Storage elements

What causes delay?

- In MOS circuits capacitive loading is the main cause of delay.
- Capacitance loading is due to:
 - Device capacitance
 - Interconnect capacitance (RC delay in the interconnects will be addressed later)

$$\Delta t = C \cdot \frac{\Delta V}{I} \approx \frac{C}{\mu \cdot C_{ox} \cdot V_{dd}} \cdot \frac{L}{W}$$

Assuming
$$V_T = 0$$

MOSFET capacitances

- MOS capacitances have three origins:
 - The basic MOS structure
 - The channel charge
 - The pn-junctions depletion regions

MOS Structure Capacitances

- Source/drain diffusion extend below the gate oxide by:
 x_d - the lateral diffusion
- This gives origin to the source/drain overlap capacitances:

$$C_{gso} = C_{gdo} = C_o \times W$$

 $C_o (F / m)$

• Gate-bulk overlap capacitance:

$$C_{gbo} = C'_{o} \times L, \quad C'_{o} \quad (F / m)$$

MOS Structure Capacitances

<u>0.24 µm process</u>

NMOS L(drawn) = 0.24 μ m L(effective) = 0.18 μ m W(drawn) = 2 μ m C_o (s, d, b) = 0.36 fF/ μ m C_{ox} = 5.6 fF/ μ m² C_{gso} = C_{gdo} = 0.72 fF C_{gbo} = 0.086 fF C_g = 2.02 fF

Channel Capacitance

- The channel capacitance is nonlinear
- Its value depends on the operation region
- Its formed of three components:
 - C_{qb} gate-to-bulk capacitance
 - C_{qs} gate-to-source capacitance
 - C_{gd} gate-to-drain capacitance

Operation region	C _{gb}	C _{gs}	C _{gd}
Cutoff	C _{ox} W L	0	0
Linear	0	(1/2) C _{ox} W L	(1/2) C _{ox} W L
Saturation	0	(2/3) C _{ox} W L	0

Junction capacitances

- C_{sb} and C_{db} are diffusion capacitances composed of:
 - Bottom-plate capacitance:

$$C_{bottom} = C_j \cdot W \cdot L_s$$

- Side-wall capacitance:

$$C_{sw} = C_{jsw} \cdot \left(2 L_s + W\right)$$

Junction capacitances

<u>0.24 µm process</u>

NMOS $L(drawn) = 0.24 \ \mu m$ $L(effective) = 0.18 \ \mu m$ $W(drawn) = 2 \mu m$ $L_{s} = 0.8 \ \mu m$ C_j (s, d) = 1.05 fF/ μ m² $C_{jsw} = 0.09 \text{ fF}/\mu m$ $C_{bottom} = 1.68 \text{ fF}$ $C_{sw} = 0.32 \text{ fF}$ $C_{q} = 2.02 \text{ fF}$

Source/drain resistance

Scaled down devices \Rightarrow higher source/drain resistance: •

$$R_{s,d} = \frac{L_{s,d}}{W} \cdot R_{sq} + R_c$$

In sub- μ processes *silicidation* is used to reduce the source, drain ٠ and gate parasitic resistance

